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Fig. 1. Escape maps at the example of coronal hole extraction. (a) Traditional visualization of coronal holes (yellow, light blue)
by directly seeding field lines at the photosphere suffers from discretization problems. The visualization result suggests that (i), (ii),
and (iii) might be connected by corridors, but it is impossible to resolve them with this approach. (b) Our escape map extraction
obtains coronal hole boundaries (red, blue) by seeding field lines at boundary curves (orange) of trimmed isocline surfaces (green).
(c) Isocline-based escape map extraction captures the full structure of coronal holes, revealing the corridor between (ii) and (iv).

Abstract—We present a technique to visualize the streamline-based mapping between the boundary of a simply-connected subregion
of arbitrary 3D vector fields. While the streamlines are seeded on one part of the boundary, the remaining part serves as escape
border. Hence, the seeding part of the boundary represents a map of streamline behavior, indicating if streamlines reach the escape
border or not. Since the resulting maps typically exhibit a very fine and complex structure and are thus not amenable to direct
sampling, our approach instead aims at topologically consistent extraction of their boundary. We show that isocline surfaces of the
projected vector field provide a robust basis for streamsurface-based extraction of these boundaries. The utility of our technique is
demonstrated in the context of transport processes using vector field data from different domains.

Index Terms—Streamline behavior, vector field topology, isocline surfaces, coronal hole extraction.

1 INTRODUCTION

Vector fields are a concept at the core of science and engineering.
Since they typically represent transport or a directional property in
general, their analysis usually needs to take into account their global
structure, which is reflected by integral curves such as streamlines.
While there is a large body of literature on the visualization based
on integral curves, there is a subfield, denoted vector field topology,
which aims at the extraction of the global structure of streamlines.
In analogy to geometric topology, one analyzes the connectivity of
the domain by means of streamlines, i.e., regions that exhibit coher-
ent streamline shape represent connected regions and are visualized as
such. To do so, the boundaries between these regions are of particular
interest—they represent so-called separatrices that separate the qual-
itatively different regions, and in unbounded domains, they represent
manifolds of streamlines that converge in forward or reverse direction
to critical points, which are isolated zeros of the vector field, or to pe-
riodic orbits, which are isolated closed streamlines. Hence, to decide
if a quantity can be transported by a vector field between two points, it
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is sufficient to test if these two points reside in the same region of co-
herent behavior. An impeding difficulty with this approach, however,
arises if the domain is bounded or if the transport in subregions is of
interest. In such cases, concepts from traditional vector field topology
cannot provide the answer in generic configurations because the re-
quired critical points, periodic orbits, and separatrices can be located
(partially) outside the domain and are hence not available.

Our approach is intrinsically independent of constructs such as crit-
ical points or periodic orbits. It can determine streamline-based con-
nectivity between the boundary of arbitrary simply-connected regions
Ω of the domain, and hence extends traditional vector field topology.
To this end, one simply-connected part of the boundary of Ω is defined
as map boundary where streamlines are conceptually seeded, and the
remaining part of the boundary is the escape boundary. Our technique
then provides a map, which we call escape map, on the map boundary,
indicating if a streamline seeded at the respective position reaches the
escape boundary or not. Thus, escape maps do not map to the position
of escape but they provide a map if a respective streamline escapes.
We refer to those parts of the map that escape as escape regions and
to those that do not escape as rest regions. The boundaries between
escape regions and rest regions are denoted escape region boundaries.
Applications of escape maps include cases where one is interested if a
substance can leave a region under the transport of a flow, for example,
in the context of pollution or supply.

A straightforward implementation to obtain the streamline-based
mapping between the map boundary and the escape boundary would
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Fig. 2. (a) Closeup of Fig. 1(a) at right-upper tip of coronal hole (ii),
at zoom factor 16. It is impossible to judge whether there is a corridor
between (ii) and (iv). (b) View at the center of (a) at zoom factor 5,000.
The corridor appears here because its width is wider in vicinity to (ii).
However, numerical precision issues are apparent, prohibiting further
zooming and hence identification of the corridor farther away from (ii).

be to densely seed streamlines on the map boundary, test if they reach
the escape boundary in forward or reverse direction of integration, and
label the seed points accordingly. This approach has been already used
in the astrophysics community to analyze coronal holes, which repre-
sent regions of the Sun’s photosphere with reduced ultraviolet or X-ray
emission, and are defined in this context as those regions on the pho-
tosphere that exhibit streamlines of the solar magnetic field that reach,
in forward or reverse direction, an escape radius which is larger than
the radius of the photosphere. In this configuration, the photosphere
represents the map boundary, and the escape radius defines the escape
boundary. The extraction of coronal holes is one of the applications
that we demonstrate our approach with, among examples from com-
putational fluid dynamics and magma convection in the Earth’s mantle.

The major difficulty with this direct sampling approach (Fig. 1(a))
is, however, that it is typically not able to reveal the correct structure
of the escape map because this map typically exhibits extremely thin
features which cannot be appropriately sampled with a regular sam-
pling (Figs. 1 and 2). At the same time, these fine structures typically
exhibit diverging streamlines, which leads to strong error accumula-
tion during integration from the map boundary and hence inaccurate
or even useless streamlines and resulting mappings.

In this work, we show, to the best of our knowledge for the first
time, the close connection between the topological concept of escape
maps and isocline surfaces of the vector field, and derive from this
connection a sampling technique for escape maps that guarantees their
topologically correct extraction. Since our approach extracts only es-
cape region boundaries, i.e., the boundary curves between escape re-
gions and rest regions of the escape map (Fig. 1(c)), we complement
our technique with a view-dependent implementation of the straight-
forward sampling approach, demonstrated in Fig. 1(a).

Specifically, our contributions include:

• The introduction of escape maps to scientific visualization,

• a topologically correct and robust extraction technique for the
escape region boundaries within escape maps,

• derivation of the connection between isocline surfaces and con-
cepts from vector field topology, and

• a view-dependent implementation for direct sampling-based vi-
sualization of escape maps.

2 RELATED WORK

Since both the concept and our extraction technique for escape maps
are closely related to vector field topology, we start with an overview
on related work in this field. Vector field topology was introduced to
scientific visualization by the works due to Perry and Chong [22], Hel-
man and Hesselink [9, 10], and Globus et al. [8]. At the core of this
concept is the search for invariant manifolds, i.e., streamlines that are
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Fig. 3. Parametrization x(ξ ,η ,ζ ) of the simulation domain Ω with illus-
trated streamlines (black) and corresponding isocline surface (green).
(a) Arbitrary simply-connected region in physical space with map bound-
ary ∂ΩM (red) and escape boundary ∂ΩE (dashed). The dotted lines
can serve either as escape or as periodic boundaries. (b) Computa-
tional space represented by the parameters (ξ ,η ,ζ ).

invariant under variation of integration length. One example are peri-
odic orbits, which Wischgoll et al. [30] and Kasten et al. [13] present
extraction techniques for. We refer the reader to Asimov’s notes on
topology [4] for an introduction. More recently, vector field topology
has been extended to uncertain [19, 20] and time-dependent [28] vec-
tor fields. Other conceptual contributions to this field include saddle
connectors [25] and connectrices [5]. Scheuermann et al. [24] include
the domain boundary in topological analysis to avoid missed topolog-
ical structures in 2D vector fields. Other related work includes tradi-
tional topological visualization in constrained flow fields [21]. How-
ever, to determine regions of qualitatively similar behavior, all these
techniques, in contrast to ours, require that the respective constructs,
i.e., critical points or periodic orbits, reside within the domain.

There are two previous works that are closely related to our tech-
nique. The boundary switch connectors due to Weinkauf et al. [29]
introduce boundary switch curves, i.e., curves on the boundary of Ω
at which the 3D vector field switches from inside to outside flow be-
havior, and separation surfaces consisting of streamsurfaces seeded at
these curves. This technique is also independent of critical points and
periodic orbits, and provides a topological analysis on bounded do-
mains. However, as we will show below, it is in general not possible to
obtain escape maps with this approach, also because boundary switch
curves are constrained to the boundary of Ω. Nevertheless, there are
cases where part of the escape region boundaries in our escape maps
can be obtained using boundary switch curves. The second technique
that is closely related are bifurcation lines and their manifolds [15]. Bi-
furcation lines can be seen as a generalization (‘elongation’) of saddle-
type critical points, i.e., they represent streamlines that locally over the
longest time exhibit a 2D manifold of streamlines converging to them
in forward time and a 2D manifold of streamlines converging to them
in reverse time. Bifurcation lines also address topological analysis in
bounded domains, they are able to extract 2D manifolds of saddle-type
critical points that reside outside Ω or saddle periodic orbits, includ-
ing their 2D manifolds, even if part of the orbit is located outside Ω.
It has to be noted that both techniques ([29] and [15]) are somewhat
complementary, i.e., boundary switch curves in general cannot extract
the manifolds that bifurcation lines do and vice versa. Nevertheless,
as we will also show below, bifurcation lines (and their manifolds) in
general cannot extract escape maps either.

In the related application domain of solar magnetic fields, escape
map extraction corresponds to the determination of coronal holes. Due
to the lack of sensing techniques that would be able to provide 3D data
of the Sun’s magnetic field, there are different approaches that extrapo-
late such data from line of sight magnetograms. The most realistic ap-
proach makes use of a full 3D global magnetohydrodynamics (MHD)
model (Mackay and Yeates [18]). Precomputed datasets with mag-
netic fields (MAS) given in spherical coordinates can be downloaded
from the Predictive Science Modeling Support for Helioseismic and
Magnetic Imager Solar Dynamics Observatory [2]. A review of coro-
nal holes and a historical overview is given by Cranmer [7]. A quite
recent technique for automatic detection of coronal holes based on im-
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Fig. 4. Cross-sectional illustration of different 3D cases. If topological features (e.g., saddle points or saddle orbits, green dots) reside within Ω,
then escape region boundaries (red, blue) are obtained by intersecting 2D manifolds of saddle-type critical points (a) or periodic orbits (b) with the
map boundary ∂ΩM (light gray). (d) Otherwise, escape region boundaries are obtained by intersecting ∂ΩM with streamlines starting at boundaries
(orange) of trimmed isocline surfaces (green curves). If this boundary resides at ∂ΩM (purple point (ii) in (d)) there may be only one streamline
connecting from (ii) to ∂ΩE . This boundary (purple) also represents a part of the escape region boundary and an inbound boundary switch curve.
(c) If a critical point resides within Ω but part of its 2D manifold reaches the escape boundary ∂ΩE , there is also an isocline surface reaching ∂ΩE

and the ‘top’ (orange) of its trimmed part generates the escape region boundary.

age segmentation is described by Kristan and Galagher [14]. Riley
et al. [23] use simple field line integration starting from the photo-
sphere to detect coronal holes. Machado et al. [17], propose volume
rendering-based techniques for visualizing the solar magnetic field.
Cai et al. [6] applied traditional vector field topology to the Earth’s
magnetotail. However, in contrast to our approach, none of these tech-
niques can guarantee topologically correct extraction of coronal holes.

3 EXTRACTION OF ESCAPE REGION BOUNDARIES

Let us start with an introduction of the different terms and symbols.
The map boundary and escape boundary are denoted ∂ΩM and ∂ΩE ,
respectively. Both have to be simply connected and together they en-
close a simply-connected region Ω. If a streamline seeded on ∂ΩM

reaches ∂ΩE in forward or in reverse direction, we refer to it as es-
cape streamline, otherwise as rest streamline.

As a prerequisite for the formulation that will follow, we first need
to provide Ω with a regular parametrization x(ξ ,η ,ζ ). (Here and in
the following, we use boldface symbols to indicate vector-valued func-
tions.) In this parametrization, the map boundary ∂ΩM is represented
by the set {x(ξ ,η ,0)} and the escape boundary ∂ΩE is composed of
the subsets ∂Ωt = {x(ξ ,η ,1)} and ∂Ωs = {x(±1,±1,ζ )} if Ω is not
periodic in ξ and η . Thus, x(ξ ,η ,ζ ) maps the computational space
coordinates ξ , η , ζ to the physical space Cartesian coordinates x, y, z,
see Fig. 3.

Given Ω is a rectangular domain, determining a regular
parametrization x(ξ ,η ,ζ ) is straightforward. If Ω has generic simply-
connected shape, however, the problem is equivalent to meshing Ω
with a structured grid. Following Thompson [26], this could be ac-
complished by solving a boundary-value problem of the Laplacian
equation, for example.

Our technique extracts escape region boundaries, i.e., the curves on
∂ΩM that separate escape regions from rest regions. In the first step of
our technique, the escape region boundary curves are extracted based
on isocline surfaces of the vector field (Sec. 3.2). This step typically
extracts the majority of the boundary curves. The remaining curves are
extracted based on vector field topology features within Ω (Sec. 3.3).
Algorithmic (discretization) details are given in Sec. 4.

3.1 Motivation

The straightforward approach to visualize escape maps is by direct
sampling. This approach consists of seeding a set of streamlines on
∂ΩM and color their starting point with one of three different col-
ors: (i) (in our examples blue) indicating that the streamline reaches
∂ΩE in forward direction, (ii) (yellow) indicating that the streamline
reaches ∂ΩE in reverse direction, and (iii) (gray) indicating that the
streamline does not reach ∂ΩE . Note that if the streamline reaches
∂ΩE in both directions, it represents an inbound boundary switch
curve [29]. However, since such curves do not separate escape regions

from rest regions (in fact they separate forward escape regions from re-
verse escape regions), they are of no particular interest. Nevertheless,
our extraction technique obtains them. The straightforward sampling
approach is traditionally applied in a static manner, i.e., a texture is
built with these colors and mapped to the physical space. Unfortu-
nately, this approach cannot extract very narrow escape regions (corri-
dors), as illustrated by Figs. 1(a) and 2. Note that, in favor of the direct
sampling approach, we compare our technique to a view-dependent
implementation of the direct sampling, i.e., the figures in this paper
show a ‘texture’ that is computed interactively at screen resolution.
This allows the user to zoom at the desired features interactively. There
are two major reasons why the straightforward approach still fails at
resolving the corridors: the corridors are extremely narrow and hence
extremely high zoom factors would be required, which would lead to
numerical issues with sampling, and secondly, streamline integration
is subject to numerical issues too (Fig. 2), even with double-precision
arithmetic. This is of particular impact in these configurations as the
growth of integration error is much higher in the direction from corri-
dors on ∂ΩM compared to integration toward corridors on ∂ΩM , be-
cause streamlines have to diverge in direction away from ∂ΩM to cause
a narrow escape region, and this diverging streamline behavior repre-
sents unpredictable advection and hence typically impedes proper in-
tegration. Therefore, it is very difficult to discretize the fine structures
on ∂ΩM in a pixel-based manner. In contrast, it turns out to be much
simpler to generate seeding constructs at some distance from ∂ΩM

and to obtain therefrom a polyline representation of the escape region
boundaries, because streamlines converge toward the corridors in this
direction of integration and thus are typically highly accurate.

3.2 Isocline Surface-Based Extraction Step

Escape maps are defined by the topological connectivity between ∂ΩM

and ∂ΩE . Since topological properties are invariant under continu-
ous deformation, the connectivity between ∂ΩM and ∂ΩE is equiva-
lent in both physical and computational space. Hence, our extraction
technique can operate in computational space. Unless stated explic-
itly, we refer to the velocity field in computational space as ‘vector
field’ throughout this paper. In the following, we discuss the utility of
isocline surfaces (Sec. 3.2.1), subsequently, we present the extraction
technique (Sec. 3.2.2), followed by its discussion (Sec. 3.2.3).

3.2.1 Motivation

Isocline surfaces consist of the loci where a vector field exhibits a pre-
defined slope. Zero-slope isocline surfaces can be obtained by com-
puting the dot product between the vector field and the ‘up’ vector
(in our case (0,0,1)⊤ in computational space) and extracting the zero-
level isosurface from the resulting scalar field, denoted isocline surface
or isocline henceforth. See the dashed/green curves in Figs. 3 and 4
for illustrations of zero-slope isoclines.



Since our rest streamlines, i.e., those that do not escape, are contin-
uously differentiable and bounded by ∂Ω, they must (i) converge to a
critical point, (ii) find some kind of infinite path inside Ω, e.g., toward
a periodic orbit, or (iii) rise from ∂ΩM and return to ∂ΩM again. Since
critical points are zeros of the vector field, they must reside on isocline
surfaces. The case (ii) of an infinite path in a bounded region implies
a return of the streamline, and, thus, in the non-degenerate case, a zero
slope in at least two and at most an even number of points along the
curve. The case (iii) must, due to the mean value theorem, exhibit an
odd number of zero-slope points along the streamline. Hence, all cases
exhibit at least one intersection with the isocline surface. Therefore,
any rest streamline seeded on ∂ΩM will intersect the isocline surface
at least once. If we reject all parts of isocline surfaces that are inter-
sected by an escape streamline, we obtain a trimmed isocline surface
Θ, and its boundary curves ∂Θ are necessary and sufficient seeding
structures to obtain all rest streamlines that connect to an escape re-
gion boundary. Once we propagate ∂Θ along the vector field both in
forward and reverse direction, their intersection with ∂ΩM will be at
an escape region boundary. Note that boundary curves ∂Θ that are
directly located on ∂ΩM are either between escape and rest regions
or between forward and backward escape regions (and in both cases
inbound boundary switch curves).

3.2.2 Technique

1. Extract all isocline surfaces with slope zero relative to ∂ΩM , i.e.,
extract the zero-level isosurface of the ‘up’ component of the
vector field within Ω. Note that the isosurfaces are closed or
exhibit a boundary at ∂ΩE and/or ∂ΩM .

2. Erode all parts of these surfaces that exhibit escape streamlines.

3. For each remaining surface part, extract its boundary curve.

4. Use these boundary curves as seeds for streamsurfaces.

5. The intersection curves of all streamsurfaces with ∂ΩM represent
escape region boundary parts.

Figure 1(c) shows the final result after merging the (partial) escape
region boundaries obtained in this step with the results from the
topology-based step (Sec. 3.3).

3.2.3 Discussion

The approach described in Sec. 3.2.2 cannot produce false positives
in a continuous formulation. The cases depicted in Figs. 4(a)–(c) are
simplified (degenerate)—in general, a critical point, periodic orbit, or
bifurcation line would never be located exactly at the ‘highest’ point
of an isocline surface with its 2D manifold aligned with the isocline.
Thus, in general, at least a small part of the isocline surface is located
above the 2D manifold and hence eroded, leaving a ‘hole’. Integrating
a streamsurface from the boundary of this hole in forward direction
converges to the critical point, periodic orbit, or bifurcation line, since
in the continuous case, this boundary coincides with the 2D manifold.
However, in a discretized formulation (our implementation), the iso-
cline surface is eroded a bit too much due to discretization and hence
the stream surface is likely to miss the critical point, periodic orbit,
or bifurcation line. It will rather deviate to the bottom and intersect
∂ΩM at the red point in Fig. 4(b), leading to a false positive. The re-
verse streamsurface, on the other hand, will successfully extract the
blue points in Figs. 4(a)–(c). Therefore, in our implementation, we
avoid false positives by integrating streamsurfaces seeded at isocline
boundaries only in direction opposite to the streamlines that caused
the erosion of that isocline boundary (no streamsurface is seeded in
case of forward and reverse escape). To assure robust extraction of the
escape region boundaries, we nevertheless apply the topology-based
approach (Sec. 3.3) also in our discretized implementation.

(a) (b)

Fig. 5. MAS data at Carrington rotation 2128. (a) Same as Fig. 1, but
with critical points (green) and their 1D (blue stable, red unstable) and
2D (transparent pink) manifolds. It is apparent that the topology-based
step provides only very few boundaries (i.e., the intersection of the 2D
manifold with the photosphere ∂ΩM) of the coronal holes. (b) Same as
Fig. 1(c) but with polarity of the photosphere, i.e., radial magnetic flux
Br at photosphere, visualized. One can see that the three blue coronal
holes belong to the same connected component of ‘north’ polarity.

3.3 Topology-Based Extraction Step

Because escape regions give rise to streamlines that reach ∂ΩE , in
contrast to those seeded at rest regions, these two regions exhibit qual-
itatively different streamline behavior. Hence, extraction by concepts
from vector field topology is an obvious choice. One such concept
are separatrices, i.e., manifolds of streamlines converging in forward
or reverse direction to saddle-type critical points or saddle-type peri-
odic orbits. They represent barriers with respect to qualitatively dif-
ferent streamline behavior and should therefore be able to provide the
boundaries of escape regions. Note that a saddle-type critical point,
i.e., an isolated zero of the vector field with opposite signs of the real
eigenvalue parts of the Jacobian, exhibits one 2D manifold and one 1D
manifold, while a saddle-type periodic orbit, i.e., an isolated closed
streamline with saddle-type behavior in its mapping under a full revo-
lution, exhibits two 2D manifolds. Note that in this paper we refer to
n-twisted-saddle periodic orbits as saddle-type periodic orbits.

In an unconstrained setup (∂ΩE → ∞), one could define escape
streamlines as those that reach infinity. Escape region boundaries
could then be obtained by intersecting the 2D separatrices of sad-
dle points and saddle orbits with ∂ΩM (cross-section illustration in
Figs. 4(a) and 4(b)), with the additional requirement that, in case of
a saddle, one end of its 1D manifold connects to ∂ΩM and the other
reaches ∂ΩE , and that in case of a saddle-type periodic orbit, both
2D manifolds connect to ∂ΩM while at least one of its 2D manifolds
reaches ∂ΩE . This approach, to some extent, is also possible in con-
strained setups (with non-empty ∂ΩE ) as long as the required critical
points and periodic orbits reside within Ω. Hence, we make use of
this approach for all saddle-type critical points within Ω. However, as
discussed above, this approach alone (without the isocline-based ap-
proach) would be insufficient even in the unconstrained setup because
boundary switch curves (Fig. 4(d) (ii)) can also give rise to non-escape
streamlines in absence of a saddle-type critical point, and bifurcation
lines too. Furthermore, if a 2D manifold intersects ∂ΩM only in one
area but reaches ∂ΩE in an other area, as illustrated in Fig. 4(c), there
is always an isocline surface also reaching ∂ΩE and hence the respec-
tive escape region boundary (part) is already extracted in Sec. 3.2.2.

3.3.1 Technique

1. Extract all saddle-type critical points within Ω.

2. For each saddle, one end of its 1D manifold has to connect to
∂ΩM and the other has to connect to ∂ΩE (Fig. 4(a)), otherwise
the saddle is rejected.

3. Finally, intersect all 2D manifolds of the remaining saddles with
∂ΩM . The resulting intersection curves represent the missing
escape region boundary parts.
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Fig. 6. Analytic field, Eq. (1), with λ = 2 ((a)–(c)) and λ = 10 ((d)–(f)).
(a) Some streamlines together with escape map from our approach.
Boundary switch curves [29] (violet) are all outbound and not consistent
with escape map, hence not able to extract escape map. (b) Bifurca-
tion line [15] (green) exhibits stable (blue) and unstable (red) manifold,
which intersect map boundary at escape region boundaries. However,
they provide only small straight parts. (c) Our eroded isocline surface
(green) with streamsurfaces (illustrated by selected streamlines) seeded
at its boundary provides the complete map. (d)–(f) Corresponding case
for λ = 10. Note that bifurcation manifolds fail here too (also because
isoclines do not reach bifurcation line) but our approach succeeds.

Figures 5(a) and 10(b) give an example of the (partial) escape region
boundaries obtained in this step.

3.3.2 Discussion

We discussed in Sec. 3.2.3 that our isocline-based approach may miss
2D manifolds of critical points due to discretization issues and there-
fore we extract them explicitly in Sec. 3.3.1. The main difficulty
with isocline-based extraction of 2D manifolds of saddle-type criti-
cal points is that the critical points are always located on the isocline
surfaces and that, due to discretization issues, the erosion may fail
to erode those parts of the isocline surfaces that contain the critical
points. The circumstances are, however, different for saddle-type peri-
odic orbits. A non-degenerate (i.e., not perfectly ‘horizontal’) periodic
orbit intersects isocline surfaces only at isolated points. Hence, for rea-
sons analogous to those discussed above with Fig. 4(c), saddle-type
periodic orbits are robustly extracted already with our isocline-based
approach (see also our bifurcation line-based evaluation in Sec. 3.4).

3.4 Evaluation

We first would like to provide a short comparison to previous work,
i.e., to boundary switch curves and their separation surfaces [29] on
the one hand, and bifurcation lines and their manifolds [15] on the
other hand. We base the comparison on the following vector field:

u(x) :=
(

−x,4− (0.4x)2 − (0.1y)2
,λ

)⊤
. (1)

As illustrated in Fig. 6, this field does neither contain a critical point
nor a periodic orbit, but it exhibits a bifurcation line (green line) in z-
direction. Its stable manifold (blue) intersects the y-max plane with
its both sides, and in the case where λ = 2 the unstable manifold
(red) intersects both the y-min and y-max plane of the shown region
[−30,30]× [−45,5]× [−30,30]. For our tests, we discretized the re-
gion on a Cartesian grid with resolution of 60×50×60 nodes.

It can be seen that the escape map (which is located at y = 5) of
this field exhibits a corridor, and that neither the outbound boundary
switch curves (and their separation surfaces) nor bifurcation manifolds
can extract the escape map here, and hence in general configurations.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Same as Figs. 6(a)–(c) but after applying 2% (upper row) and
30% of white noise (bottom row). The extracted bifurcation line is al-
ready disrupted at 2% (b), while our approach (c) still extracts the com-
plete corridor. In case of 30% noise, we were not able to extract the
bifurcation line (e), which can indicate the structural stability of the bi-
furcation line. In this case, our technique extracts only a spike, but still
without disruptions, and consistent with streamline behavior (f).

To the best of our knowledge, our isocline-based approach is the only
technique that robustly extracts escape maps.

We conclude our evaluation by examining the structural stability of
escape maps, i.e., their robustness against perturbations. At the same
time this gives a notion on the numerical stability of our extraction ap-
proach. To this end, we add different levels of white noise to Eq. (1)
with λ = 2 (Fig. 7). While again, the boundary switch curve approach
fails in both cases, the bifurcation manifold approach is not substan-
tially affected with 2% noise. However, with 30% noise, we were
not able to extract a bifurcation line or its manifolds. Still, our tech-
nique extracts an escape map without disruptions or other artifacts and
the streamlines are consistent. Nevertheless, such an analysis can only
give an impression of the structural stability versus numerical stability.
Deriving the structural stability of bifurcation lines and relating them
to integration error would exceed the scope of this paper. Taking into
account persistence could be also a promising direction of research.

4 IMPLEMENTATION DETAILS

The description of our technique was, up to now, mostly in terms of
continuous concepts. Here, we provide implementation details, in par-
ticular regarding discretization. Our entire implementation works in
double precision, including the parts on the GPU.

4.1 Parameters

While the approach of direct sampling-based escape map extraction
provides one conceptual parameter, the escape boundary ∂ΩE , the im-
plementation of our approach requires a few additional parameters.
The primary parameter is the discretization size of the resulting es-
cape region boundaries. It is controlled by the maximum length δ of
the segments of the resulting polyline representation. This parameter
is used for inserting new trajectories during streamsurface computation
(Sec. 4.4). Further parameters are the step size for line integration, the
cell and mesh subdivision levels for isocline extraction, the maximum
number of bisection steps for trimming (erosion), and the number of
subdivision steps for the extraction of critical points.

4.2 Data Representation

Because our prototype operates almost entirely on the GPU and to
ensure maximum performance, it supports in its present state any type
of structured grid, i.e., any curvilinear grid. Nevertheless, extending
the implementation for data on unstructured grids is straightforward.



The Buoyant Flow example covered in Sec. 5.1 is given on a uni-
form grid, while the Solar MHD data presented in Sec. 5.2 are given
on spherical curvilinear grids, and the Magma Flow dataset, covered
in Sec. 5.3, is also given on a spherical curvilinear grid.

4.3 Line Integration

Streamline integration is an essential step in our overall approach. It is
required to obtain the 1D and 2D manifolds in the vector field topology
step, as well as to trim the isocline surfaces, and to compute stream-
surfaces therefrom. Hence, a fast implementation is required, which
we realized on the GPU using the standard fourth-order Runge-Kutta
scheme. The scheme is applied in computational space to exploit the
topology of the structured grid and, more important, to ease the imple-
mentation and to improve the efficiency on the GPU.

4.4 Streamsurface Integration

Although we provide triangulated streamsurfaces for illustration pur-
poses of the 2D manifolds, our approach does not require an ex-
plicit surface representation. The ordered set of streamlines is suf-
ficient to obtain the intersection curves between the streamsurfaces
and ∂ΩM . This allows us to follow the rather simple approach due to
Hultquist [11], but it also allows us to omit the triangle generation step,
similar to Machado et al. [16]. Hence, it is sufficient to start field lines
at the seeding curve and to detect if neighboring lines diverge too far
from each other, i.e., if their distance exceeds δ . If this is the case, we
insert additional seeds between the respective field lines, collect these
seeds for efficient parallelization, and compute them in a next pass on
the GPU. We employ deletion of trajectories if they become too close
to each other as an optimization to improve computation time and to
save memory with the resulting curves.

4.5 Extraction of Critical Points

The critical points are obtained by repeated subdivision of those cells
whose vertices exhibit opposite sign in all vector components. After
subdivision, the centers of the cells that still satisfy the sign criterion at
the final subdivision level represent the critical points. The procedure
is carried out on the GPU in parallel. Critical points other than of type
saddle, which are identified by opposite-sign real parts of the velocity
gradient, are rejected. We follow the common practice to estimate the
gradient at the grid nodes and to interpolate it at the critical points.

4.6 Isocline Surface Extraction and Trimming

The isocline surfaces are extracted using the Marching Cubes algo-
rithm on the subdivided grid. In our implementation, we subdivide
all cells that are initially occupied by the isosurface to the same level.
Because such a direct subdivision is computationally expensive, we
do not employ too many subdivision levels. After the triangle mesh
from these subdivided cells has been obtained, we perform adaptive
refinement of the triangle mesh. Each triangle edge between two es-
cape vertices is tested with recursive bisection for a rest streamline,
and each triangle edge between two rest vertices is tested with recur-
sive bisection for an escape streamline. If such a sample is found, the
triangle is subdivided into four subtriangles and the process is iter-
ated a predefined number of times. In a second pass, each triangle is
tested for vertices intersected by opposite type of streamlines, i.e., it is
tested if one gives rise to a rest streamline and the other to an escape
streamline. If this is the case, the triangle is trimmed by repeating the
recursive search and final cutting.

4.7 Merging of Contours Using 1D Manifolds

As illustrated in Figs. 8(a) and 8(b), the streamsurface seeded at a seed-
ing curve does not necessarily intersect ∂ΩM along its full length, be-
cause there might be a saddle-type critical point leading to disruptions
of the intersection curve between streamsurface and ∂ΩM . This is of
no relevance to the visual result, as there will be an other streamsur-
face converging to the critical point from an other side and providing
the missing part of the escape region boundary. These two boundary
parts of the escape region converge at the spikes visible in Fig. 8(b),
at the point where the 1D manifold of the critical point hits the escape

(a) (b)

(c) (d)

Fig. 8. Top row shows MAS data at Carrington rotation 2131. (a) Two
opposite boundary curve (orange) segments give rise to streamsurface
parts (one illustrated by densely seeded streamlines) that partially con-
verge to critical point (green point) along its 1D manifold (red curve).
The difficulty in this case is that the resulting intersection curves with
∂ΩM belong to two separate escape regions (yellow). (b) Same as (a)
from another view. Since the critical point is located above ∂ΩM , the
intersection curves are disrupted there. The 1D manifold connects the
escape regions at their tips. The bottom row shows a closeup of a com-
plex structure in the Magma Flow that demands deep subdivision with
our algorithm for extraction (twice cell and six times triangle mesh sub-
division). (c) The trimmed isocline surfaces present complex boundary
structures (orange), which are caused by the large vortical flow crossing
∂ΩM , as one can see by the streamlines (white) sparsely seeded at the
boundary curves for context. (d) Same as (c) but without streamlines to
reveal the trimmed isocline surface, as well as the escape map.

region boundary. To obtain topologically connected boundary curves
also in these cases, we detect if end points of escape region boundary
parts are located closer than δ to an intersection between a 1D mani-
fold and ∂ΩM . Hence, the 1D manifolds are used to decide which end
points of escape region boundaries should be merged: they are only
merged if the respective seeding curves are linked via the 1D mani-
folds to the same critical point. But, if the escape region boundaries
are only needed for display, this step can be omitted, because the end
points of the curves converge extremely close to each other.

5 RESULTS

We demonstrate our technique on three examples with increasing com-
putational complexity: (1) A buoyant flow based on a computational
fluid dynamic (CFD) simulation, (2) MHD-based coronal magnetic
field data, (3) a flow simulation of the magma in the Earth’s mantle.
Table 1 provides some timings of the shown results.

We used two levels of cell subdivision for the extraction of all iso-
cline surfaces in our results. For the MHD data, we did not employ
mesh refinement, whereas, for the Magma Flow, we further employed
six iterations of adaptive mesh refinement, and three iterations for the
CFD data. Increasing these levels did not change the results visually
(including the patterns visible on the isoclines, which reflect the tri-
linear interpolation of the data). For the trimming of the boundary
triangles (Sec. 4.6), we employed 50 bisection steps. However, ma-



(a) (b)

Fig. 9. Buoyant Flow CFD data. In this case ∂ΩM is at the bottom face
of Ω and the other five faces are ∂ΩE . (a) Trimmed isocline surface with
seeding curves, some of the streamlines, and the resulting escape map.
(b) Escape map visualizes which streamlines rise until ∂ΩE and hence
can transport heat from ∂ΩM outside Ω.

chine precision was typically achieved with less than 50 iterations.
For critical point extraction, we performed 20 subdivisions.

5.1 Buoyant Flow

The underlying dataset of the Buoyant Flow example is a CFD simula-
tion of a closed container filled with air, which is heated at its bottom
center and cooled at its top center, driving buoyant convection. The
simulation grid consists of 61× 31× 61 nodes arranged in a Carte-
sian grid, with extents [0,0.1]× [0,0.1]× [0,0.05]. In accordance with
traditional vector field topology, we take a single time step of the sim-
ulation and analyze it with our streamline-based escape map concept.

Figure 9 shows our result. Ω is set to [0,0.1]× [0,0.1]× [0.01,0.04],
i.e., the map boundary is defined at z = 0.01 while the escape bound-
ary reaches z = 0.04. Figure 9(a) shows the overall configuration of
streamlines, isocline surfaces, and the resulting escape map. From the
escape map in Figure 9(b) we can obtain the following insights. Our
analysis reveals a system of forward (blue) and reverse (yellow) es-
cape regions. The center of the bottom wall, where the heated plate
is located, is covered by both a reverse escape region and a forward
escape region, while the forward escape region is larger. This shows
that hot fluid leaves the bottom boundary in a rather large area while
the cold flow that comes from the top reaches the boundary in a more
focused region. This example demonstrates that escape maps could
be useful for the analysis of flow separation and boundary-related flow
phenomena in general. Assuming that the escape boundary would lead
to, e.g., open flow, the escape map could provide information where
hot fluid is leaving the bottom of the chamber and hence leads to en-
ergy loss. Using a streamline probe or a set of streamlines, it would
be very difficult to locate the regions at z = 0.01 that exhibit different
streamline behavior.

5.2 Solar MHD

We use solar magnetic field data from the Predictive Science Modeling
Support for Helioseismic and Magnetic Imager Solar Dynamics Ob-
servatory site [2] in this example. The MAS data are available with a
temporal granularity of one Carrington rotation (CR), which is the pe-
riod for a complete rotation of the Sun, which is about 27 days, starting
from November 9, 1853. The data are given on a spherical staggered
grid with resolution 181×100×150 that exhibits increasing cell size
in radial direction with increasing distance from the photosphere. In
our implementation, we interpolate the staggered grid to a structured
node-based spherical grid of the same resolution. With this conversion
we avoid the implementation of special streamline integration code
that operates on staggered grids, and we also ease the visualization
of the field using standard techniques. The lower radial boundary of
the MAS data resides slightly below the photosphere while the up-
per boundary is located at about 30 ·R⊙ (solar radii) and so does the
grid of our converted data. Throughout our implementation, we use

trilinear interpolation consistently, both for the magnetic field (e.g.,
for streamline integration) and its radial component (e.g., for isocline
surface extraction).

The original idea of escape maps comes from the determination of
coronal holes. In this case, the map boundary ∂ΩM is identified with
the photosphere, a sphere of radius R⊙, which is defined as the visible
surface of the Sun. The escape boundary ∂ΩE is set to a sphere of
radius R = 2.5R⊙. Then, escape regions mark the coronal holes.

In Fig. 1 the MAS data from Carrington rotation 2128 are visu-
alized. Figure 1(a) shows the traditional approach, i.e., by view-
dependent direct sampling. From this picture, it is not possible to
judge which of the regions (i), (ii), (iii), and (iv) are connected. As
shown in Fig. 5(a), the topology-based extraction step provides a sin-
gle curve on this side of the Sun for this dataset, while Fig. 1(b) shows
the trimmed isocline surfaces with some of the field lines seeded at
their boundary curves, which generate the major part of the boundary
curves of coronal holes, resulting in Fig. 1(c). Finally, Fig. 5(b) shows
that (i), (ii), (iii), and (iv) are located within the same region of ‘north’
polarity but represent three distinguished coronal holes. Note that the
boundaries of unipolar regions are identical to the ∂ΩM-boundary of
the isocline surfaces and identical to boundary switch curves. Note
also that due to this fact coronal hole boundaries cannot pass bound-
aries of the isocline surfaces or boundary switch curves.

The regular artifacts visible on the boundary curves of trimmed
isocline surfaces (e.g., Fig. 10(c)) and on the 2D manifolds (e.g.,
Fig. 5(a)) are due to the trilinear interpolation scheme of the origi-
nal data. The same holds for the visualization (e.g., Fig. 5(b)) which
is achieved by view-dependent sampling using trilinear interpolation.
These interpolation effects have no impact on the technique because
the same interpolation is used in all steps, i.e., from the visualization
point of view, the trilinearly interpolated field represents the true field.
This consistency is also illustrated by the fact that although the seed-
ing curve in Fig. 10(c) is not smooth, the resulting intersection curve
(blue) exhibits a smooth shape.

Figure 10 shows our results for the MAS data from Carrington ro-
tation 2131. Figure 10(a) presents a visualization similar to Fig. 1(b).
There are two ‘holes’ in the escape regions (coronal holes), one to the
left of the central isocline surface and one to the right. However, these
two similar ‘holes’ are extracted differently. The left one is obtained
by intersecting a 2D manifold of a saddle point, as shown in Fig. 10(b).
This is again the only 2D manifold that contributes a boundary curve
on this side of the Sun. In contrast, the right ‘hole’ is generated by the
isocline surface-based approach, as shown in Fig. 10(c).

Figures 8(a) and (b) show Carrington rotation 2131. Figure 8(a)
illustrates two issues: the divergence of a streamsurface because it hits
a critical point along its 1D manifold, and the related fact that therefore
a single segment on the isocline boundary seeding curve can give rise
to streamsurface parts that are mapped to two distinct escape regions.

Figure 12 provides a clear picture on the morphological and topo-
logical changes of the coronal holes over four Carrington rotations,
in particular regarding the appearance and disappearance of corridors.
Figures 12(e)–12(h) provide a comparison with the traditional visual-
ization technique, which fails at resolving the thin corridors.

Morphological studies of coronal hole boundaries as observed in the
soft X-ray regime by the Yohkoh telescope imply that, in some unipo-
lar regions, coronal holes may consist of several, apparently discon-
nected, components (see, e.g., Kahler and Hudson [12]). Antiochos’
uniqueness conjecture of coronal holes, however, states that “coronal
holes are unique in that every unipolar region on the photosphere can
contain at most one coronal hole” [3, 27]. The apparent disconnected
coronal holes were either connected by a thin, but finite, corridor, or
they are linked by “singular lines of zero width”.

In our experiments, we identified cases where our technique ex-
tracted more than one disconnected coronal hole in a unipolar region,
one such case is shown in Fig. 5(b). We examined the influence of the
choice of the escape radius Re (∂ΩE ). Figure 11 shows a respective
result for Carrington rotation 2127. One can observe changes of the
coronal holes with respect to shape and topology. For example, the
coronal hole located at the image center at Re = 1.2R⊙ thins down as



(a) (b) (c)

Fig. 10. MAS data at Carrington rotation 2131. (a) Trimmed isocline surface with seeding boundary curves (orange), some of the resulting field
lines (white), and the resulting coronal hole boundaries (red, blue). (b) Only a single boundary curve segment is contributed by the topology-based
approach (2D manifold in transparent pink together with 1D manifolds). Note that the 2D manifold does neither reach ∂ΩM everywhere, nor does it
reach ∂ΩE (Fig. 4(c)), instead it contributes a geometrically open segment. (c) Closeup of ‘hole’ in blue region. This represents the rather rare case
of Fig. 4(d) (ii) covered by Step 4. in Sec. 3.2.2. The ‘purple’ segment (boundary switch curve) is the part of the orange boundary curve at ∂ΩM .

(a) (b) (c) (d)

Fig. 11. MAS data at Carrington rotation 2127. Coronal hole boundaries and polarity of the photosphere (blueish ‘north’, yellowish ‘south’) for
escape radii Re = 1.2R⊙ (a), Re = 1.35R⊙ (b), Re = 1.5R⊙ (c), and Re = 2.5R⊙ (d). More disconnected coronal holes per unipolar region are obtained
with large Re and that also the genus of the coronal holes can change (the closed corridor at the bottom disappears between (c) and (d)).

Re increases and represents a corridor there at Re = 1.5R⊙, before it
vanishes for Re = 2.5R⊙. Using Re > 2.5R⊙ did not result in further
substantial changes of the coronal holes. This contradicts Antiochos’
conjecture. However, detailed investigations have to be subject of fu-
ture research in the field of astrophysics and scientific visualization.

5.3 Magma Flow

The Magma Flow dataset was obtained using CitcomS [1], which is
a finite element code designed to solve compressible thermochem-
ical convection problems relevant to Earth’s mantle. In contrast to
the MHD dataset, the magma flow presents more complex structures
like large vortical flows convecting magma between deep and surface-
proximate Earth mantle regions. The analysis of the dynamics of this
flow and a mapping of mass transport between the different levels of
depth inside the Earth can support the understanding of volcanic pro-
cesses and the movement of plate tectonics, which can also facilitate
studies about prediction of volcanic eruption or earthquakes. Here, we
used a global simulation domain given on a spherical grid of resolu-
tion 315× 157× 24. Aiming to capture special cases of high com-
plexities for our algorithm, and to avoid the high computation time of
extracting subdivided isocline surfaces for such a large and complex
dataset, we setup the map and escape boundaries as two spheres of
radii RM = 0.8R⊕ (earth radii) and RE = 0.9R⊕. In this configura-
tion, we could capture some cases of vortices intersecting ∂ΩM , for

example, the case shown in Figs. 8(c), 8(d), and 13. To this dataset,
we have applied cell subdivision and adaptive mesh subdivision with
depths two and six, respectively. For integration, we performed a max-
imum of three thousand steps of size 0.0005. Note that this dataset has
higher resolution than the Buoyant Flow dataset and it also needs even
deeper mesh subdivision. Both yields in a computation time of about
two and a half hours for the extraction of its trimmed isocline surfaces.

Table 1. Performance measurements. Initial mesh and cell subdivision
(init.), adaptive mesh refinement (adapt.), mesh boundary refinement
(bound.), boundary advection (advec.), and total extraction time (total).

Data Source
Time [s]

init. adapt. bound. advec. total

Magma Flow 52.69 2930.55 5336.94 48.04 8371.46

Solar CR2131 515.84 0.52 193.05 410.80 1121.33

Solar CR2125 596.38 0.57 180.64 172.33 951.05

Solar CR2126 521.97 0.53 156.14 1264.22 1943.95

Solar CR2127 516.08 0.55 141.19 388.80 1047.73

Solar CR2128 585.21 0.61 179.77 410.81 1177.64

Buoyant Flow 30.67 309.01 965.78 10.75 1316.68

Analytic (λ = 2) 2.64 6.91 24.24 2.15 36.00

Analytic (λ = 10) 3.38 8.63 16.80 1.82 30.68
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Fig. 12. MAS data for Carrington rotations 2125 (a), 2126 (b), 2127 (c), and 2128 (d). Due to the clear representation of the corridors by our
technique, one can easily observe topological changes of the coronal holes. See Fig. 11 for the polarity of the photosphere in case of (c). (e)–
(h): Same as (a)–(d) but with traditional direct sampling approach. It is apparent that, again, this approach is not able to resolve the corridors.

(a) (b) (c)

Fig. 13. Escape maps of Magma Flow dataset. ∂ΩM and ∂ΩE are positioned at radii RM = 0.8R⊕ and RE = 0.9R⊕, respectively. The map indicates
regions at RM = 0.8R⊕ from where the flow reaches RE = 0.9R⊕ in forward (blue) and backward (yellow) direction. (a) Visualization with the view-
dependent direct sampling approach. This approach suffers from sampling issues and cannot capture the full topological structure of the escape
regions. Note that it is not possible to judge the connections between the apparent escape regions. (b) Our approach, see Figs. 8(c) and (d) for a
closeup. (c) Resulting escape map, according to our approach, provides full topological structure.

6 CONCLUSION

We have presented a technique for topologically correct and robust ex-
traction of escape maps, which show if a streamline emanating from
a given position on the map in forward or reverse direction leaves an
adjacent, arbitrarily-shaped simply-connected region. The concept of
escape maps was inspired from astrophysics, where it is equivalent to
the problem of extracting coronal holes on the Sun’s photosphere. In
contrast to the traditional approach that discretizes the map and there-
fore suffers from discretization issues, our approach builds on isocline
surfaces of the vector field to obtain a seeding tailored at the topo-
logically correct extraction of escape maps. Our approach provides
several benefits. First and most important, it is able to extract very
narrow map structures, in contrast to the traditional approach that suf-
fers severely from aliasing. This becomes particularly obvious in case
of the extraction of coronal hole corridors, which are missed by tradi-
tional approaches and are subject to current research in astrophysics.

Second, it performs field line integration in these cases in the more
stable direction toward the map boundary, avoiding prohibitive accu-
mulation of integration error.

The concept of escape maps is closely related to vector field topol-
ogy on bounded domains. Nevertheless, in our understanding, further
research is necessary to clearly determine possible links and proper-
ties between these two concepts, and if escape maps could provide
a basis for such a vector field topology. Finally, we hope to inspire
future research on the connection between isocline surfaces and topo-
logical features, and to call attention to isocline surfaces for scientific
visualization in general.
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dynamics of the Sun’s open magnetic field. The Astrophysical Journal,

671(1):936–946, 2007.

[4] D. Asimov. Notes on the topology of vector fields and flows. Technical

Report RNR-93-003, NASA Ames Research Center, 1993.

[5] S. Bachthaler, F. Sadlo, R. Weeber, S. Kantorovich, C. Holm, and

D. Weiskopf. Magnetic flux topology of 2D point dipoles. Computer

Graphics Forum, 31(3):955–964, 2012.

[6] D. Cai, B. Lembege, and K. Nishikawa. Visualizing magnetospheric vec-

tor field topology. In Proceedings of ISSS-7, pages 26–31, 2005.

[7] S. R. Cranmer. Coronal holes. Living Reviews in Solar Physics, 6(3),

2009.

[8] A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology

of three-dimensional vector fields. In Proceedings of IEEE Visualization,

pages 33–40, 408, 1991.

[9] J. L. Helman and L. Hesselink. Representation and display of vector field

topology in fluid flow data sets. Computer, 22(8):27–36, 1989.

[10] J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid

flows. IEEE Computer Graphics and Applications, 11(3):36–46, 1991.

[11] J. P. M. Hultquist. Constructing stream surfaces in steady 3D vector

fields. In Proceedings of IEEE Visualization, pages 171–178, 1992.

[12] S. W. Kahler and H. S. Hudson. Boundary structures and changes in long-

lived coronal holes. The Astrophysical Journal, 574(1):467–476, 2002.

[13] J. Kasten, J. Reininghaus, W. Reich, and G. Scheuermann. Toward the ex-

traction of saddle periodic orbits. In Topological Methods in Data Anal-

ysis and Visualization III, Mathematics and Visualization, pages 55–69.

Springer International Publishing, 2014.

[14] L. Krista and P. Gallagher. Automated coronal hole detection using local

intensity thresholding techniques. Solar Physics, 256:87–100, 2009.

[15] G. M. Machado, F. Sadlo, and T. Ertl. Local extraction of bifurcation

lines. In Proceedings of International Workshop on Vision, Modeling and

Visualization, pages 17–24, 2013.

[16] G. M. Machado, F. Sadlo, and T. Ertl. Image-based streamsurfaces. In

Proceedings of 27th SIBGRAPI Conference on Graphics, Patterns and

Images, 2014. to appear.

[17] G. M. Machado, F. Sadlo, T. Müller, D. Müller, and T. Ertl. Visualizing

solar dynamics data. In Proceedings of International Workshop on Vision,

Modeling and Visualization, pages 95–102, 2012.

[18] D. Mackay and A. Yeates. The Sun’s global photospheric and coro-

nal magnetic fields: Observations and models. Living Reviews in Solar

Physics, 9(6), 2012.

[19] M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3D vec-

tor fields. In Proceedings of 4th IEEE Pacific Visualization Symposium,

pages 67–74, China, 2011.

[20] M. Otto and H. Theisel. Vortex analysis in uncertain vector fields. Com-

puter Graphics Forum, 31(3pt2):1035–1044, 2012.

[21] R. Peikert and F. Sadlo. Topology-guided visualization of constrained

vector fields. In Topology-Based Methods in Visualization, pages 21–34.

Springer-Verlag, 2007.

[22] A. E. Perry and M. S. Chong. A description of eddying motions and flow

patterns using critical-point concepts. Annual Review of Fluid Mechanics,

19:125–155, 1987.

[23] P. Riley, J. A. Linker, Z. Miki, R. Lionello, S. A. Ledvina, and J. G. Luh-

mann. A comparison between global solar magnetohydrodynamic and

potential field source surface model results. The Astrophysical Journal,

653(2):1510–1516, 2006.

[24] G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Visualizing

local vector field topology. SPIE Journal of Electronic Imaging, 9:356–

367, 2000.

[25] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connec-

tors – An approach to visualizing the topological skeleton of complex

3D vector fields. In Proceedings of IEEE Visualization, pages 225–232,

2003.

[26] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid

Generation. Taylor & Francis, 1998.
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