
Visualization of Advection-Diffusion in
Unsteady Fluid Flow

G. K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, T. Ertl

Appendix

This is supplementary material to the paper “Visualization of Advection-
Diffusion in Unsteady Fluid Flow”. We provide a pseudo code for the GPU
implementation of the method presented in the paper, and point out impor-
tant implementation aspects.

1



Input: φ(t), polynomial order op
Output: φ(t+ δt)

1: for each dimension do
2: for all thread blocks in parallel do
3: for all threads in parellel do {thread corresponds to cell i}
4: φ̃i(τ = t) = φi(t)
5: vleft := −v(xi− 1

2
) if v(xi− 1

2
) < 0, otherwise vleft := 0

6: vright := v(xi+ 1
2
) if v(xi+ 1

2
) > 0, otherwise vright := 0

7: for k = 0 to op do {for each reconstruction polynomial}
8: for j = 1 to op do {for each coefficient except wk0}
9: compute wkj from Eq. 14

10: end for
11: σk =

∑op−1
m=0 (wkm+1 ·

∑op−1
n=0 (Σm,n · wkn+1))

12: ω̃k = λk/(ε+ σk)
4 {Eq. 15 to 16}

13: ωk:=normalize(ω̃k)
14: end for
15: compute φWENO

i and its coefficients wi,WENO
j from Eq. 15

16: if active diffusion then
17: store w

k=op/2
j {coefficients from central polynomial}

18: end if
19: f

l
i− = vleft · φWENO

i (xi− 1
2
), f

r
i− = vright · φWENO

i (xi+ 1
2
)

20: if active diffusion then
21: d

l
i− = Dφ

∑op
j=1(w

k=op/2
j · (xi− 1

2
)j−1)/2

22: d
r
i− = −Dφ

∑op
j=1(w

k=op/2
j · (xi+ 1

2
)j−1)/2

23: else
24: d

l
i− = d

r
i− = 0

25: end if
26: for j = 0 to n− 1 do {loop over prediction steps}
27: φ̃i(τ + δt/n) = φ̃i(τ) + wi,WENO

1 · (vi− 1
2

+ vi+ 1
2
)/2 · δt/n {Eq. 22}

28: perform steps 7 to 25

29: accumulate f
l
i−, f

r
i−, d

l
i−, and d

r
i−

30: τ := τ + δt/n
31: end for
32: f i+ = f

l
(i+1)− + f

r
(i−1)−, di+ = d

l
(i+1)− + d

r
(i−1)−

33: δφi = (f i+ − f
l
i− − f

r
i− + di+ − d

l
i− − d

r
i−)δt

34: return φi(t+ δt) = φi(t) + δφi
35: end for all threads
36: end for all thread blocks
37: end for each dimension

2



Notes

• All indices are 0-based (e.g., first vector element is indexed with 0).

• The following variables are stored in shared memory (i.e., fast GPU

memory at block scope): φ, φ̃, ωk, w
i,WENO
j , f

l

i− together with d
l

i−,

and f
r

i− with d
r

i−. Whereas we have to store fluxes at the right and
left face separately, the fluxes at a given face (e.g., f

r

i− and d
r

i−) are
combined.

• Line 5 and 6:
Velocity v(xi− 1

2
) is trilinearly interpolated in space and linearly inter-

polated in time between vtn(xi− 1
2
) and vtn+1(xi− 1

2
), where vtn and vtn+1

(tn ≤ t, t+ δt ≤ tn+1) are two consecutive steps of the simulated veloc-
ity field, stored in 3D texture. vt(xi+ 1

2
) is computed accordingly. For

each cell we consider only outflow velocity directly, i.e., velocity which

is used for calculation of f
l

i− and f
r

i−. The upper-script l and r are used
to differentiate between fluxes on the right and left face—see comment
on lines 19 and 21.

• Line 9:
The matrices Lk (one for each reconstruction polynomial φk), dim(Lk) =
(op + 1, op + 1) are stored in the GPU constant memory. In order to
compute coefficients wkj at a given cell, values φ from neighboring cells
must be available for each thread in a block. These values are therefore
stored in shared memory. The coefficient wk0 is not needed as it does
not influence the oscillation indicator σ.

• Line 11:
The oscillation matrix Σ, dim(Σ) = (op, op) is precomputed and stored
in GPU constant memory.

• Line 19 and 21:
Only fluxes that go outside a given cell i are computed explicitly. f i++

di+ are evaluated from f
l

(i+1)− + d
l

(i+1)− and f
r

(i−1)− + d
r

(i−1)−, that is,
from outflux at left face from cell i + 1 and outflux at right face from
cell i − 1. In order to access these values from a given cell i they are
stored in GPU shared memory.

3


