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Abstract

We present a novel and efficient technique to extract Lagrangian coherent structures in two-dimensional time-dependent vector

fields. We show that this can be achieved by employing bifurcation line extraction in the space-time representation of the vector

field, and generating space-time bifurcation manifolds therefrom. To show the utility and applicability of our approach, we

provide an evaluation of existing extraction techniques for Lagrangian coherent structures, and compare them to our approach.

Categories and Subject Descriptors (according to ACM CCS): Simulation and Modeling [I.6.6]: Simulation Output Analysis—;
Physical Sciences and Engineering [J.2]: Physics—

1. Introduction

Lagrangian coherent structures (LCS) are nowadays a widely-
applied approach to the extraction of the topological structure of
time-dependent vector fields. These structures act as barriers over
finite time scopes and thus provide insight into mixing behavior
and transport in general. The probably most widely-used approach
to extract LCS is by computation of the finite-time Lyapunov ex-
ponent (FTLE) field [Hal01], followed by ridge extraction (Fig-
ure 1(a)). Several approaches have been proposed for the extraction
of ridges in this context, including c-ridges [SPFT12], and second-
derivative ridges [SLM05], while height ridges [Ebe96] seem to be
most widely employed.

Because the computation of a single time instance of the FTLE
field requires the integration of a trajectory, i.e., a pathline, for
each of its sample points, acceleration strategies have been pro-
posed based on adaptive sampling [GGTH07,SP07] for single time
steps of the FTLE field, and on grid advection [SRP11] for time
series, i.e., animations. While these concepts still extract LCS by
means of a purely geometric approach, i.e., by extracting ridges
from the FTLE field, it has been shown that traditional vector
field topology [Asi93,HH89] can be generalized to time-dependent
vector fields by replacing streamlines with streaklines in the con-
cept [SW10, USE13], resulting in a topological approach in the
original sense from dynamical systems theory.

The concept central to the streak-based approaches are so-called
hyperbolic trajectories (HT); those are trajectories in the hyperbolic
regime of a vector field toward which, for locally the longest time,
other trajectories converge in forward and reverse time [Hal00]
(Figure 1(c)). LCS can be obtained by seeding trajectories along

HTs in space and time, in other words, by seeding streaklines along
hyperbolic trajectories in 2D [SW10] and streaksurfaces along hy-
perbolic path surfaces in 3D [USE13].

A major difficulty with this approach is, however, that hyper-
bolic trajectories are particularly difficult to integrate because in
either direction, forward or reverse, there is a respective LCS that
repels them and thus causes exponential error growth (Figure 2(b)).
Practically, this results in the problem of computing FTLE fields
both with forward and reverse advection in an adaptive sampling
manner that refines the fields at the intersection of the respective
forward and reverse LCS, to obtain intersections of sufficient accu-
racy. The intersection point (e.g., at t0 in Figure 1(b)) then serves
as the seed for a pathline whose hyperbolic part is the HT. Nev-
ertheless, because of the error growth, the longer the HT that has
to be extracted, the more accurately the LCS intersection has to
be determined, leading to an increase in computational cost. On
the other hand, once a HT has been extracted, the computation of
the streak manifolds from it is typically much less expensive than
computing the FTLE field for each time step and extracting height
ridges therefrom. It has been shown that the streak-based approach
is thus faster, in particular when generating time series (animations)
of the FTLE field, and at the same time tends to be even more ac-
curate [USE13].

The utility of HTs is not constrained to LCS extraction. They
provide a concise representation [BSDW12], i.e., the skeleton of
time-dependent vector field topology, and help understand the hy-
perbolic dynamics that cause the topological structure of vec-
tor fields. Bachthaler et al. [BSDW12, SBDW13] extract LCS by
height ridge surface extraction in space-time. While this approach
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suffers from computational cost, because the FTLE field needs to
be computed for each instant of time within the considered time
interval, it provides globally accurate HTs by means of the inter-
section curves of the space-time ridge surfaces of the forward and
reverse FTLE fields (Figure 1(b)).

In this paper, we show that the problem of extracting HTs to-
gether with their manifolds (LCS) from 2D time-dependent vector
fields is equivalent to extracting bifurcation lines [PC87, MSE13]
and their manifolds in the corresponding 3D space-time vector
field. Although this contribution is rather theoretical, i.e., we em-
ploy an existing technique (bifurcation line/manifold extraction) in
a derived field (space-time vector field), we show that it has a high
impact because:

• The extraction of LCS based on space-time bifurcation lines is
substantially faster than previous approaches,

• the involved extraction of HTs is not subject to exponential error
growth, and

• because we free the streakline-based topology concept from the
necessity of computing FTLE fields, it results in a formulation
that is even closer to the traditional formulation of vector field
topology based on streamlines, i.e., the seeding structure is de-
fined locally. In this sense, the extraction of bifurcation lines in
space-time represents the direct time-dependent counterpart to
the extraction of saddle-type critical points.

We validate our novel approach with the results from the
streakline-based topology paper [SW10]. Beyond this, we show
that separation lines and attachment lines at no-slip boundaries also
represent hyperbolic trajectories and thus have to be included in
topological analysis. We complement our theoretical contributions
with an evaluation and comparison with previous approaches for
LCS extraction.

2. Related Work and Fundamentals

We give an introduction to the closely related research fields and
bring them into context with our technique.

Traditional Topology and Time Dependence A good introduc-
tion to traditional 2D vector field topology, i.e., based on stream-

lines and thus applicable to instantaneous/steady vector fields only,
is provided by Asimov [Asi93] and Helman and Hesselink [HH89].

Different approaches have been proposed so far for vector field
topology alternatives that are able to capture the topology of time-
dependent vector fields. Pobitzer et al. [PPF∗11] provide an in-
troduction to this field. Kasten et al. [KHNH10], and Fuchs et
al. [FKS∗10] investigate time-dependent counterparts to critical
points. These approaches can be seen as complementary to the ap-
proaches based on hyperbolic trajectories [Hal00, SW10, USE13].
Kasten et al. build on acceleration while Fuchs et al. introduce an
unsteadiness measure. Theisel et al. [TWHS04] presented an early
approach based on streamlines and pathlines, that has not yet been
compared with FTLE-related approaches. Regarding the utiliza-
tion of space-time concepts in flow visualization, Theisel and Sei-
del [TS03] present a derived field called feature flow field. Coming
from the opposite direction, Chen et al. [CKW∗12] use topological
methods to design 2D time-dependent vector fields.

Lagrangian Coherent Structures from FTLE The lack of a vec-
tor field topology concept for time-dependent vector fields led to
the proposition of different approaches during the last decade, out
of which concepts based on (or consistent with) the FTLE field at-
tracted special attention. The FTLE is obtained from characteristic
curves of type pathline, making it appropriate for time-dependent
vector fields

u(x, t) =
(

u(x,y, t), v(x,y, t)
)⊤

(1)

with x = (x,y)⊤. A pathline is conceptually seeded at each sample
point and the distance between the end points of neighboring path-
lines of advection time T constitutes the essential quantity reflected
by the FTLE. In detail, the FTLE field σT

t0(x) at position x, time t0,
and for advection time T is typically computed as

σT
t0(x) =

1

|T |
ln

√

λmax

(

(

∇φφφT
t0
(x)

)⊤

∇φφφT
t0
(x)

)

, (2)

where φφφT
t0
(x) represents the flow map that maps the seed point x of

a pathline started at time t0 to its end point φφφT
t0
(x) after integration

time T (Figure 1(a)), and λmax( ·) is the major eigenvalue. We re-
fer the reader to Haller [Hal01] for a thorough introduction to the
finite-time Lyapunov exponent.

Ridges in σT
t0(x) for T < 0 represent attracting LCS, i.e., parti-

cles are attracted to these manifolds in forward time, while ridges in
σT

t0(x) for T > 0 represent repelling LCS (Figure 1(c)) where parti-
cles are attracted in reverse time. Ridge extraction from the FTLE is
comparably easy to employ, but it exhibits several downsides. The
most hindering problems include: very strong aliasing [USK∗12]
(Figure 1(d) and (e)), which can impede extraction of ridges, the
requirement of problem-dependent and often not globally feasible
advection times T [SLM05, SUEW12, Sad15], and the computa-
tionally very expensive computation of the FTLE. Although several
acceleration techniques have been proposed so far for the compu-
tation of FTLE (time series) [GGTH07,SP07,SRP11,HSW11], the
achieved overall accelerations are moderate because still compara-
bly many samples are required.

A further drawback is the implicit nature of this LCS defini-
tion. Traditional vector field topology is defined in terms of spe-
cial streamlines—those that degenerate to points because they are
started at isolated points where the vector field is zero are called
critical points, and those that converge to critical points of type
saddle (i.e., hyperbolic critical points) either in forward or reverse
time are called separatrices, because they separate regions of qual-
itatively different behavior of the vector field. In this respect, tradi-
tional vector field topology is defined by an explicit generating rule:
saddle-type critical points represent the locally obtained seeds, and
separatrices are grown from these seeds in forward and reverse time
using streamlines. In contrast, FTLE-based LCS extraction needs
to compute the FTLE field within the entire domain with costly
integration and then the LCS are extracted from the FTLE field
ridge extraction on a purely geometrical (local) basis, including all
the problems typical for feature extraction such as false negatives
and false positives. This approach is intrinsically implicit: it lacks
a respective generating rule. Additionally, since the FTLE needs
to be sampled prior to knowledge of the location of the LCS, and
because LCS are extremely thin structures in the FTLE field, the
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(a) (b) (c) (d) (e)

Figure 1: (a) Forward-time (T+) FTLE computation with ridge (red curve on orange sampling plane at t0), and reverse-time (T−) FTLE

with ridge (blue curve at t3). (b) A dense space-time stack of FTLE fields reveals space-time ridge surface (forward-time red, reverse-time

blue). The intersection of forward and reverse space-time ridge surface yields the hyperbolic trajectory (space-time bifurcation line, green).

(c) Repelling LCS / stable bifurcation manifold (red), and attracting LCS / unstable bifurcation manifold (blue) of bifurcation line (green).

(d) Upper half: FTLE suffers from sampling issues (Buoyant Plumes dataset, cf. Section 5.3 and Figure 4(d)) and provides only an implicit

determination of LCS. Lower half: Our streakline manifolds (black curves), in contrast, capture the LCS at high accuracy and are not subject

to aliasing. (e) Close-up of region (black box) indicated in (d).

approach suffers from severe sampling issues (Figure 1(d), (e)).
This becomes particularly impeding if the FTLE is computed for
longer advection times T , since LCS grow with advection time,
and if the domain is spatially limited, the LCS undergo folding and
stretching. This results in very finely folded and arbitrarily closely
adjacent LCS that cannot be appropriately sampled with feasible
resolutions without a priori information.

Streak-Based Topology Motivated by these drawbacks, tradi-
tional vector field topology was generalized to time-dependent vec-
tor fields by replacing the role of streamlines by characteristic
curves of type streakline in the concept (note that streamlines and
streaklines are identical in steady vector fields), for 2D [SW10],
and more recently for 3D [USE13] vector fields. In this approach,
LCS are obtained by growing generalized streaklines [WTS∗07]
from hyperbolic trajectories. The seeds of generalized streaklines
are allowed to move over time and, in this concept, they move
(advect) along hyperbolic trajectories during streakline generation.
As stated by Haller [Hal00], hyperbolic trajectories in 2D vector
fields represent pathlines that reside in hyperbolic regions for lo-
cally the longest time. He defines those regions to be hyperbolic
where det(∇u(x, t))< 0.

The advantages of the streakline-based topology are manifold.
Once hyperbolic trajectories are obtained, the streak-based LCS
can be grown from them to arbitrary times—dense folding of LCS
does not affect the extraction (Figure 1(d), (e)), since streaklines
are constructed in a Lagrangian manner, in contrast to FTLE ridges
which need to be extracted in the Eulerian frame. Hence, streak-
based topology does not suffer from the abovementioned alias-
ing problems. The resulting streak manifolds are of superior qual-
ity [USE13], as they are attracted to the LCS they are representing,
at least as long as they are close to the HT. Since attracting LCS
are obtained by growing streaklines forward in time, and repelling
LCS in reverse time, both get attracted by the respective LCS. Fi-
nally, only hyperbolic LCS are obtained, as with Haller’s recent
approach [Hal11]. For example, shear-induced FTLE ridges, as ob-
tained by FTLE ridge extraction, are usually not considered signifi-

cant in topological analysis of time-dependent flow. In Section 5.3,
we compare the traditional approach based on FTLE ridge extrac-
tion with our streak-based approach for some selected examples.

The major shortcomings of Haller’s HT-based approach [Hal00]
and streak-based topology [SW10, USE13] are, however, with re-
spect to the extraction of the required HTs. To obtain seed points
for them, Haller computes the hyperbolicity time field forward
and reversely and intersects ridges therefrom, while Sadlo and
Weiskopf [SW10, USE13] extract ridges from the forward and re-
verse FTLE and intersect them. Both approaches are computation-
ally expensive and subject to aliasing. However, the most serious
problem of the above approaches is the extraction of the HTs: they
require very accurate seed points [SW10, USE13].

LCS in Space-Time As a remedy to this problem, Bachthaler
et al. [BSDW12] obtain HTs by intersecting forward and reverse
FTLE ridges over the entire time domain (Figure 1(b)). Because
they obtain the FTLE ridges over the complete time domain, there
is no necessity to generate the LCS by growing streak manifolds
from the HT. Instead, they exploit that LCS represent material
lines, i.e., that they advect with the flow (up to negligible cross-
flux [SLM05]). Using the space-time representation

ũ(x̃) =
(

u(x,y, t), v(x,y, t), 1
)⊤

, (3)

of the vector field u(x, t), with x̃ = (x,y, t)⊤, and by making use
of the fact that streamlines of ũ(x̃) represent pathlines of u(x, t)
and since LCS thus advect along streamlines in ũ(x̃), LCS repre-
sent streamsurfaces in ũ(x̃) sufficiently well. This property allowed
Bachthaler et al. to apply line integral convolution [CL93] of the
ũ(x̃) field on the FTLE ridges to visualize stretching and squeezing
within LCS, i.e., in direction tangential to the LCS.

Bifurcation Lines and Separation Lines In 3D steady vector
fields, bifurcation lines [PC87, MSE13] (Figure 1(c)) are stream-
lines that represent asymptotes for other streamlines for locally the
longest time, for both forward and reverse integration. As stated
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by Roth [Rot00], bifurcation lines can be seen as an extension of
separation and attachment lines to 3D, in that they represent an at-
tachment line in one manifold, and simultaneously a separation line
in another manifold, both intersecting along the bifurcation line.

Separation/attachment lines [Ken98] and bifurcation lines are
somewhat difficult to spot. While vortex core lines are, at least
from the view of the vortex core line criterion by Sujudi and
Haimes [SH95], closely related to bifurcation lines (they can be
seen as their complement [MSE13]), vortex core lines are easier to
define, e.g., as curves that, at least over intervals of time, represent
an individual streamline around which other streamlines spiral. A
respective definition is not as easy to give for separation/attachment
or bifurcation lines. These lines all exhibit neighboring streamlines
that converge or diverge from them, but unfortunately this is, to
some extent, also the case for these neighboring streamlines. The
most apparent definition for separation/attachment lines is due to
Kenwright [Ken98]: if a large set of streamlines is computed, they
will tend to merge along separation lines with forward integra-
tion, and along attachment lines when integrating in reverse di-
rection. This experiment is the primary way to validate a separa-
tion/attachment or bifurcation line. Tricoche et al. [TGS05] use a
related approach based on divergence of streamlines to detect lines
of attachment and separation. As a consequence, bifurcation lines
are streamlines that represent asymptotes for other streamlines, si-
multaneously in forward and reverse direction (i.e., they also reside
in hyperbolic regions), for locally the longest time (cf. the analo-
gous definition of HTs above by Haller [Hal00]). In a follow-up pa-
per, Kenwright et al. [KHL99] give the more explicit definition for
separation and attachment lines as the loci where velocity u and a
real eigenvector of∇u are (anti)parallel. As stated by Roth [Rot00],
this approach provides only the correct curves if the separation or
attachment lines are straight. It can be extended to obtain bifurca-
tion lines in 3D, however, with the same limitations.

Machado et al. [MSE13] take the (error-affected) curves from
Roth’s method [Rot00] or those obtained by the higher-order ap-
proach due to Roth and Peikert [RP98] presented originally for
curved vortex core lines as initial solution, and refine them toward
the aimed asymptotes that represent bifurcation lines.

As a secondary step, they extract the two 2D manifolds of a bi-
furcation line, the (stable) one consisting of those streamlines that
converge to it in forward, and the (unstable) one that consists of
streamlines converging to the bifurcation line in reverse time (Fig-
ure 1(c)). Similar to separatrix generation from saddle-type critical
points, they employ a small offset along the respective eigenvector
of ∇u, projected orthogonally to the curve, to obtain seed curves
(one on either side of the bifurcation line for each eigenvector) for
integrating streamsurfaces that provide the bifurcation manifolds.

3. LCS by Space-Time Bifurcation Lines

In this paper, we present, to the best of our knowledge, the first tech-
nique to obtain hyperbolic trajectories (and thus time-dependent
topology) without computing integral curves. Neither do we need
to integrate an auxiliary field such as hyperbolicity time [Hal00] or
the FTLE [SW10, USE13], nor do we need to employ integration
to obtain the hyperbolic trajectories themselves—we extract them
as bifurcation lines [MSE13] from the space-time field ũ(x̃).

As already mentioned, streamlines of ũ(x̃) in Equation (3) repre-
sent pathlines of u(x, t). Since both bifurcation lines and HTs rep-
resent curves that attract the respective type of curves (3D stream-
lines in the case of bifurcation lines and 2D pathlines in the case
of HTs) for locally the longest time in both directions of time, ex-

tracting bifurcation lines from ũ(x̃) is identical to extracting hy-

perbolic trajectories from u(x, t). This is the approach central to
the present paper. We extract bifurcation lines from ũ(x̃) and com-
pute their streamsurface manifolds also in ũ(x̃), according to the
method by Machado et al. [MSE13] that is based on Roth’s formu-
lation. As detailed in Figure 1 of Weinkauf and Theisel [WT10],
a spatial section of a space-time streamsurface represents a streak-
line and hence, the space-time bifurcation manifolds represent the
streak manifolds in streak-based vector field topology [SW10].

The algorithm [MSE13] for the extraction of bifurcation lines
consists of two basic steps: first, an initial solution is inferred (Sec-
tion 3.1), this solution is the refined toward the feature line (Sec-
tion 3.2). Algorithm 1 gives a schematic overview of this method.

3.1. Bifurcation Line Candidates

This step is performed based on the parallel vectors opera-
tor [PR99], which is defined as the loci where two vector fields v

and w are parallel (or antiparallel). According to Roth [Rot00] and
Machado et al. [MSE13], bifurcation lines can be extracted as the
loci where the steady vector field v is parallel to the steady formu-
lation of acceleration, a := (∇v)v, or to the jerk vector b := (∇a)v.
Here, we employ the equivalent to v ‖ a but in space-time represen-
tation of the 2D time-dependent vector field, i.e., we extract space-
time bifurcation lines as the loci where ũ ‖ ã, with ã := (∇ũ)ũ, by
finding points, where

ũ× ã = 0. (4)

Note that in our case, with the t-component of ũ being constant,
Equation (4) directly leads to ã = 0 because the t-component of ã

vanishes and the t-component of ũ is 1:

∇ũ =





u,x u,y u,t
v,x v,y v,t
0 0 0



 , ã =





u,xu+u,yv+u,t1
v,xu+ v,yv+ v,t1

0



 . (5)

It is clear that, in general, the solutions to ã = 0 are curves in the
(x,y, t)-space as we only have two equations for three variables.
This is not surprising, because generally the condition of a vanish-
ing cross product leads to curves in three-dimensional space and
not to isolated points [PR99]. To use the technique by Machado et
al. [MSE13] without modifications, we decided to employ condi-
tion (4). In our experiments, we observed that the solution of ũ ‖ b̃,
with b̃ := (∇ã)ũ, which, of course is also equivalent to b̃ = 0 in
our case, did not yield satisfactory results. Similar findings were
described by Machado et al. for v ‖ b, i.e., that this condition most
of the time gives very accurate results, but also frequently yields
false negatives, in contrast to v ‖ a.

Subsequently, we apply a first filtering to reject non (or weakly)
hyperbolic parts of ũ ‖ ã and obtain the initial solution. This is
performed with three user-defined thresholds [MSE13]: minimum
strength τh, maximum angle τα, and minimum length τl . For the
parts where all three eigenvalues of ∇ũ are real, we project ∇ũ
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Algorithm 1 Bifurcation line extraction [MSE13].

1: Find all vertices of initial bifurcation line candidate with paral-
lel vectors operator [PR99] (Section 3.1)

2: Apply filtering (minimum strength τh, maximum angle τα,
minimum length τl , Section 3.1)

3: while Bifurcation line insufficiently accurate do

4: Update vertices by reducing αi(ϑϑϑi, ũ) (Section 3.2)
5: end while

Algorithm 2 LCS extraction presented in this work.

1: Create space-time representation of 2D time-dependent vector
field (Section 2)

2: Compute bifurcation lines for ũ with Algorithm 1
3: Extract LCS by seeding streamsurfaces in ũ along bifurcation

line [MSE13]

onto a plane perpendicular to the line and compute its determinant
d. Hyperbolicity is identified at those points where d < 0. To reject
parts with low hyperbolicity as well, we require d/‖ũ‖>−τh. We
then reject all parts, where the angle α(ϑϑϑ, ũ) between the line tan-
gent ϑϑϑ and the vector field ũ is larger than the threshold τα. Finally,
all remaining feature lines that are shorter than τl are discarded.

3.2. Iterative Refinement of Candidates

In this step of the algorithm [MSE13], an iterative refinement is
employed, that deforms the initial solution toward the actual space-
time bifurcation line. To do that, we take each vertex ci of the
candidate polyline and construct a plane normal to the line at
pi = (ci+1+ci−1)/2 (at boundary vertices we assume pi = ci) and,
inside this plane, we employ a small step in the direction that re-
duces the angle αi(ϑϑϑi, ũ) between ũ and the line’s tangent ϑϑϑi at pi.
Thus, at each iteration, we update the position of each vertex of the
polyline via

ci← pi−∆ρ×‖∇αi(ϑϑϑi, ũ)‖, (6)

where ∆ρ is the step size, which is reduced after each iteration step.
Finally, the space-time bifurcation lines are obtained after applying
a second threshold filtering with stricter constraints τ′h > τh, τ′α <
τα, and τ′l > τl . Algorithm 2 gives a sketch of our method, using
Algorithm 1. Please compare this with the method of Sadlo and
Weiskopf [SW10] that is lined out in Algorithm 3.

4. Discussion

A somewhat counterintuitive circumstance is that hyperbolic trajec-
tories are streamlines in the space-time vector field ũ(x̃) and that
streamlines in u(x, t) are not Galilean-invariant, while LCS are.
Actually, pathlines are Galilean-invariant and streamlines in ũ(x̃)
represent pathlines in u(x, t). A Galilean transformation of u(x, t)
would result in a change of the orientation of the vectors in the ũ(x̃)
field. However, at the same time it would warp the domain of ũ(x̃)
consistently, due to the influence of the Galilean transformation on
the coordinate functions. So, in the end, the pathlines in the trans-
formed u(x, t) field would again represent streamlines in ũ(x̃), i.e.,
streamlines in ũ(x̃) are invariant under Galilean transformations.

Algorithm 3 LCS extraction (Sadlo and Weiskopf [SW10]).

1: Compute forward-time FTLE field σ f and reverse-time FTLE
field σr (Figure 1(a))

2: while FTLE ridge intersection insufficiently accurate do

3: Intersect ridges of σ f and σr (Figure 1(b) at t0)
4: Refine FTLE fields around intersection point
5: end while

6: Seed hyperbolic trajectory at computed intersection
7: Seed generalized streak lines along hyperbolic trajectory to ex-

tract LCS (Figure 1(c))

From a practical point of view, our approach does not suffer from
the integration difficulties of HTs. It can extract them irrespective
of their length. Furthermore, it is substantially faster (see Figure 6).

Note that in the previous streak-based approach [SW10], not all
intersections between forward and reverse FTLE ridges give rise to
hyperbolic trajectories. Pathlines are started at these intersections
only if the vector field is hyperbolic there and they are stopped as
soon as they leave the hyperbolic region. As described by Machado
et al. [MSE13], a bifurcation line has to exhibit hyperbolic behav-
ior in the cross section perpendicular to its tangent as well. Hence,
both our approach and the streak-based method [SW10] provide
a filtering by hyperbolicity. Note that our “hyperbolicity” is mea-
sured in space-time planes while in the approach by Sadlo and
Weiskopf [SW10], it is hyperbolicity in space only. But this does
not matter, the constituting property why space-time bifurcation
lines represent HTs was explained above. The main difference of
the two approaches is that the one by Sadlo and Weiskopf [SW10]
features T as scale parameter, while our approach, in compliance
with traditional vector field topology, does not provide such a pa-
rameter. This means that we conceptually obtain even weak or
short-termed HT that might not give rise to sufficiently pronounced
FTLE ridges for a given T . In our approach, the bifurcation man-
ifolds will not grow away sufficiently from the HT in these cases,
providing a quantitative representation of the strength of hyperbolic
separation (cf. [USE13]). Note that in compliance with the earlier
methods [SW10, MSE13], we provide the user the option to reject
regions of HTs that are not sufficiently hyperbolic and subsequently
allow for rejecting too short HTs.

During our experiments, we observed that in configurations
where the flow attaches to or detaches from the domain bound-
ary (cf. Figure 4), our approach missed the related LCS (e.g., the
vertical one in Figure 4). Such configurations represent a “half” of
a saddle-type critical point, i.e., in our case a “half” of a space-
time bifurcation line. One option would have been to implement
space-time extraction of separation and attachment lines, with the
refinement [MSE13]. We follow an alternative approach here: we
simply strip the outermost layer of nodes at no-slip boundaries to
get rid of the layer of zero-velocity, and then mirror a band of cells
(in our case we mirrored all nodes that were within a distance of
20 cells to the boundary) with the boundary as symmetry axis. This
way, we complete the “half” bifurcation lines to regular bifurcation
lines that we can then simply extract with our approach. The top
and bottom seeding curves in Figure 4 were obtained this way.
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(a) (b) (c)

Figure 2: Oscillating Gyre-Saddle dataset. (a) Our result by extracting the hyperbolic trajectory (green) as a space-time bifurcation line,

with bifurcation manifolds (red, blue) representing the streak manifolds (LCS) of streak-based topology. FTLE slices (red: high, blue: low)

from left to right: (t0,T) = (4,5), (6.5,−5), (9,−5), and (11.5,5). Our hyperbolic trajectory extraction resides exactly at the intersection

(arrow) of the attracting and repelling LCS, in contrast to integration-based extraction [SW10] (b), where errors tend to grow exponentially.

There, the deviated white part of the extracted hyperbolic trajectory is located in a non-hyperbolic region, and, hence, it is not suitable there

for extraction of streak manifolds. (c) The refinement approach for bifurcation line extraction (Section 3.2) causes a small deformation at

both ends. However, this has typically, as in this case, no impact. Nevertheless, we extract longer bifurcation lines and trim them to the region

of interest to avoid this.

4.1. Limitations

The major limitation of our approach lies in the extraction tech-
nique for bifurcation lines [MSE13]. As discussed there, it is sub-
ject to false negatives, i.e., it may miss bifurcation lines. The
technique is based on two extraction criteria for vortex core
lines [SH95, RP98], which are both successful in different config-
urations. Unfortunately, there are cases where both criteria do not
provide a solution and hence the bifurcation line is missed.

The second limitation of the bifurcation line extraction tech-
nique [MSE13] concerns the ends of bifurcation lines. The ap-
proach obtains candidates for bifurcation lines by a modification of
vortex core line criteria [SH95, RP98], which are subsequently re-
fined to make them fit a streamline. This refinement performs very
well if the bifurcation lines are closed, as in the case of saddle-type
periodic orbits. However, if the bifurcation line is open, the refine-
ment phase tends to deform the ends of the extracted line away from
the true bifurcation line. This inaccuracy is often negligible because
the bifurcation manifolds are attracted to the respective LCS (Fig-
ure 2(c)), however, there can be cases where it leads to inaccuracies
of the resulting streak manifolds.

Visualization of bifurcation lines is a rather new topic and there
is potential for improvement. Future extraction techniques for bi-
furcation lines can be directly employed in our concept, and hence
lower the risk of false negatives or deformed HTs. In the meantime,
we recommend to validate the results with selected FTLE slices (as
done in our results) or the previous streak-based approach [SW10].

5. Results

In Sections 5.1 and 5.2, we compare our approach to that by Sadlo
and Weiskopf [SW10] by applying our technique to one analytic
dataset and one from a computational fluid dynamics (CFD) simu-
lation from that paper. Then (Section 5.3), we apply our technique
to a CFD dataset used by Bachthaler et al. [BSDW12]. We con-
clude our results with an evaluation of our approach and the most
closely related techniques for LCS extraction (Section 5.4).

5.1. Oscillating Gyre-Saddle

This dataset is derived from Shadden’s steady-type Double-Gyre
flow and consists of a saddle-type configuration with cosine veloc-
ity profile across its “arms” and a fixed angle of π/2 between its
“arms”. The saddle translates in an oscillating manner between the
locations (0.25,0.25) and (−0.25,−0.25) at a period of 4 s. This
example serves as a test if the concept is able to extract the time-
dependent topology of a moving hyperbolic region.

Figure 2(a) shows the result from our approach with the respec-
tive attracting LCS at the backmost FTLE slice. It can be seen that
our bifurcation line-based extraction of the HT is not affected by
the repelling LCS, i.e., it resides also at the backmost FTLE slice
at the intersection of the attracting and repelling LCS (indicated
by the white arrow). This is in contrast to the approach based on
FTLE ridge intersection [SW10] (Figure 2(b)), where the extracted
HT was repelled from the LCS during its integration (white arrow).
Note that the extracted trajectory was repelled although substantial
efforts were made to obtain a very accurate seed. Admittedly, how-
ever, deviations as in Figure 2(b) may still be tolerable, as long as
the HT representation resides in a hyperbolic region (green), be-
cause the trajectory is repelled from the repelling LCS but at the
same time attracted by the attracting LCS. Hence, as long as the
manifold grows to the right side (which also depends on the size of
the offset for seeding the space-time streamsurface from the hyper-
bolic trajectory), this does typically not cause problems (see also
Figure 8(b) in the work by Machado et al. [MSE13]).

Figure 2(c) shows the result from our approach without trimming
the endpoints of the extracted bifurcation line. Note that, due to
the iterative refinement (Section 3.2), a small deformation at the
endpoints is produced, which does, however, typically not affect the
resulting LCS extraction because the vector field is still hyperbolic
along the line and thus attracts the streak manifold.

5.2. Buoyant Barrier Flow

This dataset represents a time-dependent CFD simulation of buoy-
ant air flow in a closed container with a heated bottom, cooled top,
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(a) (b)

Figure 3: Buoyant Barrier Flow dataset. (a) Right FTLE slice: (t0,T) = (10.7,1), left slice: (t0,T) = (11.5,−1). Hyperbolic trajectory by

means of space-time bifurcation line (green) and repelling (red) and attracting (blue) LCS by space-time bifurcation manifolds fit well to

LCS captured by FTLE ridges. (b) Corresponding visualization with right FTLE slice at t0 = 13.7 and left slice at t0 = 14.5.

and a horizontal barrier to increase time-dependence. Sadlo and
Weiskopf [SW10] visualized the time interval [2,2.5] with many
HTs, both weakly hyperbolic ones and others that gave rise to clear-
cut streak manifolds.

Unfortunately, the bifurcation line extraction approach from
Machado et al. [MSE13] did not provide space-time bifurcation
lines (i.e., hyperbolic trajectories) in this interval. Due to the in-
tricate properties of local feature extraction based on the parallel
vectors operator [PR99], we could not identify the reasons why the
approach failed. One possible cause is the very low resolution of the
vector field (only 40×40 cells compared to 199×199 cells (Oscil-
lating Gyre-Saddle and Quad-Gyre datasets), and 100×100 cells in
the Buoyant Plumes dataset (Section 5.3)). Another possible reason
is the space-time “velocity” along the space-time bifurcation lines,
which might be too low or too high. To demonstrate that our ap-
proach works with this data, we selected two time intervals that
exhibit pronounced HTs that we could extract with the approach by
Machado et al. It is apparent in Figure 3 that our manifolds fit very
well to the LCS visualized by the FTLE slices.

5.3. Buoyant Plumes

The last dataset that we apply our technique to was investigated us-
ing the FTLE by Bachthaler et al. [BSDW12]. It again represents
a CFD simulation of buoyant flow in a closed container, but this
time only a small region at the bottom is heated and a small region
at the top is cooled. The velocity is initially zero. Two plumes de-
velop, a hot one rising and a cold one dropping. Then, they collide
at the center and split into two plumes each, that move horizon-
tally toward the side walls, where they split again. Later, the flow
develops asymmetries and finally becomes turbulent.

Figure 4(a) shows the hyperbolic trajectories extracted as space-
time bifurcation lines. In Figure 4(b), an early state of the space-
time bifurcation manifold computation is shown to illustrate the
overall structure of the LCS. The final state is provided in Fig-
ure 4(c). We do not visualize the repelling LCS with our technique
in this example, because it does not provide significant insight into
the dynamics. Our streak manifolds obtained as space-time bifurca-
tion manifolds fit well to the FTLE sections in this example again.

Figure 4(d) shows the same data as Figure 4(c), but from the back
for better validation of the manifold with the FTLE. One can see
here (and also Figure 1(d) and (e)) that there are FTLE ridge parts
that are not captured by a streak manifold. We examine some of
these cases in Figure 5 by reverse-time pathlines. In contrast to
mapping FTLE to those lines [FSU∗10], we color them according
to the FTLE value at the respective seed point. It can be seen that
whereas FTLE ridges are present in all of the investigated cases,
some of the cases lack streak manifolds. The pathline-based inspec-
tion reveals that these are cases with weak spread and thus can be
considered false positives of the traditional FTLE-based approach.

5.4. Evaluation

The traditional approach to extract LCS, i.e., by computing an
FTLE field for each instant of time with subsequent ridge extrac-
tion, involves the computation of a large number of pathlines and
is therefore an expensive task. The computational cost of such a
dense computation, which is also employed by the approach by
Bachthaler et al. [BSDW12], scales linearly with resolution, but
also with advection time T (number of integration steps). Fig-
ure 6(a) provides an analysis with respect to the number of inte-
gration steps (observe the increasing cost for ridge extraction due
to the growth of LCS). In comparison, our approach (Figure 6(b))
also scales linearly with the number of integration steps, but yields
a performance increase of two orders of magnitude compared to the
traditional approach, due to its local nature.

Different from the traditional approach, Sadlo and Weis-
kopf [SW10] need to compute only one forward and one reverse
FTLE section at one given time point. The identification of the in-
tersection points between the ridges from these fields then provides
the seeds for the integration of hyperbolic trajectories, whose mani-
folds represent the LCS. Because the FTLE is computed at one sec-
tion only, this approach is substantially faster. On the other hand,
these seeds have to be determined at high accuracy, which is accom-
plished by adaptive refinement of the FTLE fields. This increases
the computational cost (Figure 6(c)), however, it also provides a re-
duction of the distance between the endpoint of the hyperbolic tra-
jectory and the respective intersection of the LCS at that time point
(cf. Figure 2(b)). We use this distance as error measure ε within our
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(a) (b)

(c) (d)

Figure 4: Buoyant Plumes dataset in time range [2.5,20.1], with two FTLE slices with (t0,T) = (15,−15) and (20,−20). (a) HTs extracted

as space-time bifurcation lines (green). (b) Early state of space-time bifurcation manifold integration for better insight into overall structure.

(c) Final LCS representation by space-time bifurcation manifolds with transparency in the upper half to reveal internal structure. (d) Same

as (c), but from the back for better comparison of FTLE slice and our streak manifolds (see also Figure 1(d) and (e)).

analysis of the approach by Sadlo and Weiskopf. Please see Fig-
ure 6(c) (center and right) for the setups and performance results,
and Figure 6(d) for the respective error. Increasing integration time
also has a negative impact on accuracy due to error growth. Fig-
ure 2(b) shows the result of performing 3500 integration steps. In-
creasing the resolution alone, without adaptive refinement by sub-
division, causes a performance decrease without noticeable gain in
accuracy. Our approach, in contrast, is faster and does not exhibit
this problem because the HTs are not obtained by integration. Note
that all computations, except for Jacobian estimation, were carried
out on the GPU.

6. Conclusion

We presented a local extraction approach for hyperbolic trajectories
in 2D time-dependent vector fields, providing the time-dependent
vector field topology of vector fields without the requirement of
computing the FTLE field. In this sense, we provided a true gen-
eralization of the traditional vector field topology concept to time-
dependent vector fields by conceptually replacing streamlines by
streaklines in the original concept and by identifying space-time
bifurcation lines as the time-dependent counterpart to saddle-type

critical points. We achieved this by extracting bifurcation lines ac-
cording to Machado et al. [MSE13] from the space-time represen-
tation of the vector field. The bifurcation manifolds of these bifur-
cation lines in the space-time vector field represent the streak man-
ifolds of time-dependent vector field topology, i.e., the attracting
and repelling LCS. Besides various advantages, there are also lim-
itations with the current approach, mainly because the bifurcation
line extraction technique [MSE13] can miss features and may dis-
tort the ends of bifurcation lines. Nevertheless, these issues appear
rarely and the deformed ends do typically not affect the result.

The extension of our approach to 3D fields is nontrivial. Üffinger
et al. [USE13] have shown that the counterpart to hyperbolic tra-
jectories are hyperbolic pathsurfaces in 3D. Hence, the extension
of our method to 3D fields necessitates the extension of bifurcation
lines to bifurcation surfaces in 4D space-time, which we plan to
pursue as future work.
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(i)

(a)

(ii)

(b)

(iii)

(c)

(iv)

(d)

Figure 5: Relation between streak manifolds (black) and FTLE ridges, by reverse-time pathlines (colors by FTLE), configuration from

Figure 4. (a) Very strong spread (diverging red pathlines) with twist, captured by FTLE ridge and streak manifold at (i). (b) Two strong

spreads (left and top), captured by FTLE ridge and streak manifold at (ii). (c) Slight divergence of pathlines but no separation, captured by

FTLE ridge at (iii) but not by streak manifold. (d) Similar to (c) with stronger divergence, with FTLE ridge at (iv) but no streak manifold.

FTLE ridges at (iii) and (iv) can be considered false positives, as indicated by our approach.
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Figure 6: Comparison of techniques (Oscillating Gyre-Saddle dataset): (a) traditional dense computation (FTLE computation and ridge

extraction), (b) our approach (Jacobian estimation, parallel vectors extraction, refinement, filtering, manifold integration), and (c) the ap-

proach by Sadlo and Weiskopf (FTLE computation, ridge extraction, manifold integration) for different parameters with (d) respective error

ε of the hyperbolic trajectories. Our approach is two orders of magnitude faster than the one based on dense FTLE, and faster than the one

by Sadlo and Weiskopf without the issue of deviating HTs due to error growth.
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