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Abstract
Magnetic fields exhibit higher-order, nonlinear singularities in the form of point-dipole singularities. In addition,
due to absence of divergence, they feature only a subset of invariant structures from traditional vector field topol-
ogy. For magnetic fields of sets of point dipoles—widely present in physics and often used as an approximation—we
present a technique revealing the topology of magnetic flux. The flux topology is identified with areas covered by
field lines that directly connect pairs of dipoles. We introduce the dipole connectrix as a reduced one-manifold
representation of those areas. The set of connectrices serves as our concise visualization of the global structure
of magnetic flux. In addition, the quantitative values of flux are displayed by the thickness of the connectrices. We
evaluate our technique for simulations of ferroparticle monolayers and magnetic gels.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—; J.2 [Physical Sciences and Engineering]: Physics—

1. Introduction

Magnetic fields are a subclass of vector fields with some
restrictions compared to generic vector fields. A magnetic
field is divergence-free; therefore, its field lines are either
closed or of infinite length. Inspired by traditional vector
field topology, we want to visualize the topology of mag-
netic flux. However, established methods from vector field
topology cannot be applied in a straightforward manner be-
cause the vector field (i.e., the magnetic flux density) may
be infinite at singularity points. The most prominent exam-
ple of such a singularity is the magnetic dipole, which is our
central object of investigation.

In this paper, we focus on static 2D magnetic fields
created by sets of dipoles. Since there are no magnetic
monopoles, the first non-trivial term in any field expansion
is represented by a dipole. Furthermore, elementary parti-
cles like electrons are points (without physical extent) that
carry the magnetic moment of a dipole. Hence, the dipole
representation is highly relevant for magnetic fields. One
natural way of visualizing a magnetic field is to use field
lines. Although field lines are directed and a magnetic flux
is present, there is no transport of any matter involved per
se. We are particularly interested in the global structure of
the magnetic flux between dipoles, i.e., the connectivity of
dipoles via magnetic field lines. We exploit the fact that the
topology of magnetic fields is reduced to only two types of

critical points: dipoles and saddles. We will argue that mag-
netic flux through two dipoles is found in a region that is
always bounded by two saddles. Although similar to Morse-
Smale cells, these regions are also bounded by dipoles in-
stead of sources and sinks. We utilize the interdependence of
the magnetic field and its corresponding vector potential to
locate these regions. Our main contribution is the definition
of distinguished field lines that connect two dipoles and are
used to visualize the topology of magnetic flux. We call this
new topological construct dipole connectrix, or shorter con-
nectrix. Given the task of finding dipoles that interact with
each other, e.g., are forming rings or chains of magnetic flux,
it is possible to use traditional topology. However, to accom-
plish this, the user has to keep track of several topological
curves at once. By using connectrices, this task is reduced to
following a single line. We refer to Fig. 1 for a comparison
of traditional vector field topology and flux topology.

The contributions of our approach are (i) a concept that vi-
sualizes the topological structure of magnetic flux between
dipoles, and (ii) a technique that provides a quantitative rep-
resentation of magnetic flux.

As an application of our visualization technique, we
present results from the simulation of systems of single do-
main magnetic nanoparticles. The simplest example of such
a system to which our visualization has great potential is a
magnetic fluid, consisting of magnetic particles with an aver-
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Figure 1: Comparison of traditional topology (left) and flux topology (right). Dipoles are represented as a two-colored rectan-
gles with a red north pole and a blue south pole. With flux topology, magnetic rings 1© or chains 2© are easier to identify.

age size of 7–9 nm, suspended in a non-magnetic carrier liq-
uid. Direct investigation of the 3D clustering process in these
media is difficult. However, thin films of these fluids allow
for experimental inspection with transmission electron mi-
croscopy and are in accordance with recent simulations. Re-
cent experiments [KDK∗06] have shown how complex the
microstructure of 2D layers of a ferrofluid can be. Additional
insight into these systems was obtained in theory and by
computer simulation [KCH08], [PDKH09]. However, none
of these approaches can directly characterize the field distri-
bution in the sample.

Another approach blends magnetic and elastic properties
within a single material, by embedding magnetic nanopar-
ticles into an elastic polymer matrix. Materials that are de-
signed as such are called magnetic gels, or ferrogels, and can
serve as the basis for various potential applications, rang-
ing from artificial muscles, actuators, and micromachines to
biomimetic energy-transducting devices. A manifestation of
magneto-elastic coupling can be observed in the deforma-
tion of a macroscopic ferrogel body in a uniform or gradient
magnetic field [Zri00], [RDT∗10]. However, any application
of these materials is based on the profound knowledge of
their microstructure and on the ability to control and design
them on various levels. There are only few theories that can
treat the gel on the mesoscopic level, see the work [SRB11]
and references there in, and simulations [WC11] aimed at
the understanding of the gel microstructure. Therefore, any
additional knowledge of the magnetic field is of high rele-
vance for further development of theoretical models.

2. Related Work

In this work, we focus on magnetostatic fields, which we
treat as vector fields from a visualization point of view. Other
works that specifically address the visualization of mag-
netic fields are for example the paper of Sundquist [Sun03],
which introduces dynamic line integral convolution to vi-
sualize electromagnetic fields. Klein et al. [KE04] present
an approach that uses a discrete particle model to visualize
magnetic field lines. Thomaszewski et al. [TGPS08] focus
on the simulation part, introducing magnetic interaction for

rigid body simulations with individual dipoles. However, the
visualization of fields is not the main aspect of their work.
Sadlo et al. adopt magnetic field visualization to vorticity in
vortical flow [SPP04], [SPS06]. In contrast to our work, all
of the above papers ignore the topology of vector fields.

The majority of topological methods for vector field
analysis can be categorized in two groups: those that focus
on regions of qualitatively similar behavior, and those that
are dual to this approach—being concerned with the lower-
dimensional constructs separating these regions. A promi-
nent example of the former one is Morse-Smale decompo-
sition [GBHP08], whereas separatrix-based topologies ac-
count to the latter. An extensive survey of topology-based
methods in flow visualization is provided by Laramee et
al. [LHZP07].

Topology—a theory of connectivity—is primarily known
for its utility in the study of (geometric) manifolds in math-
ematics and physics. Interestingly, this concept can be trans-
ferred to initial value problems in dynamical system theory
and vector fields. Vector field topology aims at revealing the
essential structure by means of distinguished trajectories—
providing insight in “connectivity due to transport”. We
closely follow this argumentation by focusing on “connec-
tivity due to magnetic flux”.

In visualization, vector field topology was introduced by
Helman and Hesselink for 2D [HH89] and 3D [HH91] vec-
tor fields. The visualization of the topology of the subset
of magnetic vector fields is presented, e.g., by Sanderson et
al. [SCT∗10], [SCTC11], who provide techniques that visu-
alize the topology of magnetic fields in the context of fusion
reactors. They, however, are interested in “islands of stabil-
ity” in a chaotic field [PS07], [PS09]—they do not visual-
ize magnetic flux. Another example is the work of Cai et
al. [CLN05], who apply traditional vector field topology to
magnetic fields.

Probably closest related to our work is the extraction of
higher-order singularities from 2D vector fields by Scheuer-
mann et al. [SHK∗97]. There is, however, the major differ-
ence that the magnitude of our magnetic vector field be-
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comes infinite at the dipoles with flux going through their
center, whereas Scheuermann et al. address higher-order
critical points, i.e., stationary points of a continuous vector
field that vanishes at those points.

Since divergence-free fields exhibit closed field lines, a re-
lated concept in traditional vector field topology is the one of
periodic orbits. However, field lines in divergence-free vec-
tor fields are either closed or reach a boundary; therefore,
extracting these structures would not provide insightful vi-
sualizations in our case. Furthermore, periodic orbits would
have to be isolated in classical vector field topology to repre-
sent an invariant structure, e.g., as shown by Wischgoll and
Scheuermann [WS01], who extract closed streamlines from
planar vector fields.

In our work, we rely on a dual-topology approach em-
ploying not only the magnetic field but also the gradient of
its vector potential. Rosanwo et al. [RPP∗09] use a dual-
topology approach to perform streamline placement. Similar
to the gradient field of our vector potential, their dual field
is orthogonal to the visualized vector field. Another example
of an approach that exploits the duality of vector fields is the
work of Bachthaler and Weiskopf [BW08], where line pat-
terns perpendicular to the underlying vector field visualize
the motion of the flow field.

Physically related, but not of immediate algorithmic in-
terest to us is the area of electric fields. Here, Andrae et
al. [ABB∗11] and Barth et al. [BHI∗09] present techniques
that compute and visualize electronic flux. A survey of visu-
alization methods for physical sciences is provided by Lipşa
et al. [LLC∗11].

3. Dual Topology of Magnetic Fields

In this section, we first summarize the physical background
that we need in this paper. We then advance to our formula-
tion of dual vector field topology for the class of vector fields
in which we are interested. This dual vector field is the basis
for our flux topology introduced in Sect. 4.

3.1. Physics of Magnetostatics

We briefly review the physics of magnetostatics, as far as it
is relevant for this paper. We refer to the textbook by Jack-
son [Jac75] for a comprehensive introduction to magneto-
statics in particular, and classical electrodynamics in gen-
eral. We assume the setting of magnetostatics, i.e., we ig-
nore any magnetic effects that may be additionally intro-
duced from dynamics. Such a scenario is relevant for typical
setups with steady-state behavior.

The key observation is that there are no magnetic
monopoles (in contrast to electrostatics with its electric
monopole). Therefore, magnetic dipoles serve as the main
building blocks for establishing magnetic fields. A single

dipole is described by its magnetic moment

m =
1
2c

∫
x×J(x)d3x (1)

located at position x with the current distribution J and the
speed of light c.

It is common practice to use the vector potential A to de-
scribe the magnetic field. The term “magnetic field” itself is
often used to refer to the magnetic flux density B, which is
related to A as follows:

B = curl A.

Therefore, magnetism may be described using A or B. In
fact, many computations in physics are based on the vector
potential. In particular, computations often use series expan-
sions of the vector potential, similar to Taylor expansions of
functions. The mathematical background is based on the ex-
pansion by vector spherical harmonics [Jac75]. This kind of
expansion reads for the i-th component of A:

Ai(x) =
1

c||x||

∫
Ji(x′)d3x′+

1
c||x||3

∫
Ji(x′)x′ d3x′+ · · ·

Here, J is the current distribution that gives rise to the mag-
netic field. If only the first term of the expansion is used, we
obtain

A(x) = m×x
||x||3

where m is the magnetic moment of a magnetic dipole
(Eq. (1)). Put differently, the expansion of A up to the
first nonvanishing term yields a magnetic dipole. Therefore,
dipoles are highly relevant as, at least approximative, repre-
sentation of any magnetic field; the more localized the cur-
rent distribution, the better the approximation.

Finally, the magnetic flux density corresponding to A of
the magnetic dipole reads:

B(x) = 3n(n ·m)−m
||x||3

where n = x
||x|| .

3.2. Dual Vector Field Topology

To describe the flux topology of 2D magnetic fields, we first
reformulate the 3D vectors A and B for the restriction to 2D.
We assume that the 2D field is defined on the x-y plane. For
this, the 3D field has to meet two requirements. First, the
z-component of the flux density has to vanish everywhere,
i.e., Bz ≡ 0. Second, B should be independent from the z-
position, i.e., it should be shift-invariant in z-direction.

These requirements lead to two constraints for the vector
potential A. First, A can be modeled as vectors that only have
a z-component; their x- and y-components vanish. Second,
the vector potential is independent from the z-position. With
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Figure 2: Centers (left) are converted to sources or sinks
(depending on their orientation) under the action of P, since
every vector is rotated by− π

2 . Saddles (right) are rotated by
− π

4 under the action of P.

these constraints, we obtain the magnetic flux density

B = curl A =


∂Az
∂y

− ∂Az
∂x

0

=̂

(
∂A
∂y
− ∂A

∂x

)
= curl2 A

which indeed is a 2D field. In the above equation, the vec-
tor potential is rewritten by just using its z-component, with
Az =: A. Furthermore, we have introduced the analog of the
curl operator in 2D, curl2. The effect of curl2 can be ex-
pressed as

B = P∇A, P =

(
0 1
−1 0

)
.

Geometrically speaking, curl2 computes the gradient of the
scalar potential A and then rotates the gradient vector by− π

2 .
This geometric observation is utilized in our following con-
struction of the magnetic flux topology. B and ∇A are dual
vector fields—in this sense, the traditional topology of B can
be considered as the dual of the traditional topology of∇A.

To derive the relation between primal and dual topology,
we examine the effect of P on the topology of the B and∇A
fields. Since the magnetic flux density B is divergence-free,
it can only contain centers and saddles (and periodic orbits,
which are not of interest to us). In turn, the rotation-free∇A
field can contain only sources, sinks, and saddles. Our first
observation is that critical points are not affected by P, i.e.,
critical points of one field are found at the same location in
its dual field because P does not change vector magnitude:

||x||=
√

x2 + y2 =
√

y2 +(−x)2 = ||Px||.

We continue our examination of the effect of P with respect
to centers, sources, and sinks. These topological constructs
are isotropic, i.e., they are rotation-invariant. However, P
converts sources with their respective vector field

u(x) =
(

a 0
0 a

)
x, a > 0

into counter-clockwise centers with

u’(x) = P
(

a 0
0 a

)
x =

(
0 a
−a 0

)
x.

Changing the sign of a results in a sink that converts like-
wise to a clockwise center when applying P. This effect is
illustrated on the left side of Fig. 2. As a result, dipoles in B,

dipole dipole
saddle

Figure 3: In such a configuration, there is no magnetic field
line that connects the two dipoles. All magnetic field lines
are separated by the separatrices (green).

which can be interpreted as the composition of centers of op-
posite orientation at infinitesimally close distance, find their
counterpart as infinitesimally close pairs of a source and sink
in ∇A. Finally, we examine the effect of P for saddles. As a
first step, we show that P does not change the determinant of
any matrix M:

det M = det
(

a b
c d

)
= ad− cb

det PM = det
(

0 1
−1 0

)(
a b
c d

)
=−cb+ad

Since det M is invariant under P, the condition for saddles
of a negative determinant is not affected by P, which means
that saddles in one field persist in the dual field. Now, we
consider the orientation of a saddle when applying P. For the
sake of simplicity, we limit the investigation to axis-aligned
saddles,

u(x) =
(
−a 0
0 b

)
x, a,b > 0

and apply P:

u’(x) = P
(
−a 0
0 b

)
x =

(
0 b
a 0

)
x

which results in eigenvalues λ1,2 = ±
√

ab of ∇u’. The
eigenvectors of this saddle compute as:(

x
±
√ a

b x

)
.

Hence, saddles with a = b of one field are rotated by − π

4
in the dual field, as illustrated on the right side of Fig. 2. For
arbitrary values of a,b, the dual saddle is deformed, however,
this is not of importance to us.

4. Flux Topology

In this section, we introduce our flux topology that describes
if, and how much, flux is present between dipoles.

4.1. Connection Regions

We start our discussion with dipoles that are oriented in op-
posite direction and create magnetic fields as illustrated in
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Figure 5: Left: two dipoles are oriented in the same direction, which results in magnetic flux between both dipoles heading from
left to right. Middle: the two centers of a dipole, which are infinitly close together, are shifted apart for illustration purposes
only. Right: the two centers of a dipole within B are replaced by a source and a sink in the corresponding ∇A field according
to the dual topology rules.

Fig. 3. There is no magnetic field line passing through both
dipoles (the separatrices converge to the saddle in infinite
time). Changing the configuration to consistent orientation
results in a region that is of special interest to us and is il-
lustrated in Fig. 4. This region consists of all magnetic field
lines that connect one dipole with the other one, as shown
in Fig. 4. We call this region dipole flux connection region,
or shorter, connection region. This region is bounded by the
separatrices that start at the two saddles located between the
dipoles and run through both dipoles.

The magnetic field lines around a dipole form closed
curves with the centers of these curves approaching the
dipole center infinitely close. If more than one dipole is
involved, some of the field lines can pass through other
dipoles, as illustrated in Fig. 5 (left). For the sake of sim-
plicity of illustration, we grow the infinitesimal distance be-
tween the two centers of a dipole. Every configuration of two
dipoles connected by a magnetic field line can be converted
into a topologically equivalent configuration as shown in
Fig. 5 (left) and consecutively into the configuration shown
in Fig. 5 (middle). The next step is to switch from the B field
to the dual∇A field, as shown in Fig. 5 (right). As discussed
in Sect. 3.2, the two centers of a dipole are now replaced
by a source and a sink. In addition, the two saddles located
between the dipoles are rotated (and possibly deformed).

The next step in our reasoning is to consider the field lines
of the ∇A field, which are shown in Fig. 6a. Please note
that the source and sink pairs represent again dipoles in the
∇A field. In general, i.e., in non-degenerate cases without a

dipole
dipole �ux connection region

dipole

saddle

saddle

Figure 4: Dipoles are oriented into the same direction.
We call the region delineated by the separatrices (green) a
dipole flux connection region.

saddle-saddle connection, a Morse-Smale cell forms in ∇A
between the original dipoles in B. The final step in our rea-
soning switches back to the B field, shown in Fig. 6b. We
can see that the Morse-Smale cell of the dual ∇A field con-
verts to our connection region. Hence, we have shown that
there is always a connection region between two dipoles that
share a magnetic field line. Also, such a connection region
will always be defined by the two dipoles and consequently
by the two corresponding saddles.

4.2. Connectrices

Once we have found a connection region, we want to vi-
sualize the magnetic flux through this region in a topolog-
ical manner, i.e., we preserve its topology (connectivity of
dipoles) and neglect its morphology. To do this, we provide
a mathematical definition of connectrices.

We start with the set of all dipoles D. A field line connect-
ing to dipole d1 ∈ D either extends to infinity or connects
to another dipole d2 ∈ D, where d1 = d2 is allowed. Please
note that we stop a field line when it reaches a dipole. To
proceed, we define FP1,2 as the set of all field lines that con-

∆
dipole dipole

a)

saddle

saddle

dipole dipoleb)

saddle

saddle

B �eld

A �eld

Figure 6: a) A Morse-Smale cell (green) can be found in
the∇A field between connected dipoles. b) Returning to the
B field, a respective connection region (yellow) is found be-
tween the two dipoles.
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boundary switch point

border segment #2border segment #1

boundary switch point

1

2

a b separatrix ending

Figure 7: Boundary flux indicators at the bottom visualize
flux affecting dipoles from the outside. Two boundary switch
points and a separatrix of B form border segments #1 and
#2, which in turn give rise to semi-connectrices a© and b©.
The “virtual” separatrix 1© is started at the left boundary
switch point and closes the connection region represented
by connectrix 2©.

nect to both d1 and d2, where P1,2 : {d1,d2} and d1 6= d2.
FP1,2 is the connection region. Now we define two field lines
fi, f j to be equivalent iff fi, f j ∈ FP1,2 .

Hence, any one field line fi ∈ FP1,2 is topologically equiv-
alent to FP1,2 . We call such a field line f the dipole connec-
trix, or shorter, connectrix of the connection region FP1,2 . In
Sect. 5.2, we will show how we obtain a visual representa-
tion of a connectrix. The magnetic flux within the connection
region is visualized by the thickness of the line representa-
tion of the connectrix, and the orientation of the flux using
a transition from red (north) to blue (south). The magnetic
flux of such a region could be computed by integrating the
magnetic flux density along any curve that connects the sep-
aratrices of the two respective saddles and stays within the
connection region. As we will see in Sect. 5.3, we can avoid
such an integration process and use a much simpler approach
to compute the magnetic flux.

4.3. Complete Topology

Our method supports domains with boundaries, e.g., limited
rectangular domains that might serve as a window or come
from simulations with boundaries. Within such a domain, we
search for saddle-type critical points using a sampling grid.
Please note that critical point extraction is the only step in
our approach where a discretized version of the field is re-
quired. The remaining process can act solely on the original
data given as a set of point dipoles.

If a saddle is located outside of our sampling grid, we
cannot take it into account for detecting connection regions.
Therefore, a connection region that would be defined by such
a saddle is not found, which would lead to missing connec-
trices. We address this problem by introducing boundary flux
indicators that visualize where, and how much, flux crosses
the borders of the data set or the boundary of the sampling
grid. Boundary flux indicators are constructed as follows:
to begin, we locate boundary switch points [WTHS04] of

B, i.e., points where B is tangential to the boundary. In our
case, these points represent extrema of A along the bound-
ary, which allows a simplified extraction by scanning the
vector potential A of the outermost cells of our sampling
grid. The boundary switch points serve two purposes: First,
they adopt the role of saddles when extracting connection
regions—they are starting points for “virtual separatrices”
in B, which are constructed only to delimit a connection re-
gion that would otherwise be left open (e.g., connectrix 2©
in Fig. 7 would be missing). Second, they form a set Sbsp,
whereas end points of separatrices in B that leave the sam-
pling grid form a set Ss. These two sets form S = Ss ∪ Sbsp.
For two adjacent elements e1,2 ∈ S, we create a border seg-
ment, i.e., a segment on the boundary of the sampling grid
delimited by e1 and e2. For each border segment, we con-
struct “semi-connectrices”—connectrices that are attached
only to one dipole and end at their corresponding border seg-
ment. A semi-connectrix is colored depending on the pole of
the dipole to which it connects.

As for regular connectrices, we will see in Sect. 5.3 that
we can use a similarly simple approach to compute the corre-
sponding flux. In addition, we visualize the border segments
using boundary flux indicators: bars of fixed width that span
the border segment and are of the same color as the corre-
sponding semi-connectrix.

In total, there are three different kinds of boundary indica-
tors depending on the type of e ∈ S that delimits the border
segment: e1,2 ∈ Ss, e1 ∈ Ss and e2 ∈ Sbsp, and e1,2 ∈ Sbsp.
If e ∈ Sbsp, we apply gradual transparency at e. This indi-
cates that the corresponding semi-connectrix visualizes flux
together with the connectrix of the adjacent connection re-
gion. If e ∈ Ss, full opacity is used instead. Fig. 7 illustrates
this situation.

5. Connectrix Algorithm

The algorithm that constructs connectrices is split in two
parts. The first step (Sect. 5.1) finds all connection regions
in the data set. In the second step (Sect. 5.2), one connectrix
is created for each connection region.

5.1. Finding Connection Regions

To find connection regions, we have to detect all saddles
as well as corresponding separatrices in the magnetic field.
Separatrices are started at saddles and traced until they end
at a dipole or leave the sampling grid. Depending on which
pole of a dipole is hit by the separatrix, we define the sepa-
ratrix to be of type “north” or “south”.

Once all separatrices of the B field are created, we have
the necessary data to identify connection regions. These re-
gions are defined by two dipoles, two corresponding saddles,
and are bounded by the separatrices that connect them as il-
lustrated in Fig. 4. Separatrices ending at the first dipole have
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dipole

dipole
saddle

saddle

2a

2b

connection region

1b

1a

fB

Figure 8: Identifying connection regions: start with neigh-
boring separatrices 1a© and 1b© of the left dipole along with
saddles at 2a© and 2b©. To identify the second dipole, follow a
field line fB in B starting at the left dipole.

to be of opposite type (either “north” or “south”) than the
two separatrices ending at the second dipole. If the dipoles
are facing each other in a topologically equivalent configu-
ration (as shown in Fig. 3), a connectrix cannot exist. In ad-
dition, we do not allow self-connectrices, i.e., connectrices
that start and end at the same dipole.

This all leads to the algorithm described below. As a pre-
liminary step, we sort all separatrices at a dipole that are of
the same type (either “north” or “south”) according to the
potential A. The potential of a separatrix is obtained from
the corresponding saddle position. This sorting allows us to
choose “neighboring” separatrices with respect to the poten-
tial, which is essential to the algorithm.

1. For each dipole d, consider only separatrices of type
“north”, which form the set Sd .

2. Follow all pairs of neighboring separatrices s1,2 ∈ Sd ;
check that s1,2 connect to different saddles.

3. Start a field line fB in B at d between s1,2 and trace
away from d (backward if necessary) until a dipole d′

is reached.
4. A connection region is found iff d′ 6= d.
5. Obtain separatrices of type “south” of d accordingly.

This first part of our approach is depicted in Fig. 8 with a
representative example scene. Please note that the field line
fB is already a valid connectrix according to our definition.
However, in order to create a good representation of the con-
nectrix, we perform the additional steps described in the fol-
lowing section.

5.2. Constructing Connectrices

The second part of our method constructs a representative
connectrix for each connection region. The main task is to
find an appropriate seed point within this region that gener-
ates the connectrix by field line integration in B in both di-
rections until both dipoles are reached. The idea is to choose
the field line that corresponds to the mean value of the po-
tential A of the respective connection region—in the sense
of a “mean” position. We propose the following approach to

dipole

dipole
saddle

saddle

1

2

h

Figure 9: Constructing a connectrix: field line tracing is
performed along ∇A into the same direction as the halfway
vector h at 1© until aavg is found in A at 2©. Tracing for-
wards and backwards in B constructs the connectrix for this
connection region.

find a seed point (a special case of numerical root finding)
and to construct a connectrix, as illustrated in Fig. 9.

1. Evaluate A at the two saddle positions and compute the
average aavg. This represents the mean potential within
the connection region.

2. Choose one of the two saddles arbitrarily and perform
field line tracing in the ∇A field, heading into the con-
nection region. Please note that this is not immediately
possible, since ∇A = 0 at a saddle position. Therefore,
follow the half-way vector of the two separatrices that
meet at the chosen saddle position. We use a small step,
typically 1/10th of the cell size of the sampling grid. Per-
form field line tracing in ∇A to advance inside the con-
nection region.

3. At each step of the tracing process in the∇A field, access
the value of A at the current tracing location. Once the
value of the A field crosses the average value aavg, the
seed point for the connectrix is found by bisection.

4. From that point, perform forward and backward integra-
tion in B until a dipole is reached, yielding the connectrix.

In step 2, one can choose between the two saddles of the
connection region as a starting point for the tracing process
in the ∇A field. The resulting seed points for the connectrix
are different depending on the chosen saddle; however, both
seed points will be located on the same fieldline of the B field
due to the duality of the ∇A and B fields and because of a
unique aavg. This is due to the fact that A is a stream function
for B, i.e., contours in A represent field lines in B. Please
note that therefore the final visualization for the connectrix
is independent of the chosen saddle point.

5.3. Visualizing Magnetic Flux

In addition to encoding the topology of the flux between
dipoles, we visualize the flux magnitude by varying the line
width of the connectrices. This emphasizes connectrices of
dipoles that create a strong magnetic flux.

The magnetic flux through a connection region is defined
as the integral of the magnetic flux density B along any curve
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within this region that connects the separatrices of the two
saddles. However, we can avoid this integration: we just have
to evaluate A at the two saddle locations. The difference of
these two potentials equals the magnetic flux through the
connection region. Since the potential A works analogous
to a stream function, integration of flux over a curve can be
replaced by a difference in the potentials of its end points.

5.4. Implementation

Our implementation uses a uniform grid to resample the
A and B fields defined by the given set of dipoles. Criti-
cal points are detected according to the approach described
in [HH91]. Both separatrices and connectrices are con-
structed using field line integration that is performed using
an adaptive step-size, fourth-order Runge-Kutta algorithm.
We stop the integration process when entering a cell that
contains a dipole or when leaving the sample grid. There-
fore, we choose our sampling grid so that cells are small
enough to contain at most one dipole.

We implemented our prototype in C# using the Microsoft
XNA [MS] framework on a system with an Intel Core i7
CPU running at 3.4 GHz and an NVIDIA GeForce 580 GPU.
Magnetic field lines are visualized with an HLSL-Shader im-
plementation of line integral convolution [CL93].

6. Application

To demonstrate the utility of our method, we apply it to sim-
ulations from the domain of soft-matter sciences [KCH08].
All data sets are initially represented as collections of dipoles
with varying position, orientation, and magnitude of mag-
netic moment. To improve the visibility of the topological
structures, we omit the LIC-visualization of the B field.

6.1. Monolayer

In Fig. 10, we present a snapshot obtained for a ferroparticle
monolayer consisting of 128 dipoles. In this case, the inter-
particle interaction is strong enough for the magnetic parti-
cles to form various small clusters. The prevalent topolog-
ical structures in our visualization of the magnetic flux are
chains and rings, readily classifying the clusters into these
two groups (see, e.g., center of Fig. 10). Moreover, our vi-
sualization gives quantitative insight in their magnetic prop-
erties, e.g., distinguished chains and loops in the visualiza-
tion represent clusters with strong magnetic interaction. In
this way, our technique provides a powerful approach to the
analysis of ferroparticle monolayers, e.g., to differentiate be-
tween randomly aligned particles and stable clusters. This is
of particular importance for understanding the microstruc-
ture of ferrofluids in confinement.

6.2. Ferrogel

With the series of images shown in Fig. 11 and Fig. 12, we
present the time evolution spanning 1 000 time steps of a

Figure 10: Monolayer data set. Ring and chain structures
can be readily identified in our flux topology visualization.
Computing the flux topology takes 14.74 seconds.

magnetic gel simulation. The gel with an initially square
lattice (connectivity indicated by black lines) composed of
4 104 dipoles and additional non-magnetic particles (visual-
ized as black dots) is exposed to a strong external magnetic
field which is aligned from left to right in the images. As
the properties of the gel primarily depend on dipole–dipole
interaction, we omit this external field in our visualizations.

In the first snapshot, one can still see the signature of a
square lattice. Here, lattice segments that are aligned with
the external field are part of chains of pronounced magnetic
flux. In contrast, particles on segments perpendicular to the
field are rarely part of a common connectrix. They are rather
part of long, weak connectrices between neighboring lattice
segments, or part of weak loop-like structures. The overall
shape of the magnetic ferrogel still reflects the initial lat-
tice because the strong horizontal chains have a repulsive
effect on each other. The formation of horizontal connec-
trix chains proceeds during the later time steps. As these
structures grow in strength of magnetic flux, the ferrogel
is locally contracted, displacing the non-magnetic particles
into saw-tooth shaped configurations. At the same time, the
overall shape of the gel sample undergoes a transition into
diamond-shaped configuration, as the dipoles with energeti-
cally less advantageous configuration rearrange. In the final
snapshot, the majority of the lattice segments assume a di-
agonal orientation, with long chains of dipoles that are max-
imally coaligned with the external magnetic field.
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Figure 11: From left to right: time steps 1, 500, and 900 of a ferrogel simulation. Upper row: whole data set; lower row:
zoomed-in views of the regions denoted by black rectangles. For all images, the same scaling for the flux magnitude was used.
Non-magnetic particles are shown as black dots. Computing the flux topology takes 256, 270, and 264 seconds, respectively.

7. Conclusion

We have presented magnetic flux topology to reveal the
global structure of magnetic fields induced by dipoles. Com-
pared to topological methods based on separatrices, our tech-
nique additionally provides a quantitative picture because
it represents transport regions instead of separating regions.
For complex data sets, this compact visual representation al-
lows us to reduce visual clutter and overall complexity of
the resulting visualization. The applications from soft-matter
sciences have shown that the connectrix structure is well
aligned with other structural elements of materials, allow-
ing the user to analyze the simulation of magnetic material
by magnetic flux topology.

An open question left for future work is the extension
to three dimensions. The main challenge is that the scalar-
valued potential A will have to be extended to a 3-component
vector field potential.
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Figure 12: This view corresponds to the black rectangle in
the lower right image of Fig. 11. Flux is scaled down by one
order of magnitude to reduce visual clutter.
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