
Topological Analysis of Inertial Dynamics

Antoni Sagristà, Stefan Jordan, Andreas Just, Fabio Dias, Luis Gustavo Nonato, and Filip Sadlo

(a) initial position

(i)

(b) final position (c) initial velocity (d) final position

Fig. 1. Analysis of inertial dynamics at the example of the 2D Nine-Body example. (a) Nine stationary bodies (purple) inducing
gravitational field. The initial position of our 4002 inertial particles has been manually selected (yellow point), whereas their initial
velocity is given by a uniform sampling of the initial velocity space (c). (b) Positions of the samples after inertial transport for time T .
We select a small region of interest (i) that we would like to reach from the initial position. This provides the initial velocities (cyan
dots in (c)) that lead to the desired region of interest. (c) Inertial trajectories in velocity space, together with phase-space finite-time
Lyapunov exponent (color-coded), providing the topological structure and thus regions of similar inertial dynamics. (d) The trajectories
in position space show how the desired location can be reached.

Abstract—Traditional vector field visualization has a close focus on velocity, and is typically constrained to the dynamics of massless
particles. In this paper, we present a novel approach to the analysis of the force-induced dynamics of inertial particles. These
forces can arise from acceleration fields such as gravitation, but also be dependent on the particle dynamics itself, as in the case
of magnetism. Compared to massless particles, the velocity of an inertial particle is not determined solely by its position and time
in a vector field. In contrast, its initial velocity can be arbitrary and impacts the dynamics over its entire lifetime. This leads to
a four-dimensional problem for 2D setups, and a six-dimensional problem for the 3D case. Our approach avoids this increase
in dimensionality and tackles the visualization by an integrated topological analysis approach. We demonstrate the utility of our
approach using a synthetic time-dependent acceleration field, a system of magnetic dipoles, and N-body systems both in 2D and 3D.

Index Terms—Visualization of inertial dynamics, N-body systems, magnetism, acceleration.

1 INTRODUCTION

Our everyday life and large parts of the universe are dominated by
masses, and forces acting upon them. In the continuous setup, promi-
nent examples are acceleration caused by gravitation between bodies,
electrostatics, and magnetism. Some of these accelerations can be rep-
resented as time-dependent vector fields. However, most traditional
techniques for vector field visualization have either instantaneous (lo-
cal) scope, or are based on the kinematics of massless particles, and
thus cannot provide appropriate insight into the dynamics of inertial
particles. Beyond that, phenomena like magnetic interaction cannot
be represented by vector fields in terms of acceleration.

Topological analysis of vector fields is motivated by the aim to sep-
arate their spatiotemporal domain into regions of qualitatively differ-
ent behavior. For steady vector fields, this is typically achieved by
extraction of streamlines that converge in forward or reverse time di-
rection to isolated zeros of the vector field, known as separatrices and
critical points. For time-dependent vector fields, Lagrangian coherent

• A. Sagristà, S. Jordan, and F. Sadlo are with Heidelberg University,

Germany. A. Just is with ZAH at Heidelberg University, Germany.

E-mail: toni.sagrista@iwr.uni-heidelberg.de,

{jordan, just}@ari.uni-heidelberg.de, sadlo@uni-heidelberg.de.

• F. Dias and L. G. Nonato are with Universidade de São Paulo, São Carlos,

Brazil. E-mail: {fabio, gnonato}@icmc.usp.br.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

structures, which can be obtained as ridges in the finite-time Lyapunov
exponent (FTLE) field, are a counterpart to separatrices, separating re-
gions of qualitatively different behavior for a prescribed time interval.

In this paper, we present a technique for the analysis of the inertial
dynamics of point masses. In contrast to traditional massless particles,
whose velocity is given by the vector field at the respective position
and time, velocity of inertial particles is also part of the underlying
initial value problem (IVP). In other words, instead of solving an IVP
in space only, it needs to be solved in phase space, which includes the
degrees of freedom of velocity. This leads to an increase of dimension
by a factor of two, leading to four-dimensional problems for 2D spatial
problems, and six-dimensional problems for 3D spatial configurations.
We avoid the difficulties with higher-dimensional visualization by sep-
arating position and velocity in our approach, which is appropriate for
practical applications since position and velocity play different roles.

The contributions of this paper include:

• A counterpart to the finite-time Lyapunov exponent for the anal-
ysis of arbitrary inertial dynamics in phase space,

• derived concepts that constrain initial values for analysis,
• decomposition into spread due to velocity and position,
• dimensional stacking for phase-space navigation, and
• a concept to analyze the multiplicity in the underlying maps.

2 RELATED WORK

The most closely related works we are aware of are those by Sapsis
and Haller, Peng and Dabiri, and Günther and Theisel, all in the field
of inertial particles driven by fluid flow. Studying the flow-induced
dynamics of inertial particles is a rather evolved topic with various
applications from, e.g., meteorology [23], biology [22], and multi-

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

component or multi-phase flow [19]. Recent works outside visualiza-
tion include those by Sapsis and Haller [22], and Peng and Dabiri [17].
Sudharsan al. [25] gives a good introduction into this field. In visual-
ization, the initial work of Günther et al. [5] provided techniques and
introduced new concepts for integral curves of flow-induced motion
of inertial particles. Subsequently, Günther and Theisel extended the
concept of vortex core lines to flow-induced motion of inertial parti-
cles [6]. More recently, they presented a counterpart [8] to vector field
topology for steady-state flow-induced motion of inertial particles, a
respective concept [7] for time-dependent flow inspired by the FTLE
with focus on the separation of flow-induced inertial trajectories due
to mass, and a solution [9] to the demanding source inversion problem
in flow-induced transport of inertial particles. Also recently, Garaboa-
Paz and Pérez-Muñuzuri [4] extended FTLE for flow-induced inertial
trajectories in incompressible flow to phase space, i.e., they investigate
the impact of the variation of initial velocity, similar to our approach
but as a whole (without separating position and velocity as we do).
Although all these works analyze the motion of inertial particles, they
are all defined in terms of the dynamics of inertial particles induced
by fluid flow. This motion is obtained by an empirical model ([5],
equation 1), defining acceleration as a function of the velocity of the
particle, flow field velocity, and other accelerations. Thus, the prob-
lem of motion of flow-induced inertial particles is a special case of the
problems that we address with our technique, i.e., we have no specific
constraints on the acceleration of inertial particles. Also, in all these
previous works (except for the topology approach [8] and the phase
space approach [4]), initial velocity is assumed constant, which does
not make it necessary to treat the problem in 2n-dimensional phase
space, in contrast to the problems that we aim at.

Regarding topological analysis of time-dependent vector fields, the
flow map-based formulation of the FTLE due to Haller [10] provides
a basis for our approach. For further related work in this field, we
would like to point the reader to the survey by Pobitzer et al. [18] and
to recent advances in streak-based topology [21, 26, 16].

Multidimensional projection (MP) methods [15] have been one of
the main alternatives to visualize data residing in spaces with dimen-
sion larger than three, and could thus provide solutions to visualize the
2n-dimensional phase-space finite-time Lyapunov exponent field that
we employ in this paper. Projection methods aim to map data to a vi-
sual space such that distances are preserved as much as possible, thus
making possible the visual analysis of neighborhood structures present
in the original data. In fact, in the context of visualization, MP tech-
niques have mainly been used for the visual inspection of clusters and
their properties [11], since the analysis of more complex structures is
not so straightforward with MP methods. As we will show by an ex-
ample, however, MP techniques are difficult to apply and even more
difficult to interpret in the context of phase space of inertial particles.

3 METHOD

We would like to refer the reader to the video accompanying this work
for a quick overview of the method and its implementation.

3.1 Inertial Dynamics

The subject of visualization in our approach is inertial dynamics in
terms of accelerations. One source of accelerations are time-dependent
acceleration fields

a(x, t) = (a1(x1, . . . ,xn, t), . . . ,an(x1, . . . ,xn, t))
⊤ (1)

assigning each point x := (x1, . . . ,xn)
⊤ at time t in the domain

Ω ⊆ R
n ×R a vector a ∈ R

n with accelerations ai, i = 1, . . . ,n in the
respective dimensions. The trajectory x(t) is fully determined by an
IVP starting at time t0 at initial position x0 := x(t0) with initial velocity

ẋ0 := ẋ(t0) =

(

dx1(t)

d t
, . . . ,

dxn(t)

d t

)⊤
∣

∣

∣

∣

∣

t=t0

. (2)

We first reformulate the IVP in phase space:

ξξξ (t0) :=

(

x0

ẋ0

)

,
d

d t
ξξξ (t) =

(

ẋ(t)
ẍ(t)

)

=

(

ẋ(t)
a(x(t), t)

)

, (3)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

50_0.85proj

(a) 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

50_0.85Estimated number of clusters: 15

(b)

Fig. 2. Ridge points mapped from 4D to 2D using t-SNE projection.
(a) Neighbor points in 4D are close in the projection. (b) Agglomera-
tive clustering cannot provide a direct notion of the original separating
structures in 4D phase space.

with ξξξ (t) representing the path of a point mass in phase space. The
resulting integral formulation

ξξξ (t) = ξξξ (t0)+
∫ t

t0

(

ẋ(τ)
a(x(τ),τ)

)

dτ (4)

represents a coupled system, i.e., one needs to solve

x(t) = x0 +
∫ t

t0

ẋ(τ)dτ (5)

and concurrently

ẋ(t) = ẋ0 +
∫ t

t0

a(x(τ),τ)dτ, (6)

i.e., Equation 5 is needed in Equation 6, and vice versa. We accom-
plish this by coupled fourth-order Runge-Kutta (RK4) integration, de-
tailed in the supplemental material. In our experiments, we obtained
sufficiently accurate results with fixed step size RK4, although adap-
tive approaches, such as the Runge-Kutta-Fehlberg method, would be
likewise possible.

For phenomena, such as magnetic interaction, where acceleration
cannot be represented by a vector field, we replace a(x, t) with an ap-
propriate function, e.g., a(t,x(t), ẋ(t), . . .), in the above formulation.

3.2 Finite-Time Mapping

Now that we can solve for the dynamics of point masses over finite
advection times T , we can investigate some of their properties. We as-
sume that the underlying accelerations a(·) are continuous (which is,
e.g., the case for N-body systems, magnetism, and tensor-product lin-
early interpolated fields) both in space and time. In analogy to stream-
lines in vector fields, this leads to the fact that the trajectories ξξξ (t) of
point masses cannot intersect in phase space. Thus, trajectories can
converge but cannot reach the same point in phase space within finite
time intervals. In other words, the phase-space mapping

ΦΦΦT
t0

: ξξξ (t0) 7→ ξξξ (t0 +T) (7)

is bijective. As a consequence, in phase space, manifolds of point
masses can only deform due to inertial dynamics, but not self-intersect
or tear apart or merge, i.e., they are topologically invariant.

Figure 3 shows an example of a two-manifold of point masses
(varying in initial velocity) after transport for a finite time interval. In
the spatial projection (Figure 3(c)) and in the velocity projection (Fig-
ure 3(d)), one can observe overlaps, but there are no self-intersections
in four-dimensional phase space.

3.3 Phase-Space Finite-Time Lyapunov Exponent

Topological analysis aims at providing a partitioning of the domain
into parts of qualitatively different behavior. For time-dependent vec-
tor fields, where massless particles are assumed to strictly follow the
vector field, the finite-time Lyapunov exponent [10] field represents

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

(a) initial position (b) initial velocity

(c) final position (d) final velocity

Fig. 3. Analysis of gravitation-induced inertial dynamics, for the 2D
Nine-Body example, with bodies (purple dots, mass-proportional), tra-
jectories (colored), and their seeds (white dots). Views: Initial posi-
tion (a), initial velocity (b), final position (c), and final velocity (d), with
axes denoting x-position (red), y-position (green), x-velocity (magenta),
and y-velocity (cyan). Initial position has been constrained to 0 (yellow
dot in (a)), resulting in degrees of freedom of initial velocity only, which is
visualized with PS-FTLE-V (b). All samples of the 600×600 PS-FTLE-V
grid after inertial transport for time T shown by dots in (c) and (d) (initial
x-velocity mapped to blue channel, initial y-velocity to green channel).

the maximum spatial spread of massless particles started at time t0 in-
finitesimally close to position x, and has proven successful in revealing
their topology. The FTLE can be computed as follows:

σT
t0
(x) :=

1

|T |
ln

∥

∥

∥
∇φφφ T

t0
(x)
∥

∥

∥

2
, (8)

with φφφ T
t0
(x) representing the flow map which maps massless particles

started at x and time t0 to their position after advection for time T , and
‖ ·‖2 representing the spectral norm (i.e., for a matrix A the square
root of the largest eigenvalue of A⊤A). Ridges in this field indi-
cate Lagrangian coherent structures (LCS) [24], which are typically
codimension-1 subsets (ridges) of the domain and separate qualita-
tively different regions for the finite advection time T .

A straightforward approach to analyze inertial dynamics is to apply
the FTLE concept to the inertial flow map

ΦΦΦT
t0
(ξξξ) := ξξξ +

∫ t0+T

t0

(

ẋ(τ)
a(x(τ),τ)

)

dτ (9)

in phase space, leading to the phase-space finite-time Lyapunov expo-
nent (PS-FTLE):

ςT
t0
(ξξξ) :=

1

|T |
ln

∥

∥

∥
∇ΦΦΦT

t0
(ξξξ)
∥

∥

∥

2
. (10)

The PS-FTLE is a (time-dependent) scalar field in the 2n-dimensional
phase-space domain, i.e., for 2D spatial problems it is a 4D scalar field,
and for 3D cases it is 6D scalar field.

These higher-dimensional fields could be visualized by interactive
hyperslicing [28] or similar approaches, but in these cases the over-
all picture would need to be “constructed” mentally, which would be

(a) initial position (b) initial velocity

(c) final position (d) final velocity

Fig. 4. Same as Figure 3, but with initial velocity constrained to 0 (yellow
point in (b)) and thus PS-FTLE-P field in (a).

cumbersome due to the typically very complex structure of (PS-)FTLE
fields. Another approach would be to make use of dimensionality re-
duction techniques, which aim to map points from 4D (or 6D) to a
visual space preserving distances as much as possible [15]. Figure 2
shows the point cloud resulting from a projection of “ridge points”
in 4D to a two-dimensional visual space using t-SNE [27]. The ridge
points approximate the ridges by selecting those nodes of a regular 504

sampling grid (resolution limited by memory requirements of t-SNE)
with PS-FTLE value larger than 0.85. The t-SNE projection method
has been chosen due to its ability to reveal groups of similar instances.
Figure 2(a) shows the resulting projected points colored according to
their proximity in 4D (close points have similar colors). As one can
see, t-SNE is performing well in terms of neighborhood preservation.
Figure 2(b) depicts the same point cloud as in Figure 2(a), but col-
ored according to cluster labels so as to facilitate group identification.
Clusters were computed in the visual space using agglomerative clus-
tering [30]. Although some clusters clearly show up in the projec-
tion, it is difficult to figure out from the projection layout the interplay
among the ridges, that is, the resulting clusters do not provide a direct
notion of the true separating structures in phase space, nor their prop-
erties with respect to inertial dynamics. Moreover, t-SNE took about
36 s to perform the mapping of 5 726 ridge points, hampering interac-
tive applications. Computationally more efficient projection methods
could be used, but interactive rates would hardly be reached.

3.4 Constrained PS-FTLE

To avoid the abovementioned difficulties with visualization of higher-
dimensional fields, we decouple, to the necessary extent, the analysis
of the phase space with respect to position and velocity, which allows
us to avoid an increase of dimensionality. Thus, our approach requires
only 2D visualization for 2D problems, and 3D visualization for 3D
problems. The central idea of our approach is to constrain the de-
grees of freedom of the initial condition during interactive analysis by
selection, but to enable exploration of this choice, supported by a rep-
resentation that provides overall context and a notion of the impact of
the choice. By definition, and also with respect to most research ques-
tions, position and velocity play different roles. Thus, in our approach,
either initial position or initial velocity are constrained during the in-

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

teractive process, and the remaining degrees of freedom are those of
initial velocity or initial position, respectively.

Assume that we want to shoot a mass ballistically (governed by
gravitation only) from a given point. In this case, the initial position is
determined by the launching pad (yellow point in Figure 3(a)). Thus,
the remaining degrees of freedom are the initial velocity, the starting
time, and the duration of flight. Starting time t0 and duration of flight T
are treated as in FTLE-based examinations described above, i.e., they
are typically explored by the user or given by the problem under in-
vestigation. This means, they are not treated as a degree of freedom
during these types of analysis. Thus, initial velocity are the only de-
grees of freedom that would need to be examined in this example.

In our example, the degrees of freedom of initial velocity are rep-
resented by the range of the initial velocity view (Figure 3(b)), and
interactive exploration in that view can be accomplished by inertial
trajectories starting with the respective velocity and (predetermined
initial position) from Figure 3(a). Since the true trajectory is in phase
space, it of course also has a velocity component, which represents
a respective trajectory in the initial velocity view. Of course, exhaus-
tive exploration by such interactive trajectories would be cumbersome.
But by employing the concept of the PS-FTLE with respect to the re-
maining degrees of freedom (in this example initial velocity), we can
provide a concise representation of the structure of the problem, i.e.,
of the regions with similar inertial dynamics (Figure 3(b)).

We accomplish this by constraining the PS-FTLE to a fixed initial
velocity ẋ0, resulting in the PS-FTLE-P:

ẋ0ςT
t0
(x) := ςT

t0

(

x
ẋ0

)

:=
1

|T |
ln

∥

∥

∥

∥

(

∂
∂x1

, . . . , ∂
∂xn

)

ΦΦΦT
t0

(

x
ẋ0

)∥

∥

∥

∥

2

(11)

or by constraining the PS-FTLE to a fixed initial position x0, resulting
in the PS-FTLE-V:

x0ςT
t0
(ẋ) := ςT

t0

(

x0

ẋ

)

:=
1

|T |
ln

∥

∥

∥

∥

(

∂
∂ ẋ1

, . . . , ∂
∂ ẋn

)

ΦΦΦT
t0

(

x0

ẋ

)
∥

∥

∥

∥

2

. (12)

Note that

(

∂
∂x1

, . . . , ∂
∂xn

)

ΦΦΦT
t0

(

x
ẋ0

)

and
(

∂
∂ ẋ1

, . . . , ∂
∂ ẋn

)

ΦΦΦT
t0

(

x0

ẋ

)

(13)

are 2n× n matrices both leading to an n× n matrix and thus n eigen-
values during spectral norm computation. Note also that both variants
capture spread in phase space, since in general, ΦΦΦT

t0
(ξξξ) maps to vary-

ing position and varying velocity, irrespective if initial position or ini-
tial velocity are kept constant or not. We denote ẋ0ςT

t0
(x) PS-FTLE-P

because it captures phase-space spread in terms of varying initial po-
sition, and x0ςT

t0
(ẋ) PS-FTLE-V since it represents phase-space spread

due to varying initial velocity. Please see Figure 4(a) for an example
of PS-FTLE-P, and Figure 3(b) for a respective example of PS-FTLE-
V. We omit a color legend, because for topological analysis based on
FTLE variants, only a qualitative view is needed. We employ a col-
ormap that maps low values to blue, medium to white, and large to red.
One can nicely see in these illustrative examples how the constrained
PS-FTLE captures the topological structure of inertial dynamics, i.e.,
how ridges in these fields separate regions of qualitatively different
inertial dynamics (exemplified with selected inertial trajectories).

3.5 Decomposition of PS-FTLE

The ridges in the PS-FTLE-P and the PS-FTLE-V separate qualita-
tively different regions in initial position or initial velocity, respec-
tively. By this, they provide a concise representation of inertial dy-
namics with respect to initial position and velocity. Nevertheless, these
fields (and thus also their ridges) represent combined spread only: it is
not possible to tell to what extent the detected spread is due to varying
final position, and to what extent it is due to varying final velocity.

This motivates, as a complementary visualization component, to de-
compose PS-FTLE into a part that represents position spread, and an-
other part that represents velocity spread. Due to the abovementioned
difficulties with higher-dimensional visualization, we do not provide

(a) (b)

(i)

(c) (d)

Fig. 5. Decomposition of PS-FTLE-P ((a) from Figure 4(a)) into position
separation ẋ0ς̄T

t0
(x) (b) (mapped to red channel), and velocity separation

ẋ0ς̃T
t0
(x) (c) (mapped to green channel). (d) Combination of both chan-

nels reveals relative contribution of position spread and velocity spread.
Observe that the ridge where the two trajectories are seeded is more
yellowish, and thus position spread is there stronger in relation to ve-
locity spread. This is consistent with the distance of their endpoints in
position space (e.g., (d)) and velocity space (Figure 4(b)). Note that both
position spread and velocity spread have been normalized because they
have different units (1 for ẋ0ς̄T

t0
(x), and s−1 for ẋ0ς̃T

t0
(x)). The very thin val-

leys within the ridges in region (i) are examined in detail in Figure 6.

examples for decomposing the PS-FTLE itself. Instead, we decom-
pose both the PS-FTLE-P and PS-FTLE-V into two fields each. To
this end, we first decompose the inertial flow map ΦΦΦT

t0
(ξξξ) into a part

Φ̄ΦΦ
T
t0
(ξξξ) that maps to position, and a part Φ̃ΦΦ

T
t0
(ξξξ) that maps to velocity:

ΦΦΦT
t0
(ξξξ) =:

(

Φ̄ΦΦ
T
t0
(ξξξ)

Φ̃ΦΦ
T
t0
(ξξξ)

)

. (14)

This allows us to decompose PS-FTLE-P into position separation:

ẋ0ς̄T
t0
(x) :=

1

|T |
ln

∥

∥

∥

∥

(

∂
∂x1

, . . . , ∂
∂xn

)

Φ̄ΦΦ
T
t0

(

x
ẋ0

)
∥

∥

∥

∥

2

(15)

(being identical to IFTLE [17]), and velocity separation:

ẋ0ς̃T
t0
(x) :=

1

|T |
ln

∥

∥

∥

∥

(

∂
∂x1

, . . . , ∂
∂xn

)

Φ̃ΦΦ
T
t0

(

x
ẋ0

)
∥

∥

∥

∥

2

. (16)

Accordingly, we also decompose PS-FTLE-V into position separation:

x0ς̄T
t0
(ẋ) :=

1

|T |
ln

∥

∥

∥

∥

(

∂
∂ ẋ1

, . . . , ∂
∂ ẋn

)

Φ̄ΦΦ
T
t0

(

x0

ẋ

)
∥

∥

∥

∥

2

(17)

and velocity separation:

x0ς̃T
t0
(ẋ) :=

1

|T |
ln

∥

∥

∥

∥

(

∂
∂ ẋ1

, . . . , ∂
∂ ẋn

)

Φ̃ΦΦ
T
t0

(

x0

ẋ

)
∥

∥

∥

∥

2

. (18)

Figure 5 exemplifies the utility of these decompositions for the case
of the 2D Nine-Body example. Note that these measures have different

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

(a) (b)

Fig. 6. (a) Valleys within ridges of velocity separation (green), within
range (i) of Figure 5(c), with trajectories (colored lines). (b) Same tra-
jectories in velocity space. One can see (zoomed regions) that the val-
leys separate trajectories with increasing velocity magnitude from those
where velocity magnitude decreases again (“returning” velocity curves).
The point of maximum velocity magnitude (farthest from origin in (b))
corresponds to shortest distance from mass body (purple point in (a)).

units and thus their combined visualization cannot provide a quantita-
tive view: ẋ0ς̄T

t0
(x) has unit 1, ẋ0ς̃T

t0
(x) has unit s−1, x0ς̄T

t0
(ẋ) has unit

s, and x0ς̃T
t0
(ẋ) has unit 1. Their combination to color channels (red

and green in our implementation) can only provide qualitative insights
and relations. We therefore normalize them prior to mapping to color.
For Figure 5, the maximum of position spread of 264.478 has been
mapped to maximum red level, and the maximum of velocity spread
of 342.153 s−1 to maximum green level. Observe that the nested ring
structure around the bodies is more clear in Figure 5(b) than in Fig-
ure 5(c), revealing that different types of orbits (different periodicities
and thus different Kepler orbital times) are more pronounced with re-
spect to position than velocity. On the other hand, close inspection
of Figure 5(c) reveals that the respective ridges enclosing the bodies
reveal a very thin valley line at their center. We examined this case,
but zooming in did not increase the gap. Nevertheless, Figure 6 shows
that the valleys are caused by trajectories “returning” in velocity space,
caused by deceleration of particles as they pass a near mass.

3.6 Stacked PS-FTLE

So far, we have shown how phase space can be analyzed using PS-
FTLE-P and PS-FTLE-V, i.e., by constraining the underlying IVP ei-
ther by selecting an initial position or by selecting an initial velocity. A
limitation with this approach alone would be, however, that this selec-
tion would not be supported, i.e., that the user would need to explore
this choice “blindly” without guidance.

This motivates our stacked PS-FTLE (SPS-FTLE) approach. The
SPS-FTLE is inspired by dimensional stacking [14, 29] of discrete
data in information visualization. Assume we are in the configuration
where PS-FTLE-V is used, i.e., where initial position is constrained
and the remaining degrees of freedom are initial velocity (Figure 3).
In this setup, PS-FTLE-V is displayed in the initial velocity view, and
the initial position view contained so far only a point representing the
selected initial position. To support this selection, we provide con-
text in the respective view (in this setup the initial position view) by
presenting there the respective stacked PS-FTLE field.

For the described configuration, the SPS-FTLE representation in
the initial position view consists of a grid that discretizes the initial
position range, and within each cell of this grid, the PS-FTLE-V field
is represented that results if the center of the respective cell is used as
initial position (see Figure 7(a)). To avoid unnecessarily long compu-
tation times, the resolution of the PS-FTLE-V fields within the cells is
kept low (100×100 in this case). For the opposite configuration, i.e.,
where initial velocity is constrained, the SPS-FTLE field discretizes
the range of initial velocity into cells instead, and each cell contains
the respective PS-FTLE-P field.

Because the large-scale structure of the SPS-FTLE representation
is hard to perceive at medium zoom levels (i.e., one has to zoom out

(a) initial position (b) initial position

Fig. 7. Stacked PS-FTLE at the example of the 2D Nine-Body exam-
ple. (a) Stacked PS-FTLE with zoomed region (17 × 17 cells of the
stacked PS-FTLE grid). Observe that each cell contains the respec-
tive PS-FTLE-V field (e.g., Figure 3(b)). (b) Discretized version of (a),
using the average operator, for better context at medium zoom levels. In
our interactive implementation, there is a transition from (b) to (a) as the
user zooms into the stacked PS-FTLE representation.

rather far to see the overall structure), we additionally generate a dis-
cretized version of the SPS-FTLE representation. This representation
is obtained by “merging” the PS-FTLE field within each cell “into a
single pixel” which is then shown at the respective resolution, i.e., each
cell (or “pixel”) of the discretized version represents the respective PS-
FTLE-P or PS-FTLE-V field (see Figure 7(b)). In our implementation,
the field within a cell is “merged” to a single value using the maxi-
mum or average operator. Whereas taking the maximum provides a
more conservative view, i.e., high values of the resulting field indi-
cate the maximum separation that appears in the PS-FTLE and thus
regions with low values are likely to be of inferior interest, the average
operator provides a more quantitative view and, in our experiments, it
provided more specific guidance.

3.7 Multiplicity Maps

So far, we focused on the views of initial position (e.g., Figure 3(a))
and initial velocity (e.g., Figure 3(b)). There, the constrained PS-
FTLE, its decomposition, and its stacking enable the analysis of in-
ertial dynamics with respect to the initial values of the IVP. As exem-
plified by the trajectories in Figures 3 and 4, such analysis can answer
various research questions (see also Section 5). This is similar to tradi-
tional (advection-based) FTLE visualization, which is considering the
initial view only, i.e., traditional FTLE “resides” at time t0; the state at
time t0 +T , that the flow map maps to, is typically not analyzed. One
reason why this final state is typically not analyzed is that the tradi-
tional flow map φφφ T

t0
(x) only represents a deformation without overlap

(which follows from an argumentation similar to that in Section 3.2),
i.e., it is a continuous bijective mapping from the seeds x(t0) to the
end points x(t0 +T) of the respective trajectories.

As discussed in Section 3.2, the inertial flow map ΦΦΦT
t0
(ξξξ) represents

a bijective mapping in phase space. However, as discussed there too,
this mapping is typically not bijective anymore in the respective spa-
tial projections (e.g., Figures 3(c) and 4(c)) and velocity projections
(e.g., Figures 3(d) and 4(d)): the n-dimensional manifold defined by
the degrees of freedom of initial velocity or initial position, respec-
tively, typically exhibits overlap, i.e., folds. In other words, a point
in the final position view or final velocity view is often reached by
more than one IVP. As we will see, analyzing these properties pro-
vides answers to relevant research questions and thus motivates our
final component for analysis of inertial dynamics: multiplicity maps.

So far, we visualized in the final position view (e.g., Figure 3(c))
and final velocity view (e.g., Figure 3(d)) the spatial and velocity pro-
jections of the sample points of the constrained PS-FTLE. Since con-
strained PS-FTLE is sampled in the domain of initial position or initial
velocity, it represents an n-manifold with a parametrization induced
by these degrees of freedom. Figures 3(c) and 3(d) already provide an
impression how the n-manifold resides when projected to the space or

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

(a) initial position (b) initial velocity (c) initial position (d) initial position (e) initial position

(f) final position (g) final position × speed (h) final position (i) final position

1
1

2

3

3
3

31
1

5

5

7

(j) final position

Fig. 8. PS-FTLE and multiplicity for in Quad-Gyre example. Seed of inertial trajectory by white dot, final state by black dot. (a) PS-FTLE-P.
(b) Selected initial velocity (yellow dot) with stacked PS-FTLE-P for context. (f) Final position of phase-space samples. (g) 3D mesh representation
with final position × final speed (velocity magnitude, blue axis). (h) Position multiplicity map ẋ0µ(x)T

t0
induced by PS-FTLE-P shows how many

IVPs reach a given final position. (c) Multiplicities from (h) mapped to respective initial position view show how many other IVPs reach the same
final position (e.g., dark blue (1) means that no other IVP reaches the same final state). Boundaries are mapped: left→orange, right→yellow,
top→cyan, bottom→green. (d),(i) Same as (c),(h) but with two levels of adaptive refinement. See how adaptive refinement improves the map.
Observe also that some edges were already sharp in (h) because they originate from silhouettes of the folded 2-manifold. The color mapping
(but not the multiplicities) typically changes during refinement because silhouettes representing almost “oblique” manifold regions are subject to
“discretization noise” (e.g., at bottom boundary), typically caused by particles that are stopped at the domain boundary. (j) Connected components
in (i), with multiplicity numbers. Note that in our prototype, these numbers are provided by hovering the mouse over the respective region. (e) Labels
from (j) mapped to corresponding initial position. Grid lines (regular in initial space (c), (d), and (e)) provide visual cue to the mapping.

velocity domain, since the x-component of the initial value is mapped
to the blue channel and the y-component to green. Nevertheless, due
to the discrete sampling and due to occlusion of the points, this kind
of visualization does not provide the multiplicity of the mapping, i.e.,
it does not show how many IVPs reach a given point in the projections
of the final state.

The position multiplicity map

µ(x)T
t0

:=
∣

∣

∣

{

ξξξ | Φ̄ΦΦ
T
t0
(ξξξ) = x

}∣

∣

∣
(19)

represents how many IVPs starting at time t0 reach a given position x
after time T . Its counterpart is the velocity multiplicity map

µ(ẋ)T
t0

:=
∣

∣

∣

{

ξξξ | Φ̃ΦΦ
T
t0
(ξξξ) = ẋ

}
∣

∣

∣
(20)

which counts how many IVPs starting at time t0 reach a given veloc-
ity ẋ after inertial transport for time T .

In the context of constrained PS-FTLE, both the PS-FTLE-P and
the PS-FTLE-V lead each to a respective position multiplicity map
and a velocity multiplicity map. The PS-FTLE-P leads to the position
multiplicity map

ẋ0µ(x)T
t0

:=

∣

∣

∣

∣

{

y | Φ̄ΦΦ
T
t0

(

y
ẋ0

)

= x

}∣

∣

∣

∣

(21)

and velocity multiplicity map

ẋ0µ(ẋ)T
t0

:=

∣

∣

∣

∣

{

y | Φ̃ΦΦ
T
t0

(

y
ẋ0

)

= ẋ

}∣

∣

∣

∣

, (22)

whereas PS-FTLE-V leads to the position multiplicity map

x0µ(x)T
t0

:=

∣

∣

∣

∣

{

ẏ | Φ̄ΦΦ
T
t0

(

x0

ẏ

)

= x

}
∣

∣

∣

∣

(23)

and velocity multiplicity map

x0µ(ẋ)T
t0

:=

∣

∣

∣

∣

{

ẏ | Φ̃ΦΦ
T
t0

(

x0

ẏ

)

= ẋ

}∣

∣

∣

∣

. (24)

Figure 8(i) shows a position multiplicity map ẋ0µ(x)T
t0

for the Quad-
Gyre example, induced by PS-FTLE-P. For better display, we apply a
logarithmic scaling and use the same colormap as for the constrained
PS-FTLE results. Such representations of the multiplicity map provide
insight into how many IVPs reach a respective point or velocity, but
they do not reveal which IVPs reach which region.

To this end, we perform a connected component labeling of the
multiplicity maps, i.e., we detect connected components in the map
that exhibit the same multiplicity, i.e., that are reached by the same
number of IVPs. Figure 8(j) shows the connected component labeling
for the multiplicity map from Figure 8(i). To reveal the correspon-
dences between the initial values and the connected components in the
projection of the final state, we map the connected component labels
back to the initial state. We achieve this by looking up for each sample
in its final state in phase space the connected component label from
the multiplicity field at its projection, and then apply the label to the
respective initial value, resulting in a corresponding labeling in the
initial position space or velocity space (Figure 8(e)). Together with
Figure 8(j)), this reveals the correspondences of the inertial IVPs, i.e.,
one can see which connected components in the multiplicity map are
caused by which regions of initial values.

Nevertheless, since both the connected components in the multiplic-
ity map and the corresponding initial regions can be comparably large,
this visualization does not provide information on exactly which initial
values map to which final state. We address this issue by two comple-
mentary approaches. First, we add grid lines that are also mapped to
the corresponding view. Second, and more specific, we allow the user
to interactively select regions in the final state and display the corre-
sponding initial values (sample points) that reach those regions (Fig-
ure 1(c) and 1(b)). This way, the labels and grid lines provide context

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

(a) (b)

µ = 2

µ = 3
µ = 1(c)

µ = 2

µ = 3

µ = 1

(d)

1

1

3

3

(e) (f)

1

2

2

3 1

(g)

Fig. 9. Multiplicity map computation. (a) Regular discretization and triangulation of initial space, yielding a flat manifold. (b) Manifold is transformed
after transport, third dimension here by mapping to a quantity, e.g., velocity magnitude. (c) Vertex multiplicities represent number of ray intersections
with triangles. (d) Intersections are determined in projected space. (e) Refinement (red) is performed for quads with edges that join vertices with
different multiplicities (numbers). Projected vertices (from green and blue quad) are triangulated (dotted) to compute connected components in
final space. (f) The quad to be refined is subdivided into four subcells by adding five new samples in the initial space. The process (triangulation,
multiplicity computation) is then repeated with the new samples. (g) Connected components labeling by traversal in final space, with connectivity
defined by equality of multiplicity.

information, and the interactive selection of samples provides explicit
information on which IVPs reach which state.

3.7.1 Computation of Multiplicity Maps

Figure 9 illustrates the computation of multiplicity maps and the con-
nected components therein. As depicted in Figure 9(a), the n degrees
of freedom (i.e., initial position or velocity range) of the constrained
PS-FTLE field are sampled on a uniform grid and a mesh is obtained
using Delaunay triangulation. We then transport each sample by the
inertial IVP to its final state in phase space (Figure 9(b)). For a po-
sition multiplicity map, these points are then projected to position
space, otherwise they are projected to velocity space (in both cases,
the n-manifold is projected from 2n-dimensional phase space to nD).
Let us assume, without loss of generality, that we construct a posi-
tion multiplicity map. A ray is shot through each of the projected
samples and the intersections between the ray and the triangles of the
projected mesh are counted, providing the multiplicity count for each
sample (Figures 9(c) and 9(d)). This count can then be directly visu-
alized in the initial space (e.g., Figure 8(d)). However, visualization
of this map in the final state (e.g., Figure 8(i)) is nontrivial because
the n-manifold typically exhibits overlap, and rendering, e.g., using
blending, would result in artifacts due to strongly stretched triangles
which are generated due to the typically very strong distortions due to
finite-time dynamics. Therefore, we instead employ Delaunay trian-
gulation of the projected samples after transport (Figure 9(e), dotted
edges). Then, the planar mesh containing multiplicity values defined
at the samples can be rendered (based on barycentric interpolation).
The connected component labeling (Figure 9(g)) is achieved by iden-
tifying the connected subgraphs where all the vertices have the same
multiplicity count. After labeling, the connected components can be
visualized in the final state (Figure 8(j)), or mapped back to the ini-
tial value space (Figure 8(e)). The optional step of refinement can
be processed once the sample multiplicity counts are in place. In that
case, we identify the edges that join samples with different multiplicity
and subdivide the quads in the initial uniform grid into four subcells,
and then repeat the process until convergence or a maximum depth is
reached (Figures 9(e) and 9(f), red quad and green/blue samples).

4 IMPLEMENTATION DETAILS

Our implementation uses CUDA (through PyCuda bindings [13]),
when possible, for the processing, and OpenGL (through VisPy gloo
bindings) for the rendering. We use Python as a general-purpose
scripting language to launch the CUDA kernels, fetch the data and pass
them to OpenGL for rendering, and to construct and manage the GUI.
Some functions cannot be fully implemented in the parallel paradigm
that CUDA offers. In such cases we rely on the CPU.

A special use case is the processing of the PS-FTLE field, which is
computed in each time step. In this case, a CPU synchronization step
between the flow map and the PS-FTLE kernels is needed. Some oper-
ations are fully implemented in CUDA (the flow map computation, all
variants of the PS-FTLE, and the interactive trajectories), while others
are implemented on the CPU and partially accelerated using CUDA

kernels (the multiplicity maps, the adaptive sampling, and the stacked
PS-FTLE). Finally, we have a few operations fully implemented on
the CPU, such as the Delaunay triangulation (which uses the Qhull [1]
library through SciPy [12]).

In order to access the vector field or N-body simulation data on the
GPU, we use textures. These textures consist of a T ×N ×M matrix
in the case of 2D vector fields, and a T ×N×M×L matrix in the case
of 3D vector fields, where T is the number of time steps and N,M,L
are the dimensions of the vector field. In the case of N-body systems,
the textures consist of a T ×N matrix, where T is the number of time
steps in the original N-body simulation and N is the number of bodies.

Due to the flexibility and symmetry of our approach, we found writ-
ing a single CUDA kernel for each operation would render the system
unmaintainable. In order to tackle this issue, we set up a templating
structure which generates and compiles all possible combinations of
kernel files. These kernel files are then accessed and run through in-
dexed tables which are queried using the application’s current internal
state model. So, for example, the kernel which computes the force
acting on a test particle is used to compute the trajectories but also the
flow map, and the code is different depending on the input field in use
(N-body simulation or vector field).

We have a total of 30 template files (2 046 code lines) which pro-
duce, after templating, 40 compilable kernel files. The number of code
lines of all final kernel files combined after templating is 9 107.

5 RESULTS

We exemplify our approach using one analytic example (Section 5.1),
a 2D N-body system (Section 5.2), a 2D magnetic system (Sec-
tion 5.3), and a 3D N-body system (Section 5.4).

5.1 Quad-Gyre

Our first example has been presented by Shadden et al. [24] for
the analysis of Lagrangian coherent structures. It represents a time-
dependent vector field given in analytic representation:

a(x, t) =

(

−πAsin(π f (x, t))cos(πy)

πAcos(π f (x, t))sin(πy) d f
dx

)

(25)

with f (x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt), b(t) = 1− 2ε sin(ωt),
x = (x,y)⊤, ε = 0.25, ω = π/5, and A = 0.1. We sampled this field at
a resolution of 50× 50 nodes and 100 time steps in the spatial range
x ∈ [−1,1]× [−1,1] and temporal range [0,20]. Note that we use this
y-range instead of the often employed y-range [0,1], leading to a y-
symmetric field with four time-dependent vortices instead of two.

We interpret this vector field as an acceleration field and employ our
analysis technique. Initial time t0 = 0 s and transport time T = 3.046 s,
with zero initial velocity, resulting in a PS-FTLE-P visualization (Fig-
ure 8(a)). One can see from the inertial trajectory that mass released at
the respective position reaches the upper half, which would not be pos-
sible by advection. Looking at the multiplicity map in initial position
space (Figure 8(d)), one can see that many of the ridges in the PS-
FTLE-P are caused by the domain boundaries (orange, yellow, cyan,

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

(a) initial position (b) initial position

(c) final position (d) final position

Fig. 10. Position multiplicity map in 2D Nine-Body example. (c) Posi-
tion multiplicity map ẋ0µ(x)T

t0
, induced by PS-FTLE-P. (a) Multiplicities

from (c) mapped to corresponding initial values. (d) Connected compo-
nents in (c). (b) Component labels from (d) at respective initial positions.

or green color) of our sampled vector field. The reason for this is
that inertial particles reaching the domain boundary are stopped and
accumulate there. The shown trajectory is seeded within one of the
regions with low PS-FTLE-P value, representing trajectories that do
not reach the boundary. The refined multiplicity map (Figure 8(i)) and
in particular its connected component labeling with multiplicity num-
bers (Figure 8(j)) provide insight into the folding of the manifold at
final position and thus inertial dynamics, which would not be possible
from direct visualization of the final positions by points (Figure 8(f)).

5.2 2D Nine-Body System

A traditional problem that involves inertial dynamics is the motion of
masses in gravitation fields. To this end, we integrated a N-body simu-
lation in our interactive implementation. The 2D Nine-Body example
consists of nine bodies with different masses at fixed positions. To
avoid singularities at the body centers, a softening length [20, 2] is
employed and visualized with gray circles. Our approach is used to
analyze the gravitational field induced by the bodies. Please see the
accompanying video for further examples, where the bodies also un-
dergo inertial dynamics. In all these cases, the initial value problems
(point masses) underlying our technique are influenced only by the
gravitational field of the bodies, i.e., the test particles do not influence
each other. Although this could be accomplished at some additional
computational cost, it would for most research questions be inappro-
priate, because our approach, in accordance with traditional FTLE,
aims at analyzing the choice of an IVP, not the analysis of mutually
dependent particles.

Figures 1, 3, and 4 provide an analysis using PS-FTLE-V and PS-
FTLE-P fields. It can be nicely seen how ridges in the PS-FTLE-V
field separate different inertial dynamics with respect to initial veloc-
ity, whereas the PS-FTLE-P shows regions of different inertial dynam-
ics due to varying initial position. Since these constrained PS-FTLE
fields represent a superposition of position spread and velocity spread,
we investigated these spreads individually by PS-FTLE decomposition
(Figure 5). This analysis provided a surprising result: position spread

(a) initial position (b) initial velocity

Fig. 11. Magnetic Dipoles example. (a) Initial position set to 0 (yellow
dot), with magnetic dipoles (magnetic moment by dot color) and trajec-
tories (colored lines). (b) PS-FTLE-V visualizing regions of qualitatively
different dynamics induced by Lorenz force, with seeds (white dots).

captures the variation in dynamics around the gravitational bodies bet-
ter than velocity spread. On the other hand, the large-scale ridges in
velocity spread exhibit very thin valley lines (discussed in Section 3.5
and Figure 6). Figure 7(a) shows stacked PS-FTLE-V that supports the
choice of an initial position, i.e., helps navigate the 2n-dimensional
phase space. Finally, we investigated multiplicity maps (Figure 10).
We have chosen for this the same transport time T = 4.246 s, as for
the other result images. Figure 10(b) reveals the chaotic inertial dy-
namics of this example at this transport time: one can observe “islands
of stability in a sea of chaos”. Due to the extremely strong stretch-
ing (see stretched grid lines in Figures 10(c) and 10(d)) and mixing of
trajectories (i.e., chaotic transport), the connected components of the
position multiplicity map are disrupted in chaotic “noise”, too (Fig-
ure 10(d)), and the grid is distorted to an extent that would require ex-
tremely high refinement. Nevertheless, as can be seen in Figure 10(a),
the multiplicity-labeled initial position representation is still able to
provide a good notion of IVP multiplicity: it shows for each initial
value the count of other IVPs reaching the same final state (observe
the quantization of this image which represents these counts).

5.3 Magnetic Dipoles

Our approach lends itself for the analysis of any type of inertial dy-
namics. We exemplify this with a special case that cannot be repre-
sented by an acceleration (vector) field: the motion of charged parti-
cles due to Lorenz forces, i.e., the motion of such particles in mag-
netic fields. Such dynamics exhibits “helical” motion which not only
depends on the strength of the magnetic field, but also on the veloc-
ity of the charged particle. For clarity and ease of representation, we
have chosen a configuration that results in purely 2D dynamics. Nev-
ertheless, it would be straightforward to adapt the next example (Sec-
tion 5.4), which examines 3D N-body systems, accordingly.

Our example follows the 2D Nine-Body example in that it exhibits
discrete objects (in this case magnetic dipoles) with varying properties
(in this case different magnetic moment), and it also employs a soften-
ing length to avoid numerical issues due to singularities at the dipole
centers. To obtain purely 2D inertial dynamics, all dipoles are located
on, and oriented perpendicular to, the xy-plane, and we examine only
initial xy-positions and initial xy-velocities. Note that, as in the case of
the 2D Nine-Body example, this simulation is integrated in our inter-
active visualization system and thus does not involve artificial domain
boundaries and is fully parametrizable.

Because initial velocity plays the more important role, we fix ini-
tial position to 0 and investigate the problem using PS-FTLE-V (Fig-
ure 11(b)). We chose two inertial trajectories by selecting different
initial velocities (see also their spatial representation in Figure 11(a))
to exemplify the different dynamics of the regions in the PS-FTLE-
V field, which are separated by respective ridges. We do not provide
here the point-based visualization of final position and final velocity,
because they are both heavily convoluted.

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

(a) initial position (b) initial velocity (c) final position (d) final velocity

Fig. 12. 3D Two-Body example. (a) Height ridge surfaces of PS-FTLE-P
nicely separate different types (periodicities) of orbits (bodies by pur-
ple spheres, trajectories by white tubes, seeds by white spheres).
(b) Respective trajectories in velocity space (note that we did not in-
troduce a new color scheme for 3D velocity axes). (c) Final positions of
PS-FTLE-P samples. (d) Final velocities.

5.4 3D Two-Body System

As our last example, we exemplify that our approach lends itself
equally well for the visualization of 3D problems. To this end, we
set up a 3D variant of the Nine-Body example. In this case, we have
two bodies that are not fixed but move according to an N-body system
in 3D, i.e., they orbit each other. Figure 12 shows our results for an ini-
tial velocity of 0, transport time T = 12 s, with a PS-FTLE-P sampling
grid of 1203, running at about 3.1 FPS, without including the N-body
simulation, which is precomputed. Instead of direct visualization of
the constrained PS-FTLE field, we extracted height ridge surfaces [3].

5.5 Performance

We have run two series of performance tests to analyze how the num-
ber of time steps and the grid resolution affect the compute time. To
run the tests, we have used the 2D Nine-Body example with a soften-
ing length e2 = 0.05. All tests have been run on a system with Manjaro
Linux 15.12, kernel 4.4.5.1, 16 GB of RAM memory, an Intel Core i7-
4790K CPU at 4.4 GHz, and a GeForce GTX 970 4 GB graphics card.
For the performance analysis, if not stated differently, we have used
the 2D Nine-Body example with a transport time T = 4.0 s, a time
step ∆t = 0.001 s, and a grid of 400× 400 particles. We have found
that the computing time scales linearly with the number of steps, see
Table 1 for the performance results. To analyze the impact of grid
resolution, we have chosen four representative resolutions, 200×200,
400×400, 600×600, and 800×800. The results show (Table 1) that
the computing time also scales linearly with the number of samples.

The stacked PS-FTLE example in Figure 7 took 2682.239 s to com-
pute, of which 2653.038 s where spent running CUDA kernels. The
rest was invested in the CPU loop. The multiplicity maps without
adaptive sampling with the Quad-Gyre dataset shown in Figures 8(h)
and 8(c) took 177.121 s to compute, of which 1.584 s were spent com-
puting vertex multiplicity, 149.454 s in Delaunay triangulation, and
0.733 s in the final color mapping. The two levels of adaptive sam-
pling used to produce Figures 8(d), 8(i), 8(e), and 8(j) took 6866.671 s
to compute. The multiplicity maps without connectivity of this same
example, after the adaptive sampling, took 202.827 s, of which 6.394 s

Table 1. Performance results in frames per second for different grid
resolutions and time steps. T = 4.0 s in all tests.

Test Fig. Grid ∆t Steps Samples FPS

Grid

14(a) 200×200

0.001 4 000

40 000 1.0080

14(b) 400×400 160 000 0.2899

14(c) 600×600 360 000 0.1322

14(d) 800×800 640 000 0.0748

∆t

13(a)

400×400

0.1 40

160 000

77.230

13(b) 0.01 400 10.120

13(c) 0.001 4 000 1.008

13(d) 0.0001 40 000 0.107

(a) ∆t = 0.1 s (b) ∆t = 0.01 s (c) ∆t = 0.001 s (d) ∆t = 0.0001 s

Fig. 13. PS-FTLE-P with different step sizes using the Nine-Body ex-
ample (grid 400× 400, T = 4.0 s). (a) Integration with ∆t = 0.1 s results
in severe artifacts, whereas with (d), no artifacts are perceivable. In the
accompanying video, we set ∆t between 0.001 s and 0.02 s depending on
the experiment. See Table 1 for respective performance measurements.

(a) 200×200 (b) 400×400 (c) 600×600 (d) 800×800

Fig. 14. PS-FTLE-P with different grid resolutions using the Nine-Body
example (T = 4.0 s, ∆t = 0.001 s). (a) With a grid resolution of 200×200,
samples can clearly be seen and fine structures cannot be resolved,
whereas with (d), very fine structures can be resolved. In the accom-
panying video, we used a grid resolution of 200×200 in the introduction
and multiplicity maps sections, and a grid resolution of 100× 100 in the
stacked PS-FTLE section.

were for computing vertex multiplicity, 96.855 s for Delaunay trian-
gulation, and 1.460 s for the final color mapping. Finally, the version
with connected components of the same example took 245.657 s to
compute, of which 6.375 s was needed for computing vertex multi-
plicity, 94.764 s for Delaunay triangulation, and 48.478 s were spent
in connected component labeling. Figure 13 shows the impact of the
variation of the step size, as used for the measurements. Figure 14
shows the resolutions used for the measurements.

6 CONCLUSION

We presented a novel approach for the analysis of inertial dynamics in
terms of initial value problems in n-dimensional space. For this, we ex-
tended the concept of the finite-time Lyapunov exponent (FTLE) to 2n-
dimensional phase space, leading to phase-space FTLE (PS-FTLE).
By introducing constrained PS-FTLE, we are able to avoid direct vi-
sualization of this higher-dimensional space, leading to visualization
in nD. To enable the analysis of the contribution of position spread ver-
sus velocity spread, we introduced decomposition of the PS-FTLE. To
provide guidance for the exploration of the 2n-dimensional space of
initial values, we presented stacked PS-FTLE. Finally, for the analysis
of the interrelation of initial value problems in phase space, we pre-
sented multiplicity maps, their effective refinement, computation of
connected components therein, and complemented this approach with
interactive selection of initial values with respect to final states.

As future work, we plan to apply our approach to various fields in
science and engineering, and investigate novel approaches for analysis
of systems with dimension larger than three, including time.

ACKNOWLEDGMENTS

The authors thank Prashant Jalan for the initial prototype. The research
leading to these results has been done within the subproject A7 of the
Transregional Collaborative Research Center SFB / TRR 165 “Waves
to Weather” funded by the German Science Foundation (DFG). It also
used computational resources from CeMEAI- ICMC/FAPESP and was
partially funded by grants 13/07375-0, 11/22749-8, 14/12815-1 São
Paulo Research Foundation (FAPESP). The views expressed are those
of the authors and do not reflect the official policy or position of the
São Paulo Research Foundation.

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

REFERENCES

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algo-

rithm for convex hulls. ACM Transactions on Mathematical Software,

22(4):469–483, 1996.

[2] W. Dehnen. Towards optimal softening in three-dimensional N-body

codes – I. minimizing the force error. Monthly Notices of the Royal As-

tronomical Society, 324(2):273–291, 2001.

[3] D. Eberly. Ridges in Image and Data Analysis. Computational Imaging

and Vision. Kluwer Academic Publishers, 1996.

[4] D. Garaboa-Paz and V. Pérez-Muñuzuri. A method to calculate finite-

time Lyapunov exponents for inertial particles in incompressible flows.

Nonlinear Processes in Geophysics, 22(5):571–577, 2015.

[5] T. Günther, A. Kuhn, B. Kutz, and H. Theisel. Mass-dependent integral

curves in unsteady vector fields. Computer Graphics Forum, 32(3):211–

220, 2013.

[6] T. Günther and H. Theisel. Vortex cores of inertial particles. IEEE Trans-

actions on Visualization and Computer Graphics, 20(12):2535–2544,

2014.

[7] T. Günther and H. Theisel. Finite-time mass separation for compar-

ative visualizations of inertial particles. Computer Graphics Forum,

34(3):471–480, 2015.

[8] T. Günther and H. Theisel. Inertial steady 2D vector field topology. Com-

puter Graphics Forum, 35(2):455–466, 2016.

[9] T. Günther and H. Theisel. Source inversion by forward integration in

inertial flows. Computer Graphics Forum, 35(3):371–380, 2016.

[10] G. Haller. Distinguished material surfaces and coherent structures in

three-dimensional fluid flows. Physica D, 149:248–277, 2001.

[11] P. Joia, F. Petronetto, and L. G. Nonato. Uncovering representative groups

in multidimensional projections. Computer Graphics Forum, 34(3):281–

290, 2015.

[12] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific

tools for Python, 2001–. [Online; accessed 2016-03-15].

[13] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.

PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time

code generation. Parallel Computing, 38(3):157–174, 2012.

[14] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring n-dimensional

databases. In Proceedings of the First IEEE Conference on Visualization,

pages 230–237, 1990.

[15] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer

Science & Business Media, 2010.

[16] G. M. Machado, S. Boblest, T. Ertl, and F. Sadlo. Space-time bifurca-

tion lines for extraction of 2D Lagrangian coherent structures. Computer

Graphics Forum, 35(3):91–100, 2016.

[17] J. Peng and J. O. Dabiri. Transport of inertial particles by Lagrangian

coherent structures: application to predatorprey interaction in jellyfish

feeding. Journal of Fluid Mechanics, 623:75–84, 2009.

[18] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,

K. Matković, and H. Hauser. The state of the art in topology-based visu-

alization of unsteady flow. Computer Graphics Forum, 30(6):1789–1811,

2011.

[19] S. G. Raben, S. D. Ross, and P. P. Vlachos. Experimental determination

of three-dimensional finite-time Lyapunov exponents in multi-component

flows. Experiments in Fluids, 55(10):1–6, 2014.

[20] S. A. Rodionov and N. Y. Sotnikova. Optimal choice of the soften-

ing length and time step in N-body simulations. Astronomy Reports,

49(6):470–476.

[21] F. Sadlo and D. Weiskopf. Time-dependent 2-D vector field topology: An

approach inspired by Lagrangian coherent structures. Computer Graphics

Forum, 29(1):88–100, 2010.

[22] T. Sapsis and G. Haller. Inertial particle dynamics in a hurricane. Journal

of the Atmospheric Sciences, 66(8):2481–2492, 2009.

[23] T. Sapsis, J. Peng, and G. Haller. Instabilities on prey dynamics in jelly-

fish feeding. Bulletin of Mathematical Biology, 73(8):1841–1856, 2011.

[24] S. Shadden, F. Lekien, and J. Marsden. Definition and properties of La-

grangian coherent structures from finite-time Lyapunov exponents in two-

dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3-

4):271–304, 2005.

[25] M. Sudharsan, S. L. Brunton, and J. J. Riley. Lagrangian coherent struc-

tures and inertial particle dynamics. Physical Review E, 93:033108, 2016.

[26] M. Üffinger, F. Sadlo, and T. Ertl. A time-dependent vector field topol-

ogy based on streak surfaces. IEEE Transactions on Visualization and

Computer Graphics, 19(3):379–392, 2013.

[27] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal

of Machine Learning Research, 9(2579–2605):85, 2008.

[28] J. J. van Wijk and R. van Liere. HyperSlice: Visualization of scalar func-

tions of many variables. In Proceedings of the 4th Conference on Visual-

ization, pages 119–125, 1993.

[29] M. O. Ward, J. T. Blanc, and R. Tipnis. N-land: a graphical tool for

exploring n-dimensional data. In Insight Through Computer Graphics:

Proceedings of the Computer Graphics International 1994, pages 130–

141. 1997.

[30] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transac-

tions on Neural Networks, 16(3):645–678, 2005.

Author's copy. To appear in IEEE Transactions on Visualization and Computer Graphics

	Introduction
	Related Work
	Method
	Inertial Dynamics
	Finite-Time Mapping
	Phase-Space Finite-Time Lyapunov Exponent
	Constrained PS-FTLE
	Decomposition of PS-FTLE
	Stacked PS-FTLE
	Multiplicity Maps
	Computation of Multiplicity Maps

	Implementation Details
	Results
	Quad-Gyre
	2D Nine-Body System
	Magnetic Dipoles
	3D Two-Body System
	Performance

	Conclusion

