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Abstract. Whereas the design and development of numerical solvers for
field-based simulations is a highly evolved discipline, and whereas there
exists a wide range of visualization techniques for the (in-situ) analysis of
their numerical results, the techniques for analyzing the operation of such
solvers are rather elementary. In this paper, we present a visualization
approach for in-situ analysis of the processes within numerical solvers.
That is, instead of visualizing the data that result from such solvers,
we address the visualization of the processes that generate the data. We
exemplify our approach using different simulation runs, and discuss its
in-situ application in high-performance computing environments.

Keywords: Residual analysis · Solver analysis · In-situ visualization.

1 Introduction

During the last decades, numerical simulation has been more and more replacing
physical experiments in science and engineering—providing various advantages,
including reproducibility, simplified setup, and reduced cost. The wide applica-
tion of simulation techniques has, on the other hand, led to an intense increase in
compute demands, necessitating ever-growing supercomputing facilities. This de-
velopment is currently at the threshold to exascale computing, where the limited
communication bandwidths and storage resources inhibit storage and subsequent
analysis of finely space-time resolved results. By employing preprocessing and
data reduction at the compute nodes during simulation, and thus enabling trans-
fer of only the essential information to the user, in-situ visualization is considered
a main solution to this dilemma in today’s and tomorrow’s computing.

In this paper, we do not follow the typical track of in-situ visualization tech-
niques, i.e., we do not process the data that a compute node produces. Instead,
it is our aim to complement these techniques by providing a tool to support the
effective operation of numerical solvers in high-performance computing. Tradi-
tionally, numerical solvers are monitored in terms of a defect, or total residual,
which is typically a single value for each iteration of a solver. This residual is
traditionally plotted (Figure 1) during operation of the solver, to monitor its
convergence behavior and accuracy. However, whereas such simple plotting is
good at indicating the trend of the residual and thus at indicating convergence
problems, it is typically not sufficient to help in understanding the structure and
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Fig. 1. Diverging simulation (Kármán Run I dataset), monitored with traditional resid-
ual plot. Solver fails to converge after last time step (physical time step 112). While
such plots can indicate problems, they do not support the reasoning of their causes.

the causes of such problems. In this paper, we examine approaches to provide
more information to the user, to give a better picture of solver behavior, and to
support in-situ operation, and development of numerical solvers in general.

Our approach addresses field-based simulations, with the Navier–Stokes
equations being a prominent example, and is based on residual fields. Resid-
uals can be seen as the discrepancy of an (intermediate) solution with respect
to the discretized formulation of the underlying problem and the employed nu-
merical scheme. That is, the solver minimizes some norm of these residuals to
obtain a solution. Instead of plotting the total residual, i.e., the norm of such in-
termediate residuals, we map the residuals back to the domain, and thus obtain
spatial fields. Consequently, such residual fields are available for all quantities a
solver computes in such a manner (Figure 2).

In this work, we investigate the analysis of residual fields to obtain additional
insights into solver dynamics, also w.r.t. slow (or failing) convergence. Our overall
approach is designed for in-situ operation in field-based solvers. Nevertheless,
our current prototype is implemented and evaluated only on a single compute
node—integration and evaluation in a high-performance compute environment
is to be carried out as future work. That is, this work researches the basics for
in-situ residual field visualization.

2 Related Work

Surprisingly, we have not been able to find any previous work on the visualization
of residual fields. Whereas there is virtually no numerical solver that does not
perform a plotting of a residual, the spatiotemporal structure of residual fields
has been ignored so far, at least from a visualization research point of view.

Convergence analysis [3] is a very broad and mature field, which, however,
does typically not make use of (advanced) visualization techniques, and does not
consider residual fields. Less closely related, but more graphical, are techniques
that visualize the “state space” of numerical algorithms, such as Newton frac-
tals [6], which depict the convergence behavior of Newton’s method. Convergence
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analysis of integration schemes, e.g., with respect to A-stability [4, 3] is also an
example of weakly related work, where a, however, simple graphical representa-
tion is involved. On the other hand, there is only one work that we are aware
of, which visualizes technical processes within a solver, i.e., our visualization of
piecewise linear interface calculation inherent to two-phase flow simulation [7].
That work, however, does also not investigate residual fields, and rather focuses
on geometric and quantitative analysis.

Another related field, where solver-specific representation is taken into ac-
count, is the visualization of higher-order data, such as in the case of discontinu-
ous Galerkin [5, 10], finite-element [9], or particle-partition of unity [12] simula-
tion. Similar to these approaches is the incorporation of simulation models into
interpolation techniques to accomplish model-consistent interpolation [11].

Various approaches have been presented so far in the general field of in-situ
visualization. Kress [8] can provide an introduction to the topic. Contributions in
this field range, e.g., from particle-based simulations [13] to climate research [14].

3 Method

Our overall approach consists of several building blocks, which we present here in
the order of increasing solver process detail. These building blocks complement
each other, and make up our overall approach for in-situ analysis of residual
fields. Section 3.1 gives some background on typical solver processes, establishes
terminology with respect to solver iterations and physical time, and details the
concept of residual fields. Since direct investigation of these data, e.g., as anima-
tions of residual fields, would lead to issues with perception, exploration, and I/O
bandwidth, we present in Section 3.2 aggregation of residual fields. Because such
aggregations provide an overview of the convergence behavior of simulations, but
at the same time suffer from temporal “averaging”, we complement them with
the concept of residual curves, presented in Section 3.3. These curves are ob-
tained by dimensionality reduction of sets of residual fields—either representing
sets of solver iterations or sets of physical time steps—and enable qualitative
analysis of such sets. For detailed inspection of the sets, the approach is comple-
mented with residual stacks (Section 3.4), which provide them in space-time or
space-iteration representation. Finally, in-situ context is discussed in Section 3.5.

3.1 Solvers and Residual Fields

The addressed solvers for field-based simulations discretize the space domain Ω ⊂
R

n into cells defined by nodes xi ∈ Ω, and the time domain T ⊂ R into physical
time steps tj ∈ T. Each physical time step gives rise to (a set of) fields, such
as a velocity u(x, tj) and a pressure p(x, tj) field (Figure 2(b) and (c)). Note
that we exemplify our approach by means of 2D flow simulations, i.e., n = 2,
position x ∈ Ω ⊂ R

2, and u : Ω× T → R
2.

Each of these physical time steps (i.e., fields) is the result of a process that
minimizes some norm of the residuals. Since many underlying problems are inher-
ently nonlinear, this minimization is often accomplished by iterative techniques.
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Fig. 2. 2D flow around a cylinder (white), inlet on the left, outlet on the right. Last
physical time step (t112 = 0.7 s) of Kármán Run I dataset, before simulation diverges.
(a) Visualization by a tracer c (seeded at dark region on left boundary). (b) Velocity
u by line integral convolution [2], with color-coded magnitude. (c) Pressure field p.
(d) Residual field of velocity r(u) indicates severe problems just behind the cylinder.
(e) Residual field of pressure r(p) exhibits some high-valued noise just behind cylinder.
(f)–(j) Respective color maps where max represents the maximum value in the field.

In other words, each physical time step tj is typically the result of a sequence
of iterations. We name them solver iterations and denote them tkj , i.e., the kth

solver iteration for physical time step j. The solver stops iteration when the
total residual drops below a user-defined threshold. Thus, at the example of the
velocity field for physical time step tj , the first intermediate solution is u(x, t1j ),
and assuming that 11 iterations are needed to reach the total residual threshold,
the resulting solution is u(x, tj) := u(x, t11j ).

By mapping the residuals back to the domain, we obtain, on the one hand,
for each physical time step tj the corresponding residual fields r(u(x, tj)) and
r(p(x, tj)), and on the other hand, for each solver iteration tkj , the residual fields
r(u(x, tkj )) and r(p(x, tkj )). Notice that the residual fields inherit the dimension-
ality from the quantity that is being solved, e.g., the residual field of velocity
is a vector field, too. For the remaining part of this paper, we focus on velocity
residual fields, and defer investigation of the pressure residual to future work.

Figure 3 provides selected velocity residual fields for two different simulation
runs, a diverging one (Kármán Run I) and a non-diverging one (Kármán Run
II). One can see, that residual fields for these simulations have a rather noisy
structure in space and time, but also that the magnitude at the last physical
time step (t112) that still converged in Kármán Run I is overall high, and that it
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(a) t9 ≈ 0.05 s (b) t160 = 1 s

(c) t65 ≈ 0.4 s (d) t560 = 3.5 s

(e) t111 ≈ 0.7 s (f) t1600 = 10 s

Fig. 3. Exemplary fields for diverging Kármán Run I (left column) and non-diverging
Run II (right column), with velocity u(x, tj) (top, color map from Figure 2) and residual
field ‖r(u(x, tj))‖ (bottom, color map from Figure 4). The colored frames correspond
to the clusters of solver behavior in Figure 5 (ellipses with corresponding colors).

is particularly high directly behind the obstacle (Figure 3(e)). Thus, this region
may be considered the “ignition spark” of solver divergence in the computation
of the subsequent time step.

3.2 Aggregated Residual Fields

Although residual fields can provide insights in solver dynamics (as will be fur-
ther investigated in Section 4), their visual analysis at full time resolution would
suffer from perceptual issues, and—even more important—it would exceed the
available bandwidth (and storage) if all residual fields for all physical time steps
would be communicated. On the other hand, it is a common approach in field-
based numerical simulation to discard most physical time steps and store, e.g.,
only every 100th for later analysis. However, assuming that the available band-
width would allow us to also communicate every corresponding 100th residual
field for analysis (which might, however, often not be feasible, in particular in
high-scale computing), the behavior of the solver during the 99 time steps in
between would still remain unknown. This would be in particular a problem be-
cause the probability that the solver experiences issues during the 99 discarded
time steps is much higher than during the communicated one.
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Fig. 4. Maximum-aggregated velocity residual field r
Ru

max(x) for time steps t1–t111 of
diverging the Kármán Run I (a), and for time steps t1–t1600 of the non-diverging Run
II (b). In the diverging case, residual magnitude is overall higher, and particularly high
just behind the obstacle. The non-diverging case, in contrast, exhibits low residual
magnitude behind the cylinder, and in general a more uniform distribution.

This motivates aggregation of residual fields, i.e., the combination of the in-
formation from sets of residual fields. In the abovementioned scenario, we could
combine the residual fields for the 99 time steps that are discarded. For exam-
ple, for a set Ru of velocity residual fields, we define the maximum-aggregated
residual field rRu

max(x) as follows:

rRu

max(x) := max
rj∈Ru

‖rj(x)‖. (1)

Assume that the solver fails to converge, e.g., at time step 50, in such a scenario.
In this case, this time step will typically exhibit very high residual field magni-
tude (Figure 2(d)), and thus it would dominate rRu

max(x). Therefore, in case of
solver divergence, we omit the diverging time step from Ru, and communicate
both the aggregated rRu

max(x), as well as the residual field of the diverging time
step for analysis. The maximum-aggregated residual field enables the identifica-
tion of spatial regions that exhibited low residual magnitude over the entire set,
or regions that exhibited at least for one moment large residual magnitude.

Since aggregation is a local operation, and since the aggregated field is of the
size of a single residual field and thus (the respective part) should typically fit
into a compute node’s memory, it lends itself well for in-situ visualization. As
motivated above, aggregated residual fields can be computed for series of physical
time steps that are not communicated for analysis, and in case of solver prob-
lems, they can give insight about the reasons of the problems. In Figure 4(a), i.e.,
the diverging Kármán Run I example, rRu

max(x) shows that the region behind the
cylinder exhibited (at least for short times) large velocity residual magnitude,
whereas in the upstream region of the cylinder, residual magnitude has always
been lower. This, for example, indicates that the solver problem is not related to
the inlet, but is rather related to the obstacle. In contrast, for the non-diverging
Run II, Figure 4(b) shows that the velocity residual has always been low be-
hind the obstacle during the aggregated time interval, and that velocity residual
magnitude is overall lower and more spatially uniform than in Figure 4(a). Such
distributions are typical for simulation runs that do not exhibit problems.

3.3 Residual Curves

So far, we introduced residual fields and their aggregation. Whereas these ap-
proaches can be used to obtain detailed insight into the dynamics of a solver
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Fig. 5. Traditional total residual plots (top) and our residual curves (bottom), for the
diverging Kármán Run I (left) and non-diverging Run II (right), w.r.t. physical time
steps tj . The residual curves reveal clusters of simulation behavior, some indicated with
ellipses, in which residual fields exhibit similarities, see Figure 3 for respective residual
fields. The non-diverging run exhibits more compact clusters and a more regular curve.

with respect to its residuals, their rich structure impedes their application for
monitoring, quick qualitative overview, and context. This motivates our next
complementing concept, which we denote residual curves.

We obtain these curves by computing from each residual field a vector

ρl(tj) := ln ‖r(u(xl, tj))‖, (2)

where xl is the respective node of the simulation grid. Note that we employ log-
arithmic mapping of the individual residual element magnitude to avoid clutter,
i.e., to obtain more expressive residual curves.

This way, each residual field consisting ofm nodes provides anm-dimensional
vector ρρρ, which in turn represents a point in m-dimensional space. As a conse-
quence, series of residual fields represent polylines in this m-dimensional space.
We take all points ρρρ of such a series, and apply dimensionality reduction by
means of principal component analysis (PCA). That is, we project the polylines
to 2D space spanned by the two major PCA eigenvectors.

Author’s copy. Appeared in Lecture Notes in Computer Science: High Performance Computing.



8 K. Sdeo et al.

0 2500 5000 7500 10000 12500 15000
iteration

10 11

10 9

10 7

10 5

10 3

10 1

to
ta

l 
r
e
s
id

u
a
l

(a)

0 100 200 300 400 500
iteration

10 13

10 11

10 9

10 7

10 5

to
ta

l 
r
e
s
id

u
a
l

(b)

0 2000 4000 6000

0

200

400

600

800

0

2000

4000

6000

8000

10000

12000

14000

it
e
ra

ti
o
n

(c)

0 2000 4000 6000

0

200

400

600

800

1000

0

100

200

300

400

500

it
e
ra

ti
o
n

(d)

Fig. 6. Total residual plots (top) and residual curves (bottom) for the diverging
Kármán Run I (left) and non-diverging Run II (right) w.r.t. solver iterations t

k
j for

the computation of physical time step t112 (left) and physical time step t1600 (right).
For the diverging run, the residual curve exhibits several phases, each with substan-
tial perturbations. For the non-diverging run, the shape of the residual curve is more
ordered, and both stages (starting at black square glyphs) exhibit a similar behavior.

Remember that residual fields can be computed for both series of physical
time steps tj and series of solver iterations tkj . Whereas series of physical time
steps (e.g., the discarded ones) provide analysis of solver behavior over physical
time, one can investigate the computation of a single physical time step by means
of series of solver iterations. Thus, respective residual curves can provide an
overview of the dynamics during both physical time steps and solver iterations.
We visualize the residual curves in their 2D projection, with a color map that
encodes the order of the individual residuals, to provide a notion of succession.
Figure 5 gives an example for residual curves with respect to physical time,
whereas Figure 6 provides an example for residual curves of solver iterations.

In Figure 5, we can identify clusters w.r.t. simulation behavior, which are
marked by ellipses and exemplified in Figure 3. Residual fields within such clus-
ters turn out to look similar. In Figure 6, which visualizes solver iterations, we
additionally indicate the start of each iteration stage with a black box glyph,

Author’s copy. Appeared in Lecture Notes in Computer Science: High Performance Computing.



In-Situ Visualization of Solver Residual Fields 9

10
−17 1

(a)

10
−10

10
−17

(b)

Fig. 7. Isosurfaces of physical-time residual stacks for diverging Kármán Run I (a) and
non-diverging Run II (b). The structure at the center of (a) corresponds to the light
green peak/ellipse in Figure 5(a) and (c). The dominant structure at the lower third of
(b) corresponds to the teal green peak/ellipse in Figure 5(b) and (d). As in all stacks,
x-axis by red arrow, y-axis by green, and physical time / solver iteration by blue.

and the start of each Newton iteration with a triangle glyph. This nicely reveals
the similarity of solver behavior in the two iteration stages in this example.

3.4 Residual Stacks

So far, we have seen that residual curves can provide a qualitative overview of
sequences of physical time steps and sequences resulting from solver iterations.
However, once, e.g., a cluster in these curves has been identified, a more detailed
analysis of the residual fields is required. One could color-map each residual
field and compose the respective sub-sequences into animations, the observation
of these animations would, however, involve perceptual difficulties. For time-
dependent 2D simulations, space-time representation, i.e., treatment of the time
axis as an additional spatial dimension, is a common approach that at least
partially avoids these issues. We name the resulting representations of sequences
of residual fields residual stacks. Figure 7 provides physical-time residual stacks
for the Kármán Run I and II cases, i.e., stacked with respect to physical time
steps tk. Note that in all visualizations of the stacks, the x-axis is visualized in
red, the y-axis green, and the physical time or solver iteration axis blue.

Whereas physical-time residual stacks serve well for understanding long-term
behavior of a solver, e.g., to understand how residual structure develops over
physical time and eventually leads to divergence, solver-iteration residual stacks
provide the analog with respect to solver iterations. Since the residual fields tend
to be rather noisy in space and (iteration) time, we employ smoothing prior to,
e.g., isosurface extraction.
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(a) (b)

(c) (d)

Fig. 8. Solver-iteration residual stacks for stage one (top) and two (bottom) of diverg-
ing Kármán Run I (left, t112 = 0.7 s) and non-diverging Run II (right, t1600 = 10 s).
Whereas the first stage exhibits similar structure in both runs, the second stage shows
very high residuals for the diverging run, which eventually leads to divergence. Please
refer to Figure 7(a) for the color maps.

In Figure 5, we have identified clusters for both simulation runs (light green
ellipse in the diverging, and teal green in the non-diverging case) which corre-
spond to a temporal peak in the total residual plots. Using residual stacks, these
clusters can be investigated by means of isosurfaces. We observe a large red
structure at the center of Figure 7(a), and a cloud-shaped horizontal structure
at the lower third of Figure 7(b), which is related to the structure in Figure 3(d).

In Figure 8, we analyze the computation of the last physical time step t112,
which did not converge, in the diverging run, and the last physical time step
t1600 that was computed in the non-diverging run. Since the underlying solver
performs the computation of a physical time step in two stages, we provide a
solver-iteration residual stack for both stages separately. While the first stage of
the diverging run (Figure 8(a)) still converged, we can see the cylindrical struc-
tures of too high residual in the vicinity of the obstacle during the second stage
(Figure 8(c)). The non-diverging run (Figure 8(b) and (d)), in contrast, exhibits
structures similar to those of the first stage in the diverging run. Additionally,
there seems to be more solver dynamics in the second stage of the non-diverging
run, which might relate to the used higher-order time integration scheme.
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The approach of residual field stacking provides quite detailed insight into
residual dynamics, and motivates further analysis with feature extraction tech-
niques. On the other hand, the runtime and memory overhead, especially for the
iteration stacks, is large compared to the other building blocks of our approach.

3.5 In-Situ Application

So far, we have identified aggregated residual fields (Section 3.2) to fit well into
in-situ environments because their computation is local and well-suited for, e.g.,
domain decomposition. However, residual curves (Section 3.3) and residual stacks
(Section 3.4) are global constructs in space-(iteration-)time, therefore require
entire sets of residual information, and are thus not straightforward to employ
in in-situ contexts.

In our implementation, we follow a sliding-window approach for these con-
structs. That is, we maintain the residual fields (i.e., physical-time residual
stacks) of a fixed number of most recent physical time steps, as well as a fixed
number of most recent solver-iteration residual stacks. These data are, however,
not communicated for analysis by default. Only if issues are determined, either
because the simulation diverged, or based on the regularly communicated aggre-
gated residual fields, the user can request these data for computation of residual
curves as well as composition of residual stacks.

4 Results

We start with some details on the implementation and a performance analysis
(Section 4.1). Then, we describe the two simulation runs that were used to
present our technique (Section 4.2), followed by an experiment investigating the
impact of grid resolution on residual fields (Section 4.3), and some experiments
on mesh refinement based on residual fields (Section 4.4).

4.1 Implementation and Timings

The simulation code underlying our experiments is based on DUNE [1], which
we extended to access and export the residual fields and our derived representa-
tions. In our experiments, we export u(x, tj) and r(u(x, tj)) every fourth time
step, and r(u(x, tkj )) at every tenth iteration. The aggregation of rRu

max(x) is
computed also within the solver, but from consecutive time steps. The overhead
of our technique can be obtained from Table 1—and the absolute overhead is
rather small. For larger grids, however, exporting the solver iterations becomes
expensive, especially due to the memory overhead that grows with the number
of iterations. In our prototype, the computation of the residual curves was ac-
complished using a separate Python program. For the PCA, the sklearn Python
library was used. Note that our naive implementation writes and reads thou-
sands of residual fields (one for each solver iteration) in this case, and could be
optimized substantially. Still, the method was, in our experiments, fast enough
to be used for monitoring.

Author’s copy. Appeared in Lecture Notes in Computer Science: High Performance Computing.
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4.2 Kármán Runs

This experiment consists of two simulation runs (Kármán Run I and Kármán
Run II) of a 2D flow around a cylinder, which exhibits vortex shedding, and is
used to demonstrate the interplay of the presented building blocks. It is simulated
with a physical time step size of 0.00625 s, a triangular simulation grid consisting
of 17552 nodes and 34422 cells, and features an inlet along its left boundary, and
an outlet along its right boundary (Figure 2). The two simulation runs differ
only with respect to inlet velocity magnitude (‖uin‖ = 40.5 m/s for Run I and
‖uin‖ = 1.5 m/s for Run II), causing Run I to diverge at time step t112, whereas
Run II does not diverge during the simulated 1600 time steps.

4.3 Mesh Resolution Experiment

To gain more insight on the interpretation of residual fields, we investigate dif-
ferent simulation grid resolutions (19766 cells, 4738 cells, 986 cells, and 444
cells), with the same relative refinement around the obstacle as for the Kármán
Run I and II. The basic setup is the same as described in Section 4.2, with
‖uin‖ = 1.5 m/s. As can be seen from Figure 9, reducing the resolution in-
creases the overall residual field magnitude. However, at the lowest resolution,
residual magnitude drops again. This seems to be related to the fact that this
resolution does not exhibit vortex shedding anymore, i.e., it results in a quasi-
stationary solution. The corresponding residual curves exhibit nice tight clusters
for the highest resolution, whereas they exhibit a more irregular behavior for the
medium resolution. Notice also that for larger cell sizes or higher inlet veloci-
ties (Figure 4), the solver shows residual peaks behind the obstacle, which may
be related to too large time step size with respect to the cell size. In contrast,
Figure 9 shows a rather uniform residual distribution, which indicates a well
chosen ratio between cell size and inlet velocity. The simulation with the grid
consisting of 19766 cells shows results similar to those of Kármán Run II, and is
therefore not depicted.

Table 1. Performance measurements. Number of nodes (nodes) and cells (cells) of re-
spective simulation grids (dataset), time spent for simulation without visualization part
(sim. only), time used for computing maximum-aggregated residual field (rRu

max), time
spent for physical-time residual stack composition (r(u(x, tj))) and solver-iteration
residual stack composition (r(u(x, tkj ))), followed by time spent for residual curve (RC)
computation of physical time series (RC tj), and solver iterations (RC t

k
j ). All simu-

lations perform 1600 physical time steps. (This is the reason why the Kármán Run I
was excluded from the comparison).

dataset nodes cells sim. only r
Ru

max r(u(x, tj)) r(u(x, tkj )) RC tj RC t
k
j

Section 4.3 2496 4738 1 h 07m < 1m < 1m 10m 37 s 8 s
Section 4.3 10142 19766 18 h 57m 4m 3m 2h 04m 2m 20 s 37 s
Kár. Run II 17552 34422 23 h 06m 2h 04m 1h 59m 10 h 27m 3m 38 s 59 s

Author’s copy. Appeared in Lecture Notes in Computer Science: High Performance Computing.
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Fig. 9. Mesh Resolution Experiment, with varying mesh resolution: 4738 cells (left
column), 896 cells (middle column), and 444 cells (right column). (a)–(c) Total resid-
ual plots. (d)–(f) Residual curves. (g)–(i) Velocity u(x, t1600) (color map from Fig-
ure 2(g)). (j)–(l) Maximum-aggregated velocity residual rRu

max(x) (color map from Fig-
ure 4). Residuals increase with decreasing mesh resolution, until a resolution is reached
that does not exhibit vortex shedding, but nevertheless shows a drop in residual mag-
nitude. Our residual curves, in contrast, show increasing irregularity from (d) to (e).

4.4 Grid Refinement Experiment

In this last experiment, we want to investigate grid refinement based on residual
fields. As discussed in Section 4.3, higher grid resolutions with too large time
step sizes tend to result in larger residuals. This motivates the investigation of
residual fields for grid refinement, and at the same time provides a better under-
standing of residual field behavior. Due to the rather uniform residual magnitude
distribution in the Mesh Resolution Experiment, we choose a similar setup with
uniform triangulation, however with a modified domain exhibiting a narrow pas-
sage (a slit), inlet velocity 0.25 m/s, with maximum velocity ‖umax‖ = 2.05 m/s
at the slit, and a corresponding time step of 0.0015 s. Figure 10 shows the re-
sults of this experiment. As one would expect, all residual fields for higher mesh
resolution than the lowest resolution grid (Figure 10(a)) show smaller residual
magnitudes, whereas for similar mesh resolutions, the results differ less. Fig-

Author’s copy. Appeared in Lecture Notes in Computer Science: High Performance Computing.



14 K. Sdeo et al.

(a) (b)

10
−8

10
3

(c) (d)

10
−18

10
−14

0.0 2.5 5.0 7.5 10.0
physical  t ime

10− 16

10− 15

to
ta

l 
r
e

s
id

u
a

l

(e)

0.0 2.5 5.0 7.5 10.0
physical  t ime

10− 16

10− 15

to
ta

l 
r
e

s
id

u
a

l

(f)

0 2 4 6
physical  t ime

10− 15

10− 13

10− 11

10− 9

to
ta

l 
r
e

s
id

u
a

l

(g)

0.0 2.5 5.0 7.5 10.0
physical  t ime

10− 16

10− 15

to
ta

l 
r
e

s
id

u
a

l

(h)

Fig. 10. Grid Refinement Experiment at t4840 = 7.26 s. (a) Grid with approximately
10,000 cells, (b) respective divergence field ∇ ·u(x, t4840), (c) velocity u(x, t4840), and
(d) maximum-aggregated velocity residual rRu

max(x). (e)–(h) Include tracer c(x, t4840)
(red/blue) instead of u(x, t4840), and total residual plots (right). These grids all have
about 20,000 cells, and are adapted (refined) (e) uniformly, (f) along the slit, (g) relative
to divergence, and (h) relative to maximum-aggregated velocity residual rRu

max(x). For
color maps of c and u, please refer to Figure 2(f) and (g).

ure 10(e) and (f) show a rather non-uniform residual magnitude distribution,
whereas divergence-based refinement (Figure 10(g)) results in a more even dis-
tribution of residual magnitude. Our residual magnitude-based refinement (h) is
similar to the divergence-based, but exhibits more uniform and overall slightly
lower residual magnitude. Nevertheless, thorough investigation of the utility of
residual fields for mesh refinement has to be subject of future work.
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5 Conclusion

In this work, we have presented the concept of residual field visualization, and
provided several building blocks whose interplay enables such an analysis in
in-situ environments. This first investigation revealed interesting patterns and
interrelations in the space-time and space-iteration structure of residual fields,
which may provide a basis for future research of more advanced techniques for
the analysis of solver behavior. On the other hand, it is clear that, due to the high
complexity of solver processes, this first work cannot provide in-depth insights
into the novel field of residual field visualization—it is the aim of this work
to foster this new topic in visualization research. As future work, we plan to
investigate feature extraction from residual fields, as well as more effective in-
situ integration of our approach.
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