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Abstract

We present a framework for different approaches to finite-time Lyapunov exponent (FTLE) computation for 2D
vector fields, based on the advection of seeding circles. On the one hand it unifies the popular flow map approach
with techniques based on the evaluation of distinguished trajectories, such as renormalization. On the other hand
it allows for the exploration of their order of approximation (first-order approximation representing the flow map
gradient). Using this framework, we derive a measure for nonlinearity of the flow map, that brings us to the
definition of a new FTLE approach. We also show how the nonlinearity measure can be used as a criterion for flow
map refinement for more accurate FTLE computation, and we demonstrate that ridge extraction in supersampled
FTLE leads to superior ridge quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications Physical
Sciences and Engineering—

1. Introduction and Motivation

The finite-time Lyapunov exponent (FTLE) is a measure of
separation in instationary vector fields. It is used to reveal the
overall structure of the vector field: FTLE ridges (its gener-
alized local maxima) indicate strong separation, and separate
different regions with coherent flow behavior. There are sev-
eral approaches for computing FTLE fields. They share the
basic approach of integrating trajectories for a given time
T and measuring the separation with respect to their end
points. When advection time T is increased, separation is
typically subject to exponential growth, resulting in highly
complex FTLE fields, which typically exhibit a very fine,
folded ridge structure. Thus, appropriate sampling of FTLE
fields can become a computationally infeasible challenge in
practice, as the resolution of the FTLE sampling cannot be
increased arbitrarily. This results in aliasing artifacts in the
computed FTLE fields due to undersampling that, among
other, hinders robust ridge extraction. There are techniques
that calculate FTLE accurately at given sample locations by
locally decreasing the sampling distance [Nes89, KPH∗09].
However, these are prone to missing features, as discussed
in Section 2. On the other hand, the popular flow map-based
FTLE approach [Hal01] captures those features but is usu-
ally limited in the sampling resolution, and thus introduces
an error by employing a linearization of the potentially non-
linear separation behavior of the vector field.

In Section 2 we introduce a framework based on seeding
circles for the different FTLE approaches. Within this frame-
work we present in Section 3:

• MD-FTLE, a FTLE approach which accounts for nonlin-
earity, is based on the flow map to avoid missed features,
and reduces aliasing.

• Ameasure to quantify nonlinearity that can serve as an in-
dicator for undersampling and is used as a refinement cri-
terion for adaptive FTLE computation [GGTH07, SP07,
AGJ11] in Section 4.

• Circumference FTLE (C-FTLE), which measures nonlin-
ear deformation of the seeding circles.

• FTLE supersampling which reduces ridge extraction arti-
facts due to aliasing (Section 4).

Note, the advantage of supersampling was demonstrated for
hyperbolicity time fields [SW10], which, as an alternative to
ridges from FTLE, can be used to obtain Lagragian coherent
structures (LCS). We investigate our techniques with a CFD
result of buoyant air flow in a container heated at the bottom
and cooled at the top. For our evaluation we chose a region
of interest (ROI) with prominent FTLE ridge structures.

2. Framework for FTLE Computation

The Lyapunov exponent (LE) is used to study the rate of sep-
aration of infinitesimally close trajectories in a temporally
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Figure 1: R-FTLE (a) and L-FTLE (b) are prone to missing
separation, e.g., FTLE ridges, due to local measurement of
flow stretching. F-FTLE in contrast captures the ridge (c).

unconstrained system. The largest LE σ1(x) is defined as

σ1(x) = lim
T→∞

lim
‖δ (x,t0)‖→0

1

|T |
ln

‖δ (x, t0+T )‖

‖δ (x, t0)‖
, (1)

where δ (x, t) = δ t
t0 is a perturbation at time t, having origi-

nated at position x and time t0, and oriented at time t0 such
that σ1 becomes maximal. The FTLE examines a finite time
interval [t0, t0+T ] in contrast to T → ∞, hence the separa-
tion, or predictability, of trajectories after time T .

One class of approaches for evaluating (1) are based on
renormalization [Nes89], using differently oriented pairs of
trajectories. Thereby the reference trajectory is seeded at x
and the other on a circle with radius h (Figure 1 (a)). The
latter trajectory is kept close to the reference by renormal-
ization, i.e., by projecting it toward the reference trajectory.
The overall separation is accumulated over the renormaliza-
tion steps, yielding the FTLE value (R-FTLE) at point x.

A second class of approaches, e.g., the localized FTLE (L-
FTLE) [KPH∗09], accumulate information from the velocity
gradient along the trajectory starting at x (Figure 1 (b)).

An alternative approach (F-FTLE) to compute the FTLE
was made popular by Haller [Hal01]. It is based on the flow
map φT

t0 , which maps seed points x0t0 of trajectories started at

t0 to their respective end points φT
t0 (x

0
t0) = xTt0 after advection

for time T (Figure 1 (c)). The largest FTLE is obtained as

σT
f ,t0 =

1

|T |
ln

√

λmax

(

(∇φT
t0 )

⊤∇φT
t0

)

(2)

with λmax(·) being the major eigenvalue. Note that this rep-
resents a first-order approximation of φT

t0 based on ∇φT
t0 . In

practice, φT
t0 is discretized on a grid with cell size h leading to

a linearization error depending on h. Since this approach is
based on the gradient of neighboring flow map samples, the
detection of separation is continuous, i.e., no separation can
be missed due to “holes” in the sampling. As illustrated in
Figure 1 this ensures that FTLE ridges, which are of great in-
terest for topological flow analysis, are not missed. R-FTLE
and L-FTLE, in contrast, may miss such features. On the
other hand, they have the advantage that L-FTLE provides,
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Figure 2: F-FTLE approximates the flow map linearly, e.g.,
by ∇φT

t0 derived from four seeding trajectories (a). Using
more seeds on the circle captures the nonlinear behavior
of φT

t0 (b). Here, both, the linear separation ellipse in (a)
(green) and the deformed seed circle after advection for time
T in (b) (black) are drawn at their seed location x0t0 .

up to numerics, accurate FTLE values, and R-FTLE con-
verges toward those as h→ 0. This allows for increasing ac-
curacy without the need to increment the sample number,
i.e., increasing flow map resolution.

The motivation for the present paper is the reduction of
the linearization error in (2). To this end, we introduce a
framework based on seeding circles that serves as a basis
for our techniques in Section 3. Within this framework, R-
FTLE corresponds to a single sample on the circle and re-
peated seeding along the reference trajectory, L-FTLE to the
limit case h→ 0 and continuous seeding, and F-FTLE to four
axis-aligned samples on the seeding circle with h identical to
the flow map resolution (see Figure 2).

3. Nonlinear FTLE

To combine the suitability for topological analysis of the
F-FTLE (its absence of “sampling holes”) with better pre-
dictability (higher accuracy of FTLE values) of the R-FTLE
and L-FTLE approaches, we introduce multi-directional
FTLE (MD-FTLE). In our framework, it is formulated by
a seeding circle radius h identical to the FTLE sampling dis-
tance, as in the F-FTLE case, but with additional samples on
the circle (Figure 2 (b)). The MD-FTLE is directly obtained
from the geometry of the advected circle, conforming to (1),
by the maximum distance between the advected circle points
cTi,t0 and the end point of the reference trajectory xTt0 :

σT
md,t0 =

1

|T |
ln( max

i=1...N
(|cTi,t0 −xTt0 |/h)). (3)

Compared to the popular F-FTLE, our MD-FTLE exhibits a
more isotropic evaluation. This leads to a more appropriate
sampling with less angular aliasing, i.e., to a reduced sensi-
tivity with respect to the orientation of the initial perturba-
tions, especially in FTLE valleys (Figure 4 (a), (b)). In our
experiments, N > 32 did not improve the results. Note that
MD-FTLE with N = 4 is identical to F-FTLE, and that MD-
FTLE, as F-FTLE, converges to exact values as h→ 0.
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Figure 3: Nonlinear flow map behavior. (a) F-FTLE σT
f ,t0

with advected seed circles (white) and corresponding lin-
ear approximation ellipses (green), both normalized in size,
placed at their x0t0 (grey). (b) Close-up of four advected seed
circles. (c) Linearization error field D with advected circles
for a random subset of the 10 percent of samples with high-
est and lowest error. (d) Same with normalized field, D̄. ROI
flow map resolution= 2562, t0 = 8.05, T = 0.75.

Figure 3 (a) shows several advected circles (white) placed
at their start locations x0t0 and normalized in size. It can be
observed that in some regions the circle is deformed linearly
to the shape of an ellipse, but in others in a nonlinear man-
ner. The advected circle shapes reveal the true, potentially
nonlinear separation behavior of the flow. The traditional
F-FTLE approach with its finite resolution, in contrast, is
only exact as long as the investigated scale exhibits linear
behavior—as long as the circles are deformed to ellipses,
e.g., in the lower left quadrant of the field. As illustrated in
Figure 3 (b) this linear approximation of the separation

δT
t0 = (∇φT

t0 )δ
0
t0 +G(x,δ 0

t0) (4)

using only the flow map gradient ∇φT
t0 can lead to substan-

tial nonlinear error terms G, e.g., visible near the ridges. In-
creasing the flow map resolution to allow for linearization is
typically not feasible due to constraints on computation time
and space, especially with larger advection times T and the
resulting strong nonlinear deformations. Note, that incorpo-
rating G in the computation of δ 0

t0,max, leading to maximum

separation δT
t0 , is difficult, also in terms of numerics.

Instead, we quantify the strength of the nonlinear defor-
mation geometrically. We measure the deviation of the ad-
vected circle to the ellipse representing the linear approx-
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Figure 4: FTLE and extracted ridges for all approaches:
(a) F-FTLE. MD-FTLE (b) and C-FTLE (c) enable more ro-
bust ridge extraction, see i and ii. (d) Ridge extraction in
8× brute force supersampled F8-FTLE performs better than
ridge extraction in the 8× hi res field in regions with strong
aliasing, see iii. (e) 8× adaptively supersampled F-FTLE.
Crop of ROI, 42×27, N = 32, t0 = 8.05, T = 1.0.

imation δ̃T
t0 = (∇φT

t0 )δ
0
t0 . The major axis emaj of the lin-

ear approximation is obtained as h
√

λmax(C)εmaj(C), with
εmaj(C) being the major eigenvector of the right Cauchy-

Green tensor C = (∇φT
t0 )

⊤∇φT
t0 , and emin correspondingly

using εmin(C) (Figure 2 (a)). Figure 3 (a), (b) show the ad-
vected circles (white) together with their linear approxima-
tion ellipses (green). To ease visual comparison and the dis-
cussion below, both ellipse and advected circle are placed
at the FTLE sampling points x0t0 (the actual advected circle

points cTt0 are therefore translated by x0t0 − xTt0 ). To evaluate
the nonlinearity, we establish a point-wise correspondence
between advected circle points cTi,t0 and ellipse points eTi,t0 ,

using eTi,t0 = xTt0 +∇φT
t0 (c

0
i,t0

−x0t0). As illustrated in Figure 2

this does not assure an even distribution of eTi,t0 on the ellipse.

We provide a non-uniform seeding of c0i,t0 to still achieve it.

To avoid inverting ∇φT
t0 , we enforce a denser seeding on the

circle in cmin direction, with cmin = (∇φT
t0 )εmin(C̄) being the

vector on the seed circle that transforms to the minor axis
emin of the ellipse, and C̄ = ∇φT

t0 (∇φT
t0 )

⊤ the left Cauchy-
Green tensor. The deviation of the advected circle from its
corresponding ellipse is obtained as

D= 1/N ∑
i=1..N

|cTi,t0 − eTi,t0 |. (5)

This measure directly reflects the absolute error due to the
linear approximation of the flow map. We also define D̄ =
D/|emaj| the linearization error normalized by the maximum
separation factor. Figure 3 (c), (d) show resulting fields. The
linearization error D(x) reveals regions with high error of F-
FTLE, which in particular includes regions with sharp fea-
tures, e.g., ridges. Hence, it lends itself to be used as a crite-
rion for adaptive refinement of the flow map until the linear
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Figure 5: (a) Nonlinear stretching of the seeding circle.
(b) Maximum linearization error Dmax for 5 iterations. (c)
Refinement hierarchy close-up: criterion D adapts toward
ridges (red), which are typically under-resolved.

flow map approximation is sufficiently well fulfilled. Note,
to conserve the “absence of holes” we do not simply reduce
the seeding circle radius without increasing the flow map
resolution. The normalized error field D̄(x), in contrast, ex-
plicitly highlights regions with strongly nonlinear behavior.
Interestingly, those are, in our example, not the ridges, but
the valleys, the generalized local minima of the FTLE field.
The observations made from D̄motivate the definition of cir-
cumference FTLE (C-FTLE)

σT
c,t0 =

1

|T |
ln(

c

4h
), (6)

with c being the circumference of the advected circle. The
nonlinear deformation of the seed circle (Figure 5 (a)) also
implies that the traditional FTLE (measuring the deforma-
tion D by the Euclidean distance) underestimates the total
stretching of the initial fluid element. The total stretching
rather corresponds to the length of the resulting curve, rep-
resenting a “Lagrangian distance” instead. Note, that σT

c,t0 is

identical to σT
f ,t0

in the limit case of h→ 0 (leading to ellipti-
cal transformation) and sufficiently strong separation (lead-
ing to ellipses with high eccentricity). Figure 4 (c) shows
that aliasing is even more reduced than with σT

md,t0
.

4. Adaptive Refinement and Supersampling

We implemented a simple refinement scheme to demonstrate
the suitability ofD to detect undersampling of the FTLE. We
start with a regular grid sampling on the coarsest level with
each FTLE sample σT

t0 (x0,i) covering the area of one pixel.
A sample i on level n at location xn,i is refined into five sub-
samples if D(xn,i) is larger than a prescribed threshold. For
consistency reasons we keep the original sample location
xn,i and distribute the other four samples uniformly within
its cover, see Figure 5 (c). Starting with the same configura-
tion as in Figure 3, but T = 0.5 to ease illustration, we per-
formed five refinement iterations to compute the refinement
hierarchy for σT

f ,t0
. An overall decrease in the maximum lin-

earization error Dmax of all samples of a hierarchy level can
be observed (Figure 5 (b)), simultaneously the refinement

adapts toward the ridges (c). Note, for heavily undersampled
FTLE, Dmax can initially show an increase during refine-
ment. To obtain supersampled FTLE fields of the initial flow
map resolution we downsample the hierarchy, weighting the
FTLE samples according to their covered area. Figure 4 (e)
shows 8× adaptively supersampled F-FTLE obtained after
3 refinement iterations. It looks similar to brute-force super-
sampled F8-FTLE (the reference) in ridge regions (d), and
substantially outperforms F-FTLE (a), justifying the addi-
tional expense. The ridges also exhibit more noise in (a) and
in regions with strong aliasing the ridges from F8-FTLE are
superior to ridges from F-FTLE with 8× resolution (d),(iii).

5. Conclusion

We presented a framework for FTLE computation based on
the advection of seed circles. Within this framework we dis-
cussed the limitations of localized FTLE approaches with
respect to capturing FTLE ridges and demonstrated the ac-
curacy limitations of the popular F-FTLE approach due to
its linear approximation of the flow map. To capture non-
linear separation effects we introduce MD-FTLE that uses
many samples on the seed circle and provide a measure for
the nonlinear deviation from F-FTLE. The obtained distance
metrics gave us new insight and led to the definition of C-
FTLE based on the circumference of the advected seed cir-
cles which produces results with less aliasing. The lineariza-
tion error was also used as a refinement criterion for an adap-
tive FTLE refinement scheme, and we demonstrated that ex-
tracting ridges from supersampled FTLE fields is more ro-
bust. Our research opens new interesting questions, e.g., con-
cerning the different deformation behavior on ridges and in
valleys. In the future we would like to further investigate the
properties of our FTLE approach based on nonlinearity.
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