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Fig. 1. Visualization of vortical flow behavior in Buoyant Flow dataset with our image-based streamsurface technique, rendered with dense streamlines. The
seed curve (yellow) on the left defines the streamsurface (blue). Line integral convolution helps revealing intrinsic flow behavior. In our experiments, this
example rendered at 7.5 FPS for a resolution of 900×900 pixels.

Abstract—Streamsurfaces are of fundamental importance to
visualization of flows. Among other features, they offer strong
capabilities in revealing flow behavior (e.g., in the vicinity of
vortices), and are an essential tool for the computation of 2D
separatrices in vector field topology. Computing streamsurfaces
is, however, typically expensive due to the difficult triangulation
involved, in particular when triangle sizes are kept in the order
of the size of a pixel. We investigate image-based approaches for
rendering streamsurfaces without triangulation, and propose a
new technique that renders them by dense streamlines. Although
our technique does not perform triangulation, it does not depend
on user parametrization to avoid noticeable gaps. Our GPU-based
implementation shows that our technique provides interactive
frame rates and low memory usage in practical applications.
We also show that previous texture-based flow visualization
approaches can be integrated with our method, for example, for
the visualization of flow direction with line integral convolution.

Keywords-Streamsurfaces; Flow visualization; Image-based
rendering.

I. INTRODUCTION

Streamlines are integral curves everywhere tangent to a
steady vector field or an isolated time step of time-dependent
fields, and are defined by seed points, i.e., exactly one
streamline passes through a seed point. A streamsurface is
an extended concept and consists of an infinite set of stream-
lines that pass through a given seed curve. Beyond showing
direction, streamsurfaces provide insights on flow behavior by
exhibiting structures that reveal properties of, e.g., torsion or
vorticity. In traditional vector field topology, streamsurfaces
are an essential tool for computing two-dimensional separa-
trices that arise from saddle-type critical points or saddle-
type periodic orbits. Moreover, streamsurfaces can be used
as building blocks for other methods [1], [2].

Streamline computation is typically performed by explicit
integration of a vector field, which represents a straightforward
task. Streamsurface computation, on the other hand, may lead
to expensive computational effort and possibly considerable
memory usage due to the introduced connectivity construction.
Most of the previous techniques for computing streamsurfaces
focus on finding a triangle or quadrilateral mesh approximation
to the surface [3]–[9]. Such a triangle mesh at hand can feature
some advantages, like presenting fast rendering after extraction
and supporting subsequent processing. The extraction of high
quality meshes is, however, still challenging and computation-
ally expensive. Moreover, extracting and storing such surfaces
may be costly and application-dependent, and searching for
specific streamsurfaces can turn out to be a tedious task.
Therefore, for many situations, it is desirable to employ a fast
method for computing streamsurfaces in direct visualization.

Aiming to avoid the triangulation cost, Schafhitzel et al. [10]
presented a point-based approach that computes a set of par-
ticles along the streamsurfaces for rendering, which, however,
demands user-assisted parametrization to prevent noticeable
gaps. Their approach precomputes all particles for further ren-
dering, and, therefore, may require high memory, in particular
in complex flow configurations.

We present an image-based technique that extracts and
renders streamsurfaces without triangulation. To this end, our
approach renders dense streamlines directly during explicit
integration of the surface. Its data structure keeps in memory
only data referring to the streamsurface fronts of the last two
time steps of integration. Our technique does not require user
parametrization to prevent noticeable gaps, allowing for free
navigation. Our GPU-based implementation shows that our
method attains interactive frame rates for reasonable screen



resolutions and reasonable flow complexity. We also incorpo-
rate line integral convolution (LIC) [11], which demonstrates
the technique’s suitability with existing texture-based flow
visualization methods on surfaces.

II. RELATED WORK

Existing streamsurface extraction techniques can be classi-
fied into explicit and implicit. In the former, streamsurfaces
are computed by starting streamlines at seed curves and
performing explicit integration from these curves along the
vector field. Triangle-based approximation surfaces that cover
the visited area are typically used for further rendering.

The seminal technique for explicit computation of stream-
surfaces is the one presented by Hultquist [3]. It constructs
triangulated streamsurfaces by performing front advancement,
which is held balanced to keep the front, as much as possible,
orthogonal to the velocity field. To maintain uniform front
density, Hultquist’s approach inserts and removes streamlines
at the front to adapt to flow divergence and convergence, re-
spectively. This approach also detects internal flow deviations,
which can cause very high divergence (e.g., when consecutive
samples head in almost opposite directions), and splits the
front at that point. Although this technique is straightforward,
it faces some difficulties in generating high-quality meshes
efficiently for complex flow scenarios.

Aiming to overcome the limitations of Hultquist’s tech-
nique, some further explicit approaches were proposed [5],
[7], [9]. Garth et al. [5] divide the method into two stages
to obtain accurate streamsurfaces as well as other types of
integral surfaces (such as pathsurfaces, streaksurfaces, and
timesurfaces). First, they compute a surface approximation
by a series of accurate fronts, i.e., time lines, and later they
use these to generate the triangulation for rendering. Krishnan
et al. [7] also decouple streamline integration from mesh
generation to expoit systems with multiple processors like
clusters for the generation of streaksurfaces and timesurfaces.
McLoughlin et al. [6] compute quad-based streamsurfaces and
pathsurfaces by adapting the speed of front advancement. They
detect rotational flow behavior locally by identifying shear
in the produced quadrilaterals at each front. Although, this
approach achieves reasonable performance, it cannot be fully
parallelized and is not suitable with higher-order integration
methods. Recently, Schulze et al. [9] presented a technique
that scales the vector field such that the fronts are kept as
orthogonal as possible to the flow field, which provides a
robust solution for quad-based streamsurfaces extraction. This
approach generates well-spaced meshes by preventing small
front advancements.

To avoid the expensive triangulation involved in most of
the techniques, Schafhitzel et al. [10] presented a point-based
approach, which is most closely related to ours. They sample
a dense set of points along the streamsurfaces and apply
splatting to avoid noticeable gaps on the visualization. Note
that, different from our approach, their technique depends
on user-parametrization to prevent gaps, while our approach
guarantees visualization without gaps. Moreover, Schafhitzel

et al. store the full set of particles in a two-dimensional data
structure, which limits scalability, while our technique only
keeps only the positions along the last two fronts during
surface integration.

Introduced by van Wijk [4], implicit streamsurfaces are
computed by generating a 3D scalar field that corresponds to
the advection of a given seed curve. The streamsurfaces can
hence be obtained from the scalar field with simple isosurface
extraction techniques like marching cubes [12]. Stöter et
al. [8] extended this approach by using a four-dimensional
representation, which also allows for the computation of other
types of integral surfaces.

Texture-based flow visualization on streamsurfaces is an
important approach for the visualization of internal flow prop-
erties. Although we do not contribute novel texture advection
approaches, we demonstrate that our technique is suitable
for combination with some existing approaches [13]–[15].
Weiskopf and Ertl [15] presented a hybrid physical/device
space representation that allows for rendering texture ad-
vection on surfaces and features frame-to-frame coherence.
As their technique addresses not only streamsurfaces, we
incorporated a simplified version of their approach in ours.

III. PHYSICAL-SPACE STREAMSURFACES

Given a steady vector field v(x), we use the parametric
representation of a streamsurface as the function of position
x(ρ,τ) of particles ρ of a streamline over time τ . Thus, stream-
surfaces are computed by solving the ordinary differential
equation:

∂ (x(ρ,τ))
∂τ

= v(x(ρ,τ)). (1)

In a continuous representation, ρ ∈ [ρ0,ρ1] and τ ∈ [τ0,τN ].
The seed curve is hence represented by x(ρ,τ0) and stream-
lines by x(ρi,τ), where 0 ≤ i ≤ 1. Furthermore, a front, which
according to this representation is a timeline, is hence x(ρ,τc)
for any constant value τc.

The basic algorithm for our technique is based on
Hultquist’s approach [3]. We start by placing particles along
the seed curve x(ρ,τ0), which represents the front at time
τc = τ0. This sampling is performed under user constraints,
where the distance between consecutive samples particles in
physical space must not be larger than user-defined δmax and
should not be smaller than user-defined δmin. We keep δmax
as a required constraint and δmin as just desirable to simplify
the algorithm for resampling fronts. All sample particles are
then integrated by a user-defined time step ω , which gives a
new front at x(ρ,τ0 +ω). Notice that, in flow visualization,
the value of ω is typically chosen as a fraction of the cell
size at the position of the vector field’s grid, but we assume a
constant time step here to simplify the notation. The algorithm
then resamples the particles at x(ρ,τ0 +ω) according to δmin
and δmax, i.e., it removes or adds particles accordingly. This
algorithm performs iteratively, as long as τ0 + s · ω ≤ τN ,
where s is the number of time steps already employed. If
τ0 +(s+ 1) ·ω ≥ τN , we need to employ the last time step
as ωlast = τN − (τ0 + s ·ω).



IV. IMAGE-BASED STREAMSURFACES

The basic idea of our approach is to avoid the common
triangulation of the surface. Hence, our streamsurfaces are ren-
dered with just lines. To do so, we need to adapt the approach
described in Sec. III in an image-based manner, involving
image-space parameters that are analogous to the physical-
space δmin, δmax, and ω . In fact, at least the physical-space
parameters δmax and ω must be kept for global consistency,
i.e., the image-space parameters are used only if they do not
violate these physical-space constraints, because otherwise this
could affect the quality of the resulting surface, for example,
by employing too long step sizes or introducing error when
resampling the fronts based on existing pairs of consecutive
samples that are comparably far apart.

A. Image-Based Front Resampling

Resampling of the streamsurface fronts, as aforementioned,
requires the two parameters δmin and δmax. δmax is typically
chosen such that it limits the error introduced by the insertion
of particles during front resampling. As this error potentially
grows during line integration, its estimation is usually difficult.
Therefore, a relatively small δmax should be chosen. On the
other hand, excessive sampling, caused by flow convergence,
may negatively impact computational performance. Thus, δmin
has to be selected sufficiently large, causing sufficient particle
removal.

Our image-based resampling of the streamsurface fronts
consists of finding a set of particle samples along each front,
such that the distance between them is maintained according to
the image-space parameters δ ′

min and δ ′
max. These parameters

represent distances in image space, i.e., relative to the pixel
size, which we assume throughout this paper to equal to one.
Assume that x′(ρi,τt) is the position of x(ρi,τt) in image
space. The physical-space parameter δmax is used also in our
image-space approach to limit error growth. Thus, we insert
N evenly-spaced particle samples to the front x(ρ,τt) between
the consecutive samples x(ρi,τt) and x(ρ j,τt), where

N =

⌊
max

(
∆(ρi,ρ j,τt)

δmax
,

∆′(ρi,ρ j,τt)

δ ′
max

)⌋
, (2)

and ∆(ρi,ρ j,τt) is the distance between x(ρi,τt) and x(ρ j,τt)
in physical space, and ∆′(ρi,ρ j,τt) is their distance in image
space. Particle x(ρi,τt) is removed if its image-space distance
to its previous and next neighbor is smaller than δ ′

min, if and
only if this removal does not conflict with (2).

B. Image-Based Line Integration

The time step ω for line integration is typically selected
such that it is small enough with respect to the integration
error. The precision of higher-order integration schemes, like
the fourth-order Runge-Kutta method (RK4) or the fifth-order
Dormmand-Price (DOPRI5), is usually satisfactory when the
time step corresponds to about 1

5 of a cell size or smaller.
In an optimal situation, image-based line integration would

be parametrized such that an image-based step size ω ′ limits
the physical-space time step ω , i.e., an integration step is

(a) (b) (c)

Fig. 2. Illustration of image fragments (black square). In image space, the
particles (blue spheres) are sampled along fronts (yellow dashed curves) and
propagated along the flow field with an integration method (blue arrows).
(a) Choosing parameters δ ′

max and ω ′ greater than 1√
2

, even if smaller than
the fragment’s size, makes the approach for rendering particles susceptible
to visible gaps. (b) Border cases, which happen when the fragment is at a
border between surface and non-surface regions on the image. These cases can
be neglected in our approach without impact on the quality of the rendered
surfaces. (c) The diamond-exit rule, which demands that a parametrization of
δ ′

max (or ω ′) also equals to 1√
2

if rendering lines.

employed with ω , unless ω ′ would require a smaller step.
However, mapping ω ′ to an optimal step size in physical
space is not straightforward and in practice ω ′ can only
be determined after the step was employed. Thus, the most
straightforward approach would be to employ the step in
physical space, as usual, with ω . Afterwards, one could check
the step length in image space and crop it, if necessary.
This approach, however, would only be suitable for explicit
Euler integration, and could not be applied for higher-order
schemes like RK4 or DOPRI5. For such cases, one could
employ the bisection method to find the optimal step size.
Even with cache coherence of currently available graphics
hardware, this approach would, however, strongly impact on
the technique’s performance by demanding many reads from
the vector field due to the iterative character of the bisection
method. Moreover, it could also in worst cases not be able
to find a satisfactory step size at reasonable iteration count,
i.e., a step size in physical space that leads to a step that
is smaller than ω ′ in image space. Therefore, we adopt a
conservative approach that maps the length of ω ′ from image
space directly to physical space, as if it was the length of
a vector parallel to the image plane, located at the position
(depth) of the integration. The actual step length employed is
hence chosen as the smallest between the mapped length and
ω . Thus, this approach limits the step size in image space and
in physical space to a maximum of ω ′ and ω , respectively.

C. Method

With the image-based front resampling and image-based
line integration at hand (Secs. IV-A and IV-B), we analyse
three different approaches for image-based streamsurfaces, that
differ from each other basically by the rendering method:
particle-based, streamline-based, and front-based rendering.
The techniques described in the following sections assume the
OpenGL specifications for rasterization.

1) Particle-Based Rendering: This approach represents the
most brute force among the ones that we analyze. As such, it
is assumed that the surface rendering will be performed in a



point-based fashion and for visual quality we assume points
with size one, i.e., one particle sample will render at most one
pixel on the screen. The aforementioned image-based methods
for particle sampling along fronts and line integration, must be
combined with each other in such a manner that every image
fragment in the output that is covered by the streamsurface
during integration must retain at least one particle sample for
rendering. Hence, a robust parametrization (δ ′

min, δ ′
max, and

ω ′) must be defined to fulfil this requirement.
According to the graphics API, due to a given input particle

x(ρi,τt), if x′(ρi,τt) is inside the viewport, the fragments

(x,y) = (
⌊
x′x(ρi,τt)

⌋
+0.5,

⌊
x′y(ρi,τt)

⌋
+0.5) (3)

must be rasterized. Therefore, a fragment consists in image
space of a square with side length equal to one, whose area
includes the left and top edges and excludes the bottom
and right edges. If a particle’s position in image space is
inside this area, then this fragment is selected for shading.
Hence, to define the values of δ ′

max and ω ′, we neglect border
cases, which consist of fragments at borders between surfaces
and non-surface regions in the image, due to the current
integration step. Figure 2(b) illustrates such a border case. In
this example, the particle (blue spheres) at open end points of
the fronts (yellow dashed lines) employs one integration step
(blue arrow) that crosses the fragment area without providing a
sample inside it. Defining a parametrization that handles these
cases demands very small values, and incorporating methods
to detect these cases would represent an unnecessary effort,
because the border cases can be neglected without impacting
the quality of the rendered surface. For all other cases, and
to avoid perceivable gaps in the rendered image, we select
the side length of the inscribed square of the incircle of one
fragment, i.e., δ ′

max = ω ′ = 1√
2
. Any greater value for any of

the two parameters would make the approach susceptible to
perceivable gaps as illustrated in Figure 2(a), where greater
values for parameters were chosen and the fragment at the
center would be missed by the approach.

2) Streamline-Based Rendering: Aiming at a method that is
more efficient, we choose to render lines instead of points. By
rendering streamlines we relax the integration constraints, i.e.,
employ line integration with just the physical-space parameter
ω and apply the image-based method only for the front
resampling. Now we have to ensure that whenever we render
two consecutive streamlines, there are no gaps between them.

The rasterization of lines adopts the diamond-exit rule,
which consists of a kind of Bresenham’s algorithm. According
to the diamond-exit rule, if the line intersects a diamond-
shaped area (red square in Figure 2(c)) defined by D =
{(x,y) | |x−cx|+ |y−cy|< 0.5}, where (cx,cy) is the center of
the fragment, then the fragment is selected for shading, except
for line end points residing inside this area. Thus, to avoid
gaps, we set δ ′

max to the length of one side of this diamond-
shaped area, which is δ ′

max =
1√
2
, as well.

3) Front-Based Rendering: Another possible approach for
rendering is to render streamsurface fronts instead of stream-
lines. In this case, we employ image-based line integration

(a) (b)

Fig. 3. Illustration of the fast resampling algorithm (Sec. V). The array B is
positioned at the leaves of the tree (b). Each node of this tree is then assigned
with the sum of its two child nodes. (a) The values of A during the iterations of
our algorithm (top to bottom). This algorithm can run in parallel by assigning
a separate thread for each one of the elements of A, with a synchronization
stop between iterations.

together with physical-space front resampling. By adopting an
analogous logic as for rendering streamlines (e.g., switching
fronts by streamlines in Figure 2(c)) we set ω ′ = 1√

2
.

D. Discussion

Typically, the parameters δ ′
max and ω ′ restrain the physical-

space parameters δmax and ω . Therefore, the particle-based
rendering approach is potentially very accurate. It performs
very fine sampling of the surface and its accuracy is, in
fact, limited by the output image’s resolution. Its computation
is, however, more expensive than the other two rendering
approaches. It usually performs as many integration steps
as the front-based rendering approach and consequently as
many front resamples. The front-based rendering allows for
front resampling after more than one integration step without
producing visual gaps. This is, however, not recommended,
because in our experiments we observed that it can affect sur-
face quality. Moreover, the particle-based approach performs
over more elements than the front-based approach along the
front at each front resampling. The data structure for both
approaches demands to keep the last front during integration
and rendering, which is performed simultaneously in our
technique. The streamline-based rendering approach, on the
other hand, usually employs less steps than the other two
approaches and, although each front resampling is performed
over as many elements as for the particle-based rendering,
the streamline-based rendering is the approach that usually
computes faster. Its data structure keeps the last two fronts
during integration and drawing, which is not critical, because
our technique has low overall memory usage. While perform-
ing front resampling, one must consider the constraints over
the values from the previous front, as well.

The value of δ ′
min should be selected to balance memory

capacity and computation time. In our experiments, we have
satisfactorily set δ ′

min =
2
3 ·δ

′
max.

V. FAST FRONT RESAMPLING

The front resampling is a bottleneck of our algorithm. We
typically resample the fronts once for each integration step,



except for the front-based rendering that can perform front
resampling after more integration steps. Our data structure
is represented as arrays of particles to achieve faster prim-
itive rendering. However, inserting and removing particles
from arrays requires resizing the arrays in our technique. A
straightforward implementation of the front resampling would
basically consist of iterating over each element of the array,
copying the particle data to a second array while inserting new
ones when required. After each iteration, the arrays would
be switched for rendering. Notice that this algorithm has
complexity O(n). Schafhitzel et al. [10] achieve this particle
connectivity with linked lists on the GPU, which is not the case
for our array representation as it impacts on our techniques’
performance.

We propose an implementation that, by adopting a divide
and conquer strategy for multiprocessors (the GPU in our
implementation), exhibits complexity O(log(n)). This algo-
rithm splits the resampling into two steps. First, we map
the output array indices for storing the new and remaining
particles from a given input front sampled in the array Pin =
{p0, p1, . . . , pN−1} of size N, where pi represent the particle
samples. The data structure for this mapping is hence stored in
two further arrays with same size A = {a0,a2, . . . ,aN−1} and
B = {b0,b1, . . . ,bN−1}. Then, we process Pin to store in A the
indices j at which particles descendant from Pin will be copied
to the output array Pout . In B, we store the number of particles
descendant from each one from Pin. For example, if we need
to insert m particles between pi and pi+1 (m includes pi), then
bi = m and ai has the index j at which the first from these
particles will be written to. Hence, if m = 0 then the particle
sample pi is removed from the system. Afterwards, once we
have Pin, A, and B properly set, we can build the appropriate
output array Pout in parallel in almost constant time, due to the
number of available processors, by assigning one processor for
each element in Pin.

Finding the values of A and B starts by computing B, which
is straightforward and can be computed in parallel. However,
because we are performing front resampling in parallel, it
is not trivial to decide which elements from Pin are optimal
candidates for removal (e.g., in a sequence of particles that are
all very close to each other in physical and/or image space).
Moreover, removing all particles with closer distances than
the minimum constraints (δmin and/or δ ′

max) only with a local
test can lead to large distances between consecutive particles
which may conflict with the maximum constraints (δmax and/or
δ ′

max). Thus, we only remove a given particle pi if it is at an
odd location in the array, i.e., if i is odd.

For computing the array A, we take B as input. We use
a binary tree T , where each node of T stores the sum of
its two child nodes. The tree is built by assigning the values
at the leaves with the content of B. Figure 3 illustrates an
example for this algorithm where (b) illustrates T and (a)
shows the values of A after each iteration from top to bottom.
A is hence initialized with zeros. The algorithm starts at the
leaves and iterates upwards on T . At each iteration, for each
node f of T at the ascendant level with left child node l and

(a) (b)

Fig. 4. Zoomed view showing part of the streamsurface from Fig.1, rendered
without LIC. Results of our approach while rendering without (a) and with (b)
tangent vector advection. Note that adopting the tangent vector advection
makes the shading insusceptible to front deformation and thus produces better
shading. However, this approach does not offer full control over the tangents
computed, therefore some small artifacts may become visible, for example,
light blue artifacts near torsion regions on (b) (box).

right child node r, the elements of A that reference children
of l retain their values, while the elements of A that reference
children of r increment their values by the value stored at l. In
Figure 3, the elements of A that should increment their values
are highlighted in (a) with the same color as the values used
to increment them in (b). In the end, A constains the array
locations used to store particles to Pout . The root node of T
has the total number of elements that Pout should have to write
those values. Note that we can assign one separate thread for
each element of A in this algorithm, with a synchronization
step between iterations.

VI. SHADING BY TANGENT VECTOR ADVECTION

Although there exist many techniques for computing normal
vectors from point-based surfaces [10], [16], we keep in
our data structure the current and the previous front during
integration and rendering. Therefore, the normal vectors can
be locally computed by the cross product of the surface
tangent vector at each particle position and the velocity vector
at that point. For simplicity, the tangent vectors could be
locally extracted as the tangent of the front at each particle’s
position. This method, however, would be susceptible to front
deformation (Figure 4(a)).

We compute the tangent vectors E = {e0,e1, . . . ,eN−1} at
each particle sample position pi in P by advecting the tangent
vector from the seed curve and keeping it perpendicular to the
velocity field at the particle’s position. We start by extracting
the tangents of the seed curve, which is in our implementation
the vector with direction equal to the difference between the
next and the previous particles’ samples position pi+1 − pi−1.
This vector is then adjusted, such that it remains perpendicular
to the velocity field and with length equal to ε . ε is in practice
an offset parameter and is set to half δmin or δ ′

min in physical
space, accordingly. At each integration step of our technique,
we advect the tangent vector by also integrating a tangent
particle at position hi = pi +ei. The tangent vector at the next
front is hence selected by adjusting hi − pi such that it again
remains perpendicular to the flow field and with length equal to



(a) (b)

Fig. 5. Visualization of the two Buoyant Flow datasets by our image-based streamsurfaces. The streamsurfaces (blue) are defined by the seed curves (yellow).
Note that in complex flow fields, a short seed curve can lead to large streamsurfaces (a) due to strong flow divergence. In (b) the seed curve at the top leads
to a wide streamsurface that covers a large region of the whole dataset.

ε . This procedure is performed for each integration step and
the normal direction is hence obtained as the cross product
ei×v(pi). Figure 4 compares the result of shading the surface
without and with tangent vector advection in (a) and (b),
respectively. This example shows that applying tangent vector
advection provides more consistent normals along the surface,
leading to a better shading. However, some small artifacts may
become visible as this approach does, due to discretization, not
offer full control over the relation between tangent vectors and
the actual tangent of the computed streamsurface.

VII. INCORPORATING TEXTURE ADVECTION

Texture-based flow visualization, especially LIC, are impor-
tant techniques to reveal the intrinsic structure of streamsur-
faces. Many existing methods for texture-based visualization
on surfaces are suitable candidates to be combined with our
approach [13]–[15]. We applied LIC with a simplified version
of the method by Weiskopf and Ertl [15] to demonstrate this
feature with our method. For this, we attach two geometry
buffers that, for each image fragment store vertex positions
and normals, both represented in physical space. A 3D noise
texture is then replicated in physical space for sampling. The
geometry buffers and the noise texture are then used for
convolution along the flow field and rendering the final pixel
colors, which is further combined with the back buffer.

VIII. RESULTS

We have implemented our technique with CUDA 5.5 and
OpenGL/GLSL interoperability. We used CUDA for line inte-
gration, front resampling, LIC computation, and shading. The
geometry buffer is built with GLSL by rendering the OpenGL
primitives GL POINT S, GL LINES, and GL LINE ST RIP
for rendering, with the particle-based, streamline-based, and
front-based approaches, respectively. Our experiments were

performed on an Intel Core i5 CPU with 4×3.40 GHz and 16
GB of Memory, and a NVidia GeForce GTX 770 GPU with
4 GB.

We demonstrate our technique in the visualization of two
buoyant flow computational fluid dynamics (CFD) datasets.
Both datasets are discretized on structured grids with resolu-
tion of 61×31×61 nodes. For the streamline integration, we
employed the RK4 method with step size of 1

5 of a cell size.
Figures 1 and 5 show the respective results. The streamline-
based visualization approach was used to generate these im-
ages and, for the visualization of intrinsic flow structure, we
incorporated LIC. In Figure 1, the streamsurface reveals the
flow behavior in the vicinity of a region with vortical flow, 150
time steps after the seed curve (yellow). Note that our approach
provides consistent visualization of the surface with coherent
shading, though it renders only lines instead of triangles. We
show results for more complex streamsurfaces in Figure 5 to
demonstrate our technique’s robustness. The streamsurface in
Figure 5(a) starts with a short seed curve that turns out to
result in very long fronts after 375 time steps due to strong
flow divergence. Figure 5(b) shows a very wide streamsurface
that after 412 time steps covers an area about half of the whole
dataset.

Table I shows the timings of our technique to the visu-
alization of the streamsurfaces of the shown figures for an
output image with resolution of 900×900 pixels. Note that the
time taken by each stage of our approach is balanced among
each other. Due to our GPU-based implementation, the total
computation time is hence highly dependent on the number of
integration steps employed (Sec. VIII-A).

Table II compares the performance of our algorithm of front
resampling (Sec. V) with a single-threaded implementation.
The timings for the single-threaded approach consist of com-
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Fig. 6. Bar chart showing timings spent by each step of our approach due to increase in image resolution (left) and number of integration steps (right) for
the streamsurfaces shown in Figs. 1, 5(a), and 5(b). We can observe that the image resolution does not impact the overall performance of our algorithm, while
increasing the number of integration steps directly affects performance.

TABLE I
OUR STREAMLINE-BASED TECHNIQUE’S TIMINGS FOR LINE

INTEGRATION, FRONT RESAMPLING, SURFACE RENDERING, TEXTURE
ADVECTION, AND TOTAL TIME.

Surface Time[s]
Integ. Resam. Render LIC Total

Fig. 1 0.0409 0.0360 0.0217 0.0284 0.1316
Fig. 5(a) 0.1034 0.0868 0.0812 0.0582 0.3475
Fig. 5(b) 0.1264 0.1022 0.1235 0.0970 0.4633

puting the arrays regarding the first step of our fast algorithm.
The timings for the second step of our front resample approach
are in the last column. Our approach reduces the complexity
from the order of O(n) in single threaded systems to O(log(n))
on parallel systems. Note that, due to the performance gain in
the overall front resample time, the fast front line refinement
might be required to achieve interactive frame rates.

TABLE II
TIMES TO COMPUTE THE INPUT ARRAYS WITH A SINGLE THREAD AND ON
THE GPU, AND THE TIME TO PERFORM FAST RESAMPLING ON THE GPU

AFTER THE COMPUTATION OF THE INPUT DATA STRUCTURE.

Surface Time[s]
Sing. GPU Resample

Fig. 1 0.0415 0.0134 0.0225
Fig. 5(a) 0.1200 0.0324 0.0544
Fig. 5(b) 0.2172 0.0412 0.0610

Table III compares the timings of the three image-based
approaches presented in Sec. IV-C. Note that the streamline-
based approach computes much faster than the other two,
and is hence the technique that we recommend for practical
use. This technique is fast, and as such, it is, to the best of
our knowledge, the first interactive streamsurface computation
technique that offers full image-space resolution without user
parametrization.

TABLE III
PERFORMANCE COMPARISON FOR OUR IMAGE-BASED STREAMSURFACES

WITH PARTICLE-BASED, FRONT-BASED, AND STREAMLINE-BASED
RENDERING.

Surface Time[s]
Particles Fronts Streamlines

Fig. 1 0.8946 0.8461 0.1316
Fig. 5(a) 1.9919 1.8905 0.3475
Fig. 5(b) 1.3932 1.2670 0.4633

All timings in Tables I, II, and III were measured as
the mean time of rendering 100 frames with output image
resolution of 900×900.

A. Discussion
Comparative studies on accuracy and performance of ex-

isting streamsurface extraction techniques are, for the best of
our knowledge, missing in the literature nowadays. Such study
would be very difficult due to the diversity and unexpectable
behavior of flows and streamsurfaces. Therefore, previous
works typically provide the isolated evaluation of their own
results. We also remain on the systematic analysis of our
algorithm compared to insights from previous works.

Let us discuss the performance of our technique by
analysing the impact of each step separately. Assume a full
parallelizable machine. Employing one integration step to the
front in parallel (e.g., on the GPU) for each vertex sample
computes in constant time. Resampling the front can be
performed in logarithmic time due to our fast front resampling
algorithm (Sec. V). Thus, the overall performance of our
technique should be impacted linearly by the number of inte-
gration steps employed, because our method, unlike previous
works, does not interfere on the front advection’s speed. The
performance is also impacted logarithmically by the number of
front samples, which is carried by the screen resolution. The
exact relation between screen resolution and front sampling is
empiric as it consists of sampling curves based on the screen
resolution and the physical space parametrization. Beyond that,
our algorithm renders lines after each integration step, which
is optimized by graphics cards, and, as long as the other steps
of our method directly output the vertices and normals as
arrays on the GPU’s memory and yet in the correct order
for rendering, the rendering step should also tend to constant
time. More details on the performance of rendering should be
found on the specifications of the graphics library and varies
among machines’ models.

The stacked bar chart in Fig. 6 shows the performance be-
havior of our technique with the increase to screen resolution
(left) and number of integration steps (right). We can observe
in Fig. 6 (left) that, even though the screen resolution increases
from 600 × 600 to four times more pixels in 1200 × 1200,
the impact to performance is minimal. In fact, the overall
performance mainly reacts to texture advection (yellow) as
to any of the steps of our algorithm (red, blue, and green).



The number of integration steps, on the other hand, impacts
directly on the performance of our technique. We can note in
the three clusters on Fig. 6 (right) that the regular increase of
50 steps increases alsmost constantly the time spent by every
step of our technique.

Evaluating the accuracy of streamsurfaces is not trivial.
In continuous representation, streamsurfaces are sets of in-
finite streamlines that are seeded at curves. In computational
representation, on the other hand, these curves are typically
represented as finite sets of connected vertices, which are
therefore not continuous. Moreover, due to flow divergence,
a streamsurface can rarely be completely mapped by seeding
streamlines directly at the seeding curves, as one can easily
reach the numerical representation’s limits at the seeds and still
find streamlines that diverge from each other. Thus, although
the method of front resample is known to insert small errors
that might lead to meaningful discrepancies, it is still an ac-
ceptable method. It is hence trivial to assume that maintaining
high sampling frequencies reduces this error. In our image-
based approach, these distances are managed by physical-
space parameters, which assure that the resulting surfaces are
qualitatively as good as most of previous approaches. In fact,
our image-based parameters tend to tighten even more these
constraints while the image resolution increases, which might
provide better approximations.

IX. CONCLUSION

We presented an image-based technique for the computation
of streamsurfaces. Our technique renders only lines (or points)
in order to avoid the expensive triangulation involved in most
of the previous techniques. Our technique is very simple to im-
plement because it does not adopt complex criteria for dealing
with flow divergence and convergence. It is also independent
of extra user-defined parametrization to avoid perceivable
discretization artifacts (gaps) on the visualizations. A GPU
optimization was demonstrated to handle front resampling
during streamsurface integration, that reduces the complexity
of the front resample from O(n) to O(log(n)) by adopting
a divide and conquer strategy for the GPU. We analysed
three different approaches for image-based streamsurfaces
(i.e., particle-based, streamline-based, and front-based) and
concluded that due to the performance gains over the other
two, the streamline-based approach is most useful for practical
visualization.

As future work we propose to compare the accuracy of our
image-based streamsurfaces with those from previous work.
Our approach’s accuracy is mainly limited by the resolution of
the output image. Hence, we expect visualization on ultra-high
resolution displays to provide extremely accurate results. We
also propose to further investigate our image-based integration
to study the behaviour of streamlines in the vicinity of very
small structures like critical points, as our approach automat-
ically performs streamline adaptation during navigation.
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