Visualization of Advection-Diffusion in

Unsteady Fluid Flow

G. K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, T. Ertl

Appendix

This is supplementary material to the paper “Visualization of Advection-
Diffusion in Unsteady Fluid Flow”. We provide a pseudo code for the GPU
implementation of the method presented in the paper, and point out impor-
tant implementation aspects.

Input: ¢(t), polynomial order o,
Output: ¢(t + 6t)
1: for each dimension do

2 for all thread blocks in parallel do
3 for all threads in parellel do {thread corresponds to cell i}
4 ¢i(T =1) = di(t)
5 Vleft i= —U(%,%) if v(xl;%) < 0, otherwise vy := 0
6: Uright = v(xH% if v($i+%) > 0, otherwise vyjgps := 0
7 for k =0 to o, do {for each reconstruction polynomial}
8 for j = 1 to 0, do {for each coefficient except w§}
9: compute w;? from Eq. 14
10: end for
1: ok = Yoo (Wh g - X0 (S - why1))
12: Or = M/ (e +op)* {Eq. 15 to 16}
13: wg:=normalize(wy,)
14: end for
15: compute ¢}V EN O and its coefficients w;-’WENO from Eq. 15
16: if active diffusion then
17: store wf:()p /2 {coefficients from central polynomial}
18: end if
19 Fio = vieg - @V ENO (1), i = vpigne - 01 N0 ()
20: if active diffusion then
21: di =Dy X5y (0~ ()71 /2
22: 4= =Dy X7, (Wi~ (2,171 /2
23: else
24: d_=d_=0
25: end if
26: for j =0 to n — 1 do {loop over prediction steps}
27: &i(T + 6t/n) = ¢y (7) + wiWVENO. (v;_1 +v;;1)/2 - 6t/n {Eq. 22}
28: perform steps 7 to 25
29: accumulate Té_, i, Eﬁ_, and d,_
30: T:=T7+0t/n
31: end for
32: fiy = fl(i+1)— +T€i71)77 diy = dl(1;+1)f + dzz‘q)f
33 66 = (Fiw — oo = Jio + dis = di_ —)01
34: return o¢,(t + dt) = ¢;(t) + d¢;
35: end for all threads

36: end for all thread blocks
37: end for each dimension

Notes

e All indices are 0-based (e.g., first vector element is indexed with 0).

e The following variables are stored in shared memory (i.e., fast GPU

memory at block scope): ¢, qb, Wk, W ;WENO, ?i together with d
and f; with d;_. Whereas we have to store fluxes at the right and
left face separately, the fluxes at a given face (e.g., f:_ and dz_) are

combined.

e Line 5 and 6:
Velocity v(mi_%) is trilinearly interpolated in space and linearly inter-
polated in time between v*(z;_1) and v"*!(z;_1), where v’ and v'»+!
(t, <t,t+dt <t,.1) are two consecutive steps of the simulated veloc-
ity field, stored in 3D texture. v*(z; +%) is computed accordingly. For
each cell we consider only outflow velocity directly, i.e., velocity which
is used for calculation of fﬁ_ and f:_ The upper-script [and r are used

to differentiate between fluxes on the right and left face—see comment
on lines 19 and 21.

e Line 9:
The matrices Ly (one for each reconstruction polynomial ¢y,), dim(Ly) =
(op + 1,0, + 1) are stored in the GPU constant memory. In order to
compute coefficients w"f at a given cell, values ¢ from neighboring cells
must be available for each thread in a block. These values are therefore
stored in shared memory. The coefficient w§ is not needed as it does
not influence the oscillation indicator o.

e Line 11:
The oscillation matrix X, dim(X) = (op, 0,) is precomputed and stored
in GPU constant memory.

e Line 19 and 21:
Only fluxes that go out81de a glven cell 7 are computed explicitly. f,, +

d;, are evaluated from f (i+1)— T d (i+1)— and f (i—1)— T d (i—1)—» that is,
from outflux at left face from cell 7 + 1 and outflux at right face from
cell 7 — 1. In order to access these values from a given cell ¢ they are
stored in GPU shared memory.

