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Visualization of 4D Vector Field Topology
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Figure 1: 3D projection of topological structures of a 4D vector field, with critical points depicted by 4D glyphs, their stable and unstable

invariant manifolds (blue and red, respectively) by volumes in 4D, together with 4D streamlines for context. The 4D camera moves in 4D

space along a selected streamline (striped red–white), while maintaining a view which minimizes the amount of clutter in the 3D projection.

Abstract

In this paper, we present an approach to the topological analysis of four-dimensional vector fields. In analogy to traditional 2D

and 3D vector field topology, we provide a classification and visual representation of critical points, together with a technique

for extracting their invariant manifolds. For effective exploration of the resulting four-dimensional structures, we present a 4D

camera that provides concise representation by exploiting projection degeneracies, and a 4D clipping approach that avoids

self-intersection in the 3D projection. We exemplify the properties and the utility of our approach using specific synthetic cases.

CCS Concepts

•Human-centered computing → Visualization techniques; •Applied computing → Mathematics and statistics;

1. Introduction

Many physical phenomena in our everyday life, that involve force
or motion, are accessible by the concept of a two-dimensional or
three-dimensional time-independent vector field. There are, how-
ever, cases, where a fourth dimension is required for appropriate
modeling, leading to four-dimensional vector fields. Since vector
fields correspond to differential equations [Asi93] and therefore to
dynamical systems, any continuous deterministic dynamical sys-
tem with four-dimensional phase space, and any four-dimensional
differential equation, represents a four-dimensional vector field.
Besides mathematics, there is a wide range of problems that lead
to such four-dimensional dynamical systems, including the change

of concentration of four substances due to chemical reactions, or
the evolution of four competing species. It is, however, nowadays
often the case that such problems are investigated by only a few
simulations instead of dense ensembles, i.e., simulations are ob-
tained only for a few initial conditions or parameter choices. Such
sets of simulations result in four-dimensional phase spaces whose
domain is, however, less than four-dimensional, and thus do not
necessitate four-dimensional analysis. Nevertheless, a prominent
source for four-dimensional vector fields is already today the phase
space in physics, consisting of position and momentum. It is 2n-
dimensional for a problem in n-space, and is used to represent the
motion of inertial objects due to, e.g., forces.
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The concept of vector field topology, i.e., extracting singular
structures, such as critical points and periodic orbits, and revealing
the invariant manifolds of trajectories that converge to the singular
structures in forward or reverse time, has proven very successful
in a wide range of research questions and applications over many
decades. In particular if such manifolds are of codimension one,
i.e., (n−1)-manifolds in n-dimensional vector fields, they separate
the domain into regions of qualitatively different behavior, and thus
ease analysis and understanding.

Applying the concept of vector field topology to 4D vector fields,
however, leads to a set of challenges, part of which we address
in this work. First, the critical points exhibit different types in 4D
fields, requiring a respective classification, and more important, ap-
propriate visual representation. Whereas the former is a straightfor-
ward mathematical task, we address the latter with a set of glyphs,
which, however, are four-dimensional. We handle the visualization
of the four-dimensional structures in our approach with projection-
based approaches, with a focus on avoiding projection-induced am-
biguities and supporting the difficult exploration and imagination
in four-dimensional space. Second, the overall navigation in 4D
space, populated with the manifolds and glyphs, is of course dif-
ficult due to various paradoxes. We therefore complement our ap-
proach with a technique that helps in navigating the resulting struc-
tures, and 4D space in general. Last but not least, we present a set
of vector fields that help introduce our approach, and introduce the
reader to 4D space and its navigation.

Our contributions include:
• classification, glyphs, manifold extraction, and projection-based

visual representation of critical points in 4D vector fields,
• and manifold-based exploration of 4D vector field topology.

2. Related Work

Vector field topology has first been considered in visualization by
Helman and Hesselink [HH89, HH91] in two and three dimen-
sions.An overview of the state of the art in vector field topology
is given by Laramee et al. [LHZP07], who focus in particular on
the applicability with respect to flow visualization. A recent sur-
vey by Heine et al. [HLH∗16] takes a broader view and illustrates
various concepts that go beyond flow visualization.

In several applications, four-dimensional problems arise from
lower-dimensional ones by considering additional aspects, such
as time-dependency or inertia. Many of these cases, however, do
not lead to true four-dimensional vector fields. Two-parameter-
dependent 2D vector fields [WTHS06] only consider vectors in 2-
space, while the tracking of 3D critical points [GTS04] over time
only considers 3D vector fields at different instances in time. Flow-
induced inertial dynamics of 2D systems [GG17], on the other
hand, has an underlying 4D phase space, but the underlying flow
allows the reduction of the analysis to the two-dimensional spa-
tial domain. Our work focuses on general four-dimensional vector
fields. We discuss further related work in this context in Section 8.

Visualization of 4D geometry has been first explored in an early
approach [Nol67], where an automatic plotter was used to ren-
der frames of a two-dimensional movie showing projections of ro-
tating four-dimensional geometry. This technique was limited to

wireframe depictions, and has later been implemented on a Sili-
con Graphics workstation [Hol91]. Subsequently, lighting models
in four dimensions were proposed [HH92, HC93]. Stereographic
projections have been employed for the visualization of contours
of complex-valued bivariate functions [WB96] as an alternative.
While these techniques are based on the idea of visualizing two-
dimensional surfaces in 4-space, i.e., R4, a three-dimensional frame
buffer has been utilized for volume rendering [CFHH09]. In the
same context, the problem of self-intersections has been addressed
with higher-dimensional halos [WYF∗13].

Flow in 3D fields can be analyzed using flow volumes, either by
calculating explicit geometrical representations of separating vol-
umes by streamline integration [MBC93], or by constructing an im-
plicit flow as a scalar field [XZC04]. Implicit approaches have been
shown to be advantageous for characterizing structures in steady
vector fields, such as stream surfaces [vW93]. In essence, the dis-
tance field that we construct in this paper (measuring the Euclidean
distance to invariant manifolds) also falls under this category.

3. Critical Points

In an n-dimensional steady vector field u(x) with x := (x1, . . . ,xn)
⊤

and u :=(u1, . . . ,un)
⊤, and x,u∈R

n, a critical point xc is an isolated
zero, i.e., u(xc) = 0 and det∇u(xc) 6= 0. Critical points are typically
classified in terms of the linearization of the vector field in their
neighborhood, i.e., by means of the eigenvalues of ∇u(xc).

3.1. Classification in 2D

For n = 2, ∇u(xc) is a real 2 × 2 matrix, exhibiting either two
real or a pair of complex conjugate eigenvalues. In both cases, the
real part indicates the inflow/outflow behavior of the vector field
along the respective eigenvector, and a nonzero imaginary part in-
dicates rotational behavior. Table 1 summarizes the five types of
critical points in 2D vector fields (which can be reduced to the three
types repelling node, repelling focus, and saddle, if flow reversal is
allowed). Notice that complex eigenvectors represent eigenplanes
(Table 1(d) and (e)), which span R

2; moreover, only one of these
configurations separates different regions, i.e., that of type sad-
dle (Table 1(c)). We indicate non-separating eigenvectors in these
illustrations by dashed representation (leading to circular bands for
eigenplanes), whereas separating eigenvectors (and the manifolds
they might span) are depicted with solid representation. Through-
out this paper, red color indicates repelling (unstable) behavior, i.e.,
away from the critical point, while blue color indicates attracting
(stable) behavior toward the critical point.

3.2. Classification in 3D

For 3D vector fields, ∇u(xc) is a real 3× 3 matrix, exhibiting ei-
ther three real, or one real and a pair of complex conjugate eigen-
values. Again, the real part indicates the inflow/outflow behavior
of the vector field along the respective eigenvector, and a nonzero
imaginary part indicates rotational behavior. Table 2 summarizes
the eight resulting types (which can be reduced to the four types
source, saddle, spiral source, and spiral saddle, if flow reversal is
allowed). Again, we have cases with eigenplanes (Table 2(d), (e),
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ρ1,2 > 0 ρ1,2 < 0 ρ1ρ2 < 0

γ = 0

(a) repelling node (b) attracting node (c) saddle

γ = 1

(d) repelling focus (e) attracting focus

—

Table 1: Types of critical points in 2D vector fields, by means of

∇u, with real parts ρ1,2, complex pairs γ , and ρ-scaled eigenvec-

tors (repelling in red, attracting in blue, non-separating dashed).

and (f)) indicating rotation. In 3D, we have two separating config-
urations, the saddle and spiral saddle (Table 2(c) and (f)). These
saddle-type cases can be further classified with respect to the num-
ber of incoming/outgoing directions. Table 2(c) depicts the case
with one negative eigenvalue and two positive ones (ρ1ρ2 < 0), also
denoted 1:2 saddle (1-manifold in, 2-manifold out). If we revert the
direction of the vector field, we obtain the 2:1 saddle configura-
tion (ρ2ρ3 < 0), exhibiting in our scheme a blue 2-manifold and a
red 1-manifold. Accordingly, there are 1:2 spiral saddles, as well as
2:1 spiral saddles, which we propose to abbreviate as 1:s2 and s2:1
saddles, the “s” indicating rotation of the respective manifold (this
will become useful for the 4D cases).

Interestingly, we observe the cases from 2D fields in the cases in
3D fields. For example, the vector field on the separating red sur-
face in Table 2(c) (see gray lines) exhibits a 2D repelling node (Ta-
ble 1(a)), and the red surface in Table 2(f) exhibits a 2D repelling
focus (Table 1(d)). Many other sections through the 3D cases ex-
hibit respective 2D cases, in particular in sections spanned by the
3D eigenvectors. For example, the section spanned by the attract-
ing (blue) eigenvector and one of the repelling (red) eigenvectors
in Table 2(c) exhibits a 2D saddle (Table 1(c)).

3.3. Classification in 4D

In 4D vector fields, the Jacobian ∇u(xc) is a real 4×4 matrix, and
thus exhibits either four real eigenvalues, two real eigenvalues and
a complex conjugate pair, or two complex conjugate pairs. For now,
we switch to the complex plane C for an overview of the cases that
this leads to. Due to the difficulty with 4D representation, we do
not illustrate the cases in space, but exemplify them subsequently
with our glyph-based approach. Table 3 summarizes the resulting
14 cases (which can be reduced to the eight types source, 1:3 sad-
dle, 2:2 saddle, 1-spiral source, 1:spiral-3 saddle, 2:spiral-2 saddle,
2-spiral source, and 2-spiral saddle, if accounting for flow reversal).
We keep the naming scheme where the numbers on each side of the

ρ1,2,3 > 0 ρ1,2,3 < 0 ρ1ρ3 < 0

γ = 0

(a) source (b) sink (c) 1:2 saddle

γ = 1

(d) spiral source (e) spiral sink (f) 1:2 spiral saddle

Table 2: Types of critical points in 3D vector fields, based on ∇u,

with real parts ρ1,2,3 (ascending sorting), complex pairs γ , and ρ-

scaled eigenvectors (repelling red, attracting blue, non-separating

dashed). Notice that for the saddles, only ρ1ρ2 < 0 is illustrated.

colon denote the dimension of the stable (left) and unstable (right)
manifold. Again, the types can be classified in terms of the number
of complex conjugate pairs γ .

If there is no such pair (γ = 0), the cases are simple to classify.
If all real parts have the same sign, there are the types source (Ta-
ble 3(a)) and sink (b). If the real parts have both signs, we obtain
saddles. If there is a single real part with opposite sign, we ob-
tain the 1:3 (c) and 3:1 (e) cases, e.g., if one real part is negative
(and thus, since det∇u(xc) 6= 0, three are positive), we obtain the
1:3 saddle. If there are two of each sign, we identify the 2:2 sad-
dle (d). The 1:3 and 3:1 saddles both exhibit a 1-manifold and a
3-manifold, and since the 3-manifold is of codimension 1, it sepa-
rates four-dimensional space. In this respect, the 1:3 and 3:1 saddles
correspond to a 3D saddle (Table 2(c)). Note also that in Table 2(c)
the blue arrow is not dashed, i.e., we classify the 1-manifold of
3D saddles as being separating. We do this because, although a 1-
manifold does not separate 3-space, it represents an asymptote for
neighboring streamlines, or in other words, it separates streamlines
with respect to rotational symmetry. (Another motivation to do so
is that the abovementioned section through the case in Table 2(c),
with a plane that contains the 1-manifold, results in a 2D saddle
(Table 1(c)), and thus a clearly separating structure.) Consequently,
we classify the 1-manifold of 1:3 and 3:1 saddles in 4D as being
separating, too. This argumentation makes us classify the 2:2 sad-
dle (Table 3(d)) as being separating as well, although 2-manifolds
do not separate 4-space. As will be discussed below, we extract
invariant manifolds (separatrices) from all critical point manifolds
being separating in this sense.

If γ = 1 and all real parts have the same sign, we have the 1-
spiral source (Table 3(f)) and the 1-spiral sink (g). We denote these
cases 1-spiral to indicate that they exhibit one plane of rotation, in
contrast to 2-spiral cases, which exhibit two planes of rotation. (Ro-
tations in 4-space have six degrees of freedom, and a plane of ro-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Author’s copy. To appear in Computer Graphics Forum.



L. Hofmann, B. Rieck, F. Sadlo / Visualization of 4D Vector Field Topology

ρ1,2,3,4 > 0 ρ1,2,3,4 < 0 ρ1ρ2 < 0 ρ2ρ3 < 0 ρ3ρ4 < 0

γ = 0

 Im λ

 Re λ

(a) source

 Im λ

 Re λ

(b) sink

 Im λ

 Re λ

(c) 1:3 saddle

 Im λ

 Re λ

(d) 2:2 saddle

 Im λ

 Re λ

(e) 3:1 saddle

γ = 1

 Im λ

 Re λ

(f) 1-spiral source

 Im λ

 Re λ

(g) 1-spiral sink

 Im λ

 Re λ

(h) 1:spiral-3 saddle

 Im λ

 Re λ

(i) 2:spiral-2 saddle

 Im λ

 Re λ

(j) spiral-3:1 saddle

γ = 2

 Im λ

 Re λ

(k) 2-spiral source

 Im λ

 Re λ

(l) 2-spiral sink

—

 Im λ

 Re λ

(m) 2-spiral saddle

—

Table 3: Classification of critical point types in 4D vector fields (depicted inC), by means of ∇u, with real parts ρ1,2,3,4 (ascending sorting)

and number of complex pairs γ . No rotation (γ = 0), rotation in one plane (γ = 1), and rotation in two planes (γ = 2). Please note that we

did not depict the spiral-2:2 saddle (counterpart to (i)), it is obtained by reverting vector field direction in (i) (mirroring about the imaginary

axis). We depict repelling eigenvalues with red, attracting with blue, separating property with a dot, and non-separating with a circle.

tation rotates an object in 4D about a plane, not about a line (axis),
as would be the case in 3D. Thus in 4D, rotation can take place in
two linearly independent planes simultaneously.) In the remaining
cases with γ = 1, the real parts have opposite sign, and thus lead to
saddle behavior exhibiting rotation in one plane. If there is a single
real part with opposite sign, we obtain the 1:spiral-3 (h) and the
spiral-3:1 (j) saddles, which we abbreviate 1:s3 and s3:1 saddles,
respectively, to make the distinction to 1-spiral and 2-spiral cases
more clear. This notation is an extension from the 3D one, again
putting the incoming manifold before the colon, and the outgoing
manifold after. Thus, e.g., 1:s3 saddles (h) have inflow along a 1-
manifold and outflow along a rotating (spiraling) 3-manifold. The
only remaining configuration with γ = 1 is two real parts of each
sign, i.e., the 2:s2 and the s2:2 saddle cases. For improved presen-
tation in Table 3, we show only the 2:s2 saddle (i)—the s2:2 saddle
is obtained by reversal of flow direction.

Finally, if γ = 2, there is simultaneous rotation in two indepen-
dent planes, which we denote by the term “2-spiral”. We have a
2-spiral source (k) if all real parts are positive, a 2-spiral sink (l) if
all are negative, and a 2-spiral saddle (m) in case of opposite sign.

3.4. Extraction and Representation

Several strategies for extracting (detecting) critical points have
been proposed so far. One approach is inspired by the marching
cubes algorithm [LC87] for isosurface extraction. Since a critical
point represents a zero in all n components of the vector field, it

can be interpreted as the intersection of the n zero-level isosur-
faces of its components. Technically, an early rejection test skips in
these approaches all grid cells that do not exhibit a sign transition
in all n components of the vector field. In the remaining candidate
cells, critical points are typically searched for by inversion of the
interpolation function, or by subdivision. By their nature, these ap-
proaches work in any dimension, but the inversion approach can
become challenging due to numerics and degenerate cases. In our
implementation, we follow the subdivision approach, i.e., we recur-
sively apply the candidate test and subdivide the remaining candi-
dates until a sufficiently high resolution is achieved (or reject the
refined cell if it does not span both signs in all n components). In a
final clustering step, we remove duplicate candidates, which occur
due to limited numerical precision mainly near cell boundaries. For
subsequent classification of the determined critical points, we com-
pute the Jacobian from the interpolation function, for consistency
with the subdivision-based extraction scheme.

Having described the extraction of 4D critical points, and hav-
ing classified their properties in terms of inflow, outflow, and rota-
tion, we now can address their representation by means of glyphs.
Our approach is inspired by the glyphs for 3D vector field topol-
ogy by Theisel et al. [TWHS03]. Similar to the 3D approach, we
build our glyphs in the respective space, i.e., our glyphs are four-
dimensional. In our implementation, however, we maintain only
the essential information in 4D, in particular the eigenvectors and
eigenvalues of the Jacobian. The 3D geometrical representation of
the glyph (tubes etc.) is built only in 3D, after projection from 4D
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4D view (regular) 4D view (edge case) 4D view (edge case) 4D view (regular) 4D view (edge case) 4D view (edge case)

(a) source (b) source (c) source (d) 1-spiral source (e) 1-spiral source (f) 1-spiral source

(g) 2-spiral source (h) 2-spiral source (i) 2-spiral source (j) 2-spiral saddle (k) 2-spiral saddle (l) 2-spiral saddle

(m) 1:3 saddle (n) 1:3 saddle (o) 1:3 saddle (p) 1:spiral-3 saddle (q) 1:spiral-3 saddle (r) 1:spiral-3 saddle

(s) 2:2 saddle (t) 2:2 saddle (u) 2:2 saddle (v) 2:spiral-2 saddle (w) 2:spiral-2 saddle (x) 2:spiral-2 saddle

Table 4: The glyphs for the 8 different basic types ((a), (d), (g), (j), (m), (p), (s), (v)) of critical points in 4D vector fields, with repelling (red)

and attracting (blue) behavior (with flow reversal, this provides glyphs for the 14 cases from Table 3). Each type shown in three 4D views,

leading to 3D “images”. The regular view (first and fourth column) shows the glyph in non-degenerate projection. The second 4D view

(second and fifth column) shows one edge case where manifolds degenerate due to projection, and the third 4D view (third and sixth column)

shows the other edge case. Notice that in practice, the degeneracies do not occur (similar to perfectly oblique views in 3D projection), they

serve for explanatory purposes. Observe the three-dimensional projections of the 4D axes (bottom left, x-red, y-green, z-blue, and w-orange).

to 3D. Generally, we represent all structures (including the invari-
ant manifolds) in 4D space and observe them with a 4D camera.
Essentially, this camera has, similar to the earlier works of Noll
and Hollasch [Nol67,Hol91], a 4D view vector and projects the 4D
world to a 3D image plane. These 3D “images” can, additionally to
the navigation of the 4D camera in 4D space, be navigated in 3D
space. In fact, both cameras together represent the 4D camera. Fur-
ther details on our projection approach are discussed in Section 5.

Glyphs for critical points typically consist of a set of geometric
building blocks, one for each manifold type, which are then assem-
bled according to the respective type of a critical point. Most ap-
proaches follow directly the linearized structure of the manifolds in
vicinity of the critical point, i.e., the structure dictated by the eigen-
values and their eigenvectors. The skeleton of our glyph consists of
the eigenvectors in 4D. We represent real eigenvectors with tubes
of length proportional to the modulus of the respective eigenvalue,
and map its sign to red if positive, and to blue if negative (e.g.,

Table 4(a)). Complex conjugate pairs are represented with circles
located in the respective eigenplane, with radius proportional to the
modulus of the respective real part, and again positive sign of real
part mapped to red, and negative to blue (e.g., Table 4(d)).

When all real parts of the eigenvalues have same sign, the re-
spective eigenvectors span a four-dimensional volume. Projecting
this 4D volume to the 3D image plane would lead to a 3D volume,
which, however, could be misleading, since there are other critical
point types that exhibit a 3D manifold in 4D, which also projects
in non-degenerate views to a 3D volume in 3-space. Therefore, we
decided to not generate any additional geometry in these cases (Ta-
ble 4(a), (d), and (g), and Table 3(a), (b), (f), (g), (k), (l)). Notice
that this scheme is conceptually consistent with our illustrations for
2D and 3D critical points, where we used dashed representation for
non-separating cases, and solid representation for separating cases.
Our 4D cases with same real part sign represent non-separating
cases, and as can be see in Table 4, they are the only ones that
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consist only of lines. All remaining 4D glyphs represent separating
cases (saddles), and exhibit 2-manifolds or 3-manifolds.

We already started to depict the eigenplanes spanned by complex
conjugate eigenvector pairs, i.e., planes of rotation, with circular

discs (Table 1(d) and (e), and Table 2(d) and (e)). We use this ap-
proach also in 4D, where these discs are still 2-manifold, but have
a pose in 4D space (Table 4(j) and (v)). On the other hand, we rep-
resent non-rotating 2-manifolds, which are spanned by real eigen-
vectors, with quads in 4D, whose diagonals are the two eigenvec-
tor tubes (Table 4(s), and (v)). Non-rotating 3-manifolds are corre-
spondingly represented by octahedra in 4D, whose “diagonals” are
the three eigenvector tubes (Table 4(m)). The remaining case of ro-
tating 3-manifolds, which are spanned by a real eigenvector and a
complex conjugate pair of eigenvectors, can be considered a com-
bination of a rotating 2-manifold and a non-rotating 1-manifold,
leading to an intersection of two elliptic cones (Table 4(p)). Note
that we represent both the octahedra and the cone intersections by
their (triangulated) surface. To reduce ambiguities in projection due
to degenerate projection from 4D to 3D (Table 4), and in particular
to indicate that manifolds that intersect in their 3D projection do
not intersect in 4D, we cut them out around the critical point in 4D,
leading to respective gaps in the 3D projections. Also observe that
the degenerate views provided in Table 4 provide additional infor-
mation about the critical point type itself, but are not needed when
analyzing critical points in data (they serve here for complete il-
lustration of their properties). Although such degenerate views will
not appear in real-world applications with manual navigation, we
make use of them for manifold-based exploration (see below).

4. Invariant Manifolds

Similar to 2D and 3D vector field topology, invariant manifolds
in 4D also consist of those streamlines in u(x) that converge to
saddle-type critical points in forward (stable manifolds) and reverse
(unstable manifolds) direction. In the 2D and 3D case, it is common
practice to build a seeding structure for the streamlines, which is
based on the eigenvectors of ∇u. For 1-manifolds, the seeds consist
of two points, each obtained by a small user-defined offset along
the respective eigenvector, away from the critical point to escape its
zero velocity. For 2-manifolds, one commonly places the seeds on a
circle coplanar to the respective two (real parts of the) eigenvectors.
Both approaches carry directly over to 4D, and we use them to
obtain 1-manifolds and 2-manifolds. For 3-manifolds, finally, we
put seeds on a sphere spanned by the respective three (real parts of
the) eigenvectors.

Having the seeds, the 1-manifolds are obtained by simple
streamline integration, resulting in a 4D polyline for each manifold.
For 2-manifolds, we need to compute a streamsurface. We repre-
sent the seeding circle by a closed polyline, and employ Hultquist’s
streamsurface algorithm [Hul92], which can be directly employed
in 4D vector fields, providing a mesh of triangles in 4-space. Fi-
nally, for the 3-manifolds, we connect the seeds into a triangulated
sphere, consisting of triangles in 4-space, and employ the adaptive
3D flow volume approach by Max et al. [MBC93], which again
is independent of the dimension of the surrounding space. Max et
al. advance the triangular mesh with the flow and subdivide the
prisms formed by two triangles at different time steps into tetrahe-

xc, yc, zc3D image plane

wc

opaque/transparent

(a)

xc, yc, zc3D image plane

wc

r

opaque transp.transp.

(b)

Figure 2: 4D clipping sphere for removal of projection-induced

intersection in 3D space. (a) Projection along wc from 4D space

into 3D image plane with camera coordinates xc, yc, and zc (Sec-

tion 5). (b) Inside sphere (solid-line circle), same projection as in

(a). Outside clipping sphere, projection along dashed curves. Both

projections provide a single 3D image for interactive exploration.

dra. Whenever the area of a triangle reaches a threshold, they sub-
divide it and insert additional streamlines. Our resulting tetrahedral
mesh is located in 4-space, but can be easily represented by tradi-
tional visualization toolkits, because the coordinates can be, if no
4D support is provided, represented as four scalar fields, in which
case the toolkits’ three coordinates can represent parametrization.

Note that, in analogy to invariant manifolds (also called separa-
trices) in 2D and 3D fields, they also cannot intersect in 4D, because
a vector field defines at each point in space only a single direction.
We store our discretized manifolds with their parametrization, i.e.,
with respect to streamlines and “timesurfaces”. Whenever we need,
for example, the normal of a 3D manifold for camera orientation,
we compute it using the 4D cross product (taking three vectors)
from the three vectors spanning the tetrahedron (recall that in 4D
space, 3D structures represent hypersurfaces).

5. 4D Camera

For a more intuitive notation that is consistent with traditional
camera coordinates and 4D notations, we denote 4D space with
x = (x1, . . . ,x4)

⊤=: (x,y,z,w)⊤ and 4D vectors, e.g., the vector
field, in that space with u = (u1, . . . ,u4)

⊤=: (ux,uy,uz,uw)
⊤. Since

most display devices used for visualization are two-dimensional,
we need to reduce the dimensionality from 4D to 2D. Because of
its well-defined properties, its intuition, and its simplicity, we build
here on projection. The traditional rendering pipeline transforms
3D world coordinates to 3D camera coordinates, and those then
by projection to 2D image coordinates. The extension to our 4D
setup adds one degree of freedom (DOF) for the position of the
camera, and three DOFs for its orientation (we have four DOFs for
position, and six DOFs for orientation in 4D). Managing these ad-
ditional four DOFs is nontrivial, in particular because 4D space is
difficult to interpret, and navigate. We therefore handle these de-
grees of freedom with two cameras: a 4D one, and a 3D one.

What we call the 4D camera is a camera with a 4D posi-
tion c, a 4D view direction ĉ (a unit vector defining the opti-
cal axis of the camera in 4D space), and a “3D image plane”,
where the scene is projected to. Hence, this camera produces three-
dimensional scenes. Since humans are not used to projections in
4D space, we recommend using orthographic projection within the
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4D camera, leading to the setup in Figure 2(a). The camera coor-
dinates of this camera are xc := (xc,yc,zc,wc)

⊤=: (x,y,z,w)⊤c, with
(0,0,0,1)⊤c = ĉ. A point (xc,yc,zc,wc)

⊤ in 4D camera coordinates
is thus projected to 3D image coordinates (xc,yc,zc)

⊤. Notice that a
4D unit vector has three DOFs, so if we define the 4D camera by
c and ĉ, three DOFs remain for orientation of the camera, which
fits the three degrees of orientation of a 3D camera. Thus, we do
not have to accomplish the difficult definition and handling of two
4D “up vectors”, as in other approaches for 4D rendering, but sim-
ply define c and ĉ, with subsequent traditional 3D rendering and

navigation of the “three-dimensional image” provided by the 4D
camera. In other words, we treat (x,y,z)⊤= (xc,yc,zc)

⊤ for visual-
ization of the 3D image using a traditional 3D camera. To support
orientation in the original 4D space, we provide context by four
additional “thumbnail 3D images” defined by (x,y,z)⊤, (x,y,w)⊤,
(x,z,w)⊤, (y,z,w)⊤, that represent simple 4D projections along the
w-, z-, y-, and x-axis, i.e., that are independent of the 4D camera
and show its position c and orientation ĉ by a black sphere and
an arrow, respectively. An example is shown in Figure 3(a). Here,
the top row shows the thumbnail 3D images, which the user can
explore independently. Additionally, we also show the axes of the
camera coordinates in the main 3D image, i.e., we show the xc-,
yc-, zc-, and wc-axis in red, green, blue, and yellow, respectively
(see Figure 3, for example). Notice that conceptually, when the 3D
camera is rotated relative to the 3D image, this defines the missing
DOFs of rotation of the 4D camera but does not change ĉ.

6. Exploration Techniques

We have seen in Table 4 (second, third, fifth, and sixth column) that
certain 4D views of the 4D camera can cause degeneracies in the
resulting 3D image, leading to lower-dimensional images of man-
ifolds. Moreover, we have seen that (i) 1-manifolds can disappear
(e.g., Table 4(e)), (ii) 2-manifolds can appear as 1-manifolds (e.g.,
Table 4(t)), and (iii) 3-manifolds can appear as 2-manifolds (e.g.,
Table 4(n)). These degeneracies happen when the view direction ĉ

of the 4D camera is parallel (i), coplanar (ii), or covolumetric (iii)
with the manifold at the respective point (as invariant manifolds
tend to be curved in practice, this property only holds locally).

There are two main difficulties with the visualization of 3D man-
ifolds in 4D topology: (I) visual clutter due to their volumetric ap-
pearance, and (II) (self-)intersection with manifolds due to projec-
tion; although manifolds cannot intersect in 4D space because they
consist of streamlines there, their projection in 3D can intersect and
tends to do so, leading to 3D images that are hard to interpret and
explore. This is problematic because topological structure is often
conveyed by configurations where stable and unstable manifolds
meet, e.g., at critical points and saddle connectors [TWHS03].

6.1. Manifold-Based Exploration

Fortunately, there is a simple approach to bring 3D manifolds into
oblique 4D projection, which renders them planar at least locally
in the 3D image, and thus helps solve (I). Since all manifolds con-
sist of streamlines in 4D, their 4D normal(s) is perpendicular to
the streamlines, so a projection along the tangent of a streamline
will bring the respective region of the manifold in degenerate 4D

view, locally rendering 3D manifolds as surfaces in the 3D image,
2D manifolds as curves, and making 1D manifolds disappear. We
enable the user to adjust ĉ to the vector u of the vector field at
any time, to pick manifolds using backprojection, which moves the
camera center c to the picked 4D point and sets ĉ to the respective
precomputed streamline tangent, and also to navigate (and gener-
ate animations by moving) the camera along a selected streamline
of the manifold. That way, the camera can follow a precomputed
4D streamline of a 3-manifold, keeping ĉ tangential to the stream-
line to show the 3-manifold locally as a plane in the 3D image.
We provide a default configuration of the 3D camera by defining
one “up vector” of the 4D camera to be the 4D normal vector
of the manifold at c. As the manifold is triangulated into tetrahe-
dra, we first compute normals for each vertex of the tetrahedron
that contains c, and finally obtain the normal at c by barycentric
interpolation. The normal of a vertex is computed as the average
of the normals of all tetrahedra adjacent to it. Given a tetrahedron
(t1, . . . , t4) in 4-space, its normal c is obtained component-wise as
ci = det(t2 − t1, t3 − t1, t4 − t1,ei), i = 1, . . . ,4, where ei denotes
the i-th standard basis vector. This is a 4D generalization of the
three-dimensional cross product. As a consequence of this choice
of the 4D “up vector”, the default view of the explorative 3D cam-
era is oblique to the manifold too, i.e., its 3D “up vector” is the
projection of the 4D “up vector”, leading to a 2D projection that
shows the manifold locally as a curve. This minimizes local occlu-
sion and clutter, and provides a starting point for exploration by
navigation of the 3D image.

We enable further exploration of the manifold, by providing the
user with the option to gradually switch to neighboring streamlines
of the manifold, thereby choosing the travel direction. The stream-
line that the camera is located on in this mode, is shown by a striped
tube in the 3D image (Figure 1), providing additional context and a
notion of motion, which otherwise might be missing (both transla-
tion and rotation in 4D do not necessarily appear as translation and
rotation in the resulting 3D image, and rotations typically involve
some deformation of the 4D image, as can be seen, e.g., in Table 4).
Of course, we enable the observer to interactively deviate ĉ from u

to, e.g., obtain overview and context.

6.2. 4D Clipping Sphere and Manifold Distance

To address the problem of projection-induced intersection (II) of
structures in the 3D image, that do not intersect in 4D space, we
use two complementing approaches. On the one hand, we provide
a “4D clipping sphere” that suppresses projection-induced intersec-
tion by modifying the projection from 4D to 3D. On the other hand,
we visualize on each manifold the shortest 4D distance to all other
manifolds, to convey proximity in 4D space.

Our 4D clipping sphere is centered at the camera center c, and
has an interactively defined radius r. Whereas the 4D space within
the sphere is projected to the 3D image plane with orthographic
projection, the outer part is projected along annular sectors to the
3D image plane (Figure 2(b)). As can be seen in this illustration,
this has the effect that the outer part in 4D is also located outside
the respective 3D sphere in the 3D image plane, and thus it cannot
intersect with the 3D image part inside the sphere. The smaller r

is chosen, the more projection-induced intersections are prevented
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inside the sphere, but the less regions are projected to the central
part, where high-opacity rendering proved useful. The part outside
the sphere is distorted in 4D, but still provides consistent context
in 3D, supporting navigation. Rendering the part outside the sphere
with transparency follows a “shadows on the wall” metaphor in
4D (see, e.g., Figure 8(c)).

A drawback of the clipping sphere is that it constrains focus. We
thus complement it by computing for each vertex of each manifold
the shortest 4D distance to all vertices of all other manifolds.We
take the logarithm of this distance field and map values close to one
to high contribution in the green channel and high opacity (see, e.g.,
Figure 4(d)). One can see that this technique successfully reveals
regions where manifolds meet in 4D; in particular it reveals sad-
dle connectors [TWHS03] in 4D. We leave the extraction of saddle
connectors in 4D, however, as future work. Self-intersections of a
manifold are not indicated, but these are always projection-induced
because a manifold cannot self-intersect in 4D.

7. Results

In the following, we introduce datasets of increasing complex-
ity (see Table 5), and use them for exemplifying our approach.
The first five datasets were constructed for explanatory purposes,
whereas the sixth one exemplifies the utility of our approach for an-
alyzing the physical phase space of inertial motion. The last dataset
was constructed randomly to provide a good coverage regarding
complexity and variability. All of them were sampled on regular
four-dimensional grids consisting of quadlinearly interpolated hy-
percube cells. Streamlines were integrated using the fourth-order
Runge–Kutta scheme (RK4).

7.1. Linear Fields

Linear fields u(x) =Ax are consistent with the classification of crit-
ical points, making them an ideal entry for demonstration. A matrix
that exhibits a given set of eigenvalues can be constructed using a
block-diagonal matrix A with a 1×1 block for each real eigenvalue,
and a 2×2 block (c,s,−s,c) for each complex conjugate pair s+ ic.

Recall that we showed the glyphs of every type of critical points
using one regular projection and two degenerate ones (Table 4).
Since our glyphs are aligned with the invariant manifolds of the
linearized field, the same projections that are degenerate for the
glyphs, are degenerate for the entire separatrices. In the subsequent
examples, we have chosen the 4D view direction ĉ = (1,1,1,1)⊤/2

Table 5: Sizes of the obtained manifolds for the different datasets.

Dataset Vertices Triangles Tetrahedra

2:S2 Saddle 31976 61244 —
3:1 Saddle 47466 — 166548
Saddle Conn. 3:1–1:3 439972 — 2000148
Saddle Conn. 3:1–2:2 272979 87540 1016418
Five Critical Points 737955 538542 2101293
Acceleration Field 138016 — 449481
Random 4D Field 208961 340371 1236603

for depicting regular views, and the directions ĉ = (0,0,0,1)⊤ and
ĉ = (1,0,0,0)⊤, resulting in degenerate views. These are explored
in the accompanying video for the following two examples.

2:S2 Saddle We obtain a 2:s2 saddle by taking the eigenvalues
1+ i,1− i,−1,−1. Such a saddle has a two-dimensional stable and
a two-dimensional unstable rotating manifold. Both structures can
be readily observed in regular views (Figure 3(a)). However, the
manifolds intersect in such a view, whereas in 4D space, they only
intersect in the critical point. This is revealed by the degenerate
views (Figure 3(b), (c)), which show that each manifold can be
projected to a line that intersects the other manifold only in a point.

3:1 Saddle We obtain a 3:1 saddle by choosing the eigenvalues
−1,−1,−1,1. Here, the regular view (Figure 3(d)) is fully oc-
cluded by the three-dimensional stable manifold. Furthermore, we
find a degenerate projection (Figure 3(f)) that fully occludes the
one-dimensional unstable manifold (red) as well. Projecting tan-
gentially to the stable manifold, i.e., in direction of one of its eigen-
vectors, yields the least amount of clutter (Figure 3(e)).

7.2. Saddle Connectors

More complex configurations are obtained by placing two linear
saddle points near each other. If stable and unstable directions of
the respective saddles are aligned in a certain manner, it is possible
to obtain saddle connectors [TWHS03]. As the superposition of
two linear fields is again a linear field, we introduce non-linearity
by multiplication with Gaussian functions wi(x). Given matrices
Ai, positions µµµ i, and standard deviations σi, the vector field

u(x) = ∑
i

wi(x)Ai (x−µµµ i) , wi(x) = exp

(

−
4

∑
j=1

(x j −µi j)
2

2σ2
i

)

,

permits the construction of arbitrary fields with specified config-
urations of critical points. We leave certain parameters fixed, i.e.,
µµµ1 = (0.5,0,0,0)⊤, µµµ2 = (−0.5,0,0,0)⊤, and σi = 0.5, and vary
only the matrices.

Setting A1 = diag(−1,−1,−1,1) creates a 3:1 saddle-type crit-
ical point at µµµ1. We then set A2 = diag(1,−1,−1,1), or A2 =
diag(1,1−1,1). The former results in a saddle connector between
a 3:1 saddle and a 2:2 saddle (Figure 5), while the latter yields
a connector between a 3:1 saddle and a 1:3 saddle (Figure 4). Fol-
lowing the argumentation above, we again may find projections that
show degenerate structures (Figures 4(a), 4(e), 5(a), 5(e)). Again,
the non-degenerate view is occluded by three-dimensional mani-
folds, a problem that does not exist in the degenerate views of our
linear fields, where volumes appear as surfaces (Figures 4(c), 5(c)).

None of these views, however, clearly shows the intersection of
the manifolds in 4D space. Furthermore, some of the intersections
in the projection are artifacts of the projection and do not exist in 4D
space. Examining the distance field (Section 6.2), which is mapped
to opacity and the green color channel, reveals proximity in 4D
space (Figures 4(b), 5(b)). Regions shown in yellow and cyan be-
long to an intersection (hyper-)surface between two manifolds. We
see that the saddle connector between a 3:1 and a 2:2 saddle is a
curve (Figure 5(b)), while the one between a 3:1 and a 1:3 saddle is
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Figure 3: Two linear vector fields with different saddle-type critical points, a 2:s2 saddle (a)–(c) and a 3:1 saddle (d)–(f). Each case is shown

in a regular view (a), (d), as well as two degenerate views (b), (c), and (e), (f). While the manifolds of the 2:s2 saddle cause no occlusion in

all views, the three-dimensional manifold of the 3:1 saddle causes the least occlusion in the degenerate view (e).

a surface (Figure 4(b)). Finally, we observe that the distance field
shows a spherical gradient near every critical point. This demon-
strates that stable and unstable manifolds of the same critical point
only intersect at a single point.

7.3. Five Critical Points

We construct a more complex example by placing five critical
points using the technique described in Section 7.2. Here, we set all
standard deviations to 0.75 and place five critical points in our vec-
tor field, a source at (−1,−1,−1,−1)⊤, a 1:3 saddle at (0,0,0,0)⊤,
a sink at (1,1,1,1)⊤, a 3:1 saddle at (−1,−1,1,1)⊤, and a 2:2 sad-
dle at (1,1,−1,−1)⊤. We first examine the glyphs of the critical
points together with streamlines seeded near each of the critical

points (Figure 6(a)). This yields a rough overview of the vector
field, with each type clearly visible. Next, we examine the same
view together with all separatrices (Figure 6(b)). This projection
exhibits many intersections and heavy occlusion near all critical
points. The intersections in 4D space are revealed by the distance
field (Figure 6(c)), which shows a saddle connector (yellow) be-
tween the 3:1 and 1:3 saddle. As opposed to the previously dis-
cussed datasets, this dataset is too complex to be examined using
only the full view. As an example, we want to further examine the
1:3 saddle. Moving the 4D camera toward it leads to a cluttered
view (Figure 6(d)). Using the clipping sphere, we are able to focus
on the 4D neighborhood of the saddle (Figure 6(e)), however the
view is still obstructed by the three-dimensional manifolds. Align-
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Figure 4: Surface-type saddle connector between a 3:1 saddle and

a 1:3 saddle, without (left column) and with (right column) distance

field (green) in regular (a), (b), and degenerate (c)–(f) views.

ing the camera with the manifold (Figure 6(f)) lets the viewer ob-
serve an intersection of the two manifolds near the critical point.
Choosing a larger radius for the clipping sphere (Figure 6(g)), al-
lows more context to be visible, but at the same time introduces
an intersection of an additional two-dimensional manifold with the
three-dimensional manifold of the critical point. We may addition-
ally use the distance field to distinguish intersections caused by the
projection, from actual intersections in 4D space (Figure 6(h)).
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Figure 5: Line-type saddle connector between a 3:1 saddle and a

2:2 saddle. Same views as Figure 4, including distance field.

7.4. Acceleration Field

The dynamics of inertial objects due to acceleration fields is a
prominent class of problems studied in physics. There, the concept
of the physical phase space is employed, consisting of position and
momentum/velocity. Our example mimics the dynamics of an in-
ertial object in a planetary system consisting of five bodies with
different masses, each effecting a gravitational field, and each ex-
hibiting an atmosphere. There are configurations where such a sys-
tem of bodies has a frame of reference within which their positions
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Figure 6: Five Critical Points dataset, overview using glyphs (a), separatrices (b), and the distance field mapped to green (c). Initially, no

clipping of the 1:3 saddle (box in (a)) is performed (d). Using a small clipping sphere (e), and aligning the view to the manifold (f) yields the

least cluttered view. The saddle connectors in the dataset can be revealed using either a larger clipping sphere (g) or the distance field (h).

do not vary, and where motion of the bodies is negligible compared
to the influence of the object under consideration, also enabling a
stationary model of the gravitational field. Thus, the acceleration
of such an object depends solely on its position, and is defined by
gravitational attraction and friction with the atmospheres.

We randomly place five point masses, i.e., the bodies, at posi-
tions ξξξ i ∈ R

2 with mass mi ∈ [1,2] on the domain [−5,5]2 (see
Figure 7(a)). We assume a gravitational constant G = 1, and con-
sider the force due to the gravitational field and friction (c = 10−3)
on a particle with mass mT at position ξξξ ∈R

2 and velocity ξ̇ξξ ∈R
2,

which finally yields a 4D phase space vector field:

F(ξξξ ,ξ̇ξξ ) = mT

5

∑
i=1

[

mi (ξξξ i −ξξξ )

‖ξξξ i −ξξξ‖3 −
c‖ξ̇ξξ‖ξ̇ξξ

‖ξξξ i −ξξξ‖2

]

,

u(x) = u

(

ξξξ

ξ̇ξξ

)

=

(

ξ̇ξξ

F(ξξξ ,ξ̇ξξ )/mT

)

.

Due to the friction term, the vector field has 2-spiral sink critical
points at each of the mass points and s3:1 saddle points in be-
tween them (see Figure 7(b)). Because in this special case, the x-
and y-components (red and green axes) of the 4D vector field de-
scribe spatial location, while the z- and w-components (blue and

yellow axes) describe velocity, we project, by default, the first two
3D thumbnail images onto the xy- and zw-planes, respectively (see
Figure 7(b) top left corner). Even though this field describes a two-
dimensional phenomenon, separatrices span all four dimensions
(Figure 7(c)). The clutter in the projection is removed by align-
ing our 4D camera with one of the separatrices and using a small
clipping sphere. Seeding particles on each side of a separatrix in 4D
phase space demonstrates their separating property (Figure 7(d)).

7.5. Random 4D Field

Finally, we generate a dataset by choosing random values on a
coarse 4×4×4×3 grid. It contains one 1-spiral sink, two 1-spiral
sources, three 1:3 saddles, seven 1:s3 saddles, six s3:1 saddles,
three 2:2 saddles, and one 2:s2, s2:2, and 2-spiral saddle each. An
overview showing only the glyphs and streamlines seeded at the
critical points shows its overall structure (Figure 8(a)). We choose
a saddle-type critical point, align the camera with the correspond-
ing manifold (Figure 8(c)), and avoid clutter in the image space,
while providing context projected onto the background, using a
small clipping sphere. Increasing the radius of the clipping sphere
reveals more of the nearby structures (Figures 8(d) and 1).
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Figure 7: Acceleration Field dataset with five point masses (yellow spheres, scaled proportionally to mass) distributed on the 2D space

domain (a), overview of the phase space using glyphs (b), and separatrices (c). Using a small clipping sphere, and seeding two trajectories

(seeds cyan, trajectories magenta) near a saddle point (box in (a)) shows separating property of the manifold in phase space (d).
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Figure 8: Random 4D Field dataset, with global structure shown using glyphs (a), and separatrices (b). The dataset is explored by aligning

the view to a manifold (c) near a saddle point, providing a planar 3D projection, with further context projected in the background. Increasing

the radius of the clipping sphere reveals more structures that are nearby (d). The last view with streamlines is shown in Figure 1.

8. Discussion

Our approach focuses on critical points and their invariant man-
ifolds. While these are able to provide qualitative insight into a
4D vector field, for a more complete description, several building
blocks are still missing. These include periodic orbits [KRRS14,
WS02, WS01], saddle connectors [TWHS03], boundary switch
curves [WTHS04], Cantori, as well as invariant and KAM tori, and
bifurcation lines [MBES16, MSE13], some of which we aim to ex-
tend to the fourth dimension as future work.

There are some special cases, where 4D vector fields are ob-
tained from spatially lower-dimensional phenomena. The first is re-
garding the space-time domain of a 3D time-dependent vector field
as a 4D steady vector field. Such fields do not contain any criti-
cal points, since time moves constantly in forward direction (i.e.,
the last component is constant 1), and thus different approaches
need to be employed, such as tracking of critical points [GTS04]
or time-dependent topology [SW10, USE13, MBES16]. The 4D
space-time domain has further been employed for the extraction

of swirling particle cores [WSTH07] and the computation of streak
lines [WT10]. Second, the physical phase space of 2D steady in-
ertial dynamics is a four-dimensional vector field, where two com-
ponents correspond to space and two components to momentum.
While, as presented by Günther and Gross [GG17], dynamics of
flow-induced inertial dynamics can be reduced to the spatial di-
mension, general inertial dynamics need to be considered in the
full 2n-dimensional phase space. Further, being restricted to the n-
dimensional spatial domain, Günther and Gross cannot show sepa-
ratrices in the 2n-dimensional phase space.

The case of time-dependent inertial dynamics adds another di-
mension, and is covered by Sagristà et al. [SJJ∗17]. Our work can
be applied to 2D steady inertial dynamics; however, we currently do
not distinguish the different units of position and momentum. For
a quantitative analysis, a more specific adaption would be needed.
We show such an example in Section 7.4. Since our method relies
on separatrices, and thus focuses on the qualitative analysis of the
system, mixing scales and units is not an issue.
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Unfortunately, we were unable to find complex (simulated) real-
world datasets. Even though many problems with, e.g., a three-
dimensional spatial domain depend on a fourth dimension such as
pressure or concentration, most numerical simulations treat these as
attribute only, instead of computing dense ensembles. Such simula-
tions thus do not output the full four-dimensional state space, but a
three-dimensional submanifold for, say, isolated initial conditions.
We hope to see such data in the future.

9. Conclusion

In this work, we classified critical point types in 4D vector fields,
developed a novel set of glyphs, and presented an approach for the
interactive visualization of 4D scenes by means of a 4D and a 3D
camera involving 3D images. We also developed a manifold-based
exploration technique by exploiting degeneracies that enable us to
visualize the structure of 3D manifolds without massive occlusion,
and presented two strategies for avoiding projection-induced inter-
section of 4D manifolds in 3D projection. The first one uses a mod-
ified projection scheme, while the second one involves 4D distance
fields between invariant manifolds. We demonstrated the utility of
our approach using vector fields that showcase properties of 4D
topology. As future work, we plan to develop techniques for the
visualization of periodic orbits and saddle connectors.
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