Abstract

We present an exemplary steering system that performs 2Dsfilmwlation and vi-

sualization on graphics processing units (GPUs). The tapobf a vector field pro-

vides the overall structure and therefore lends itself feesng purposes. We build
on the concept of Lagrangian coherent structures presemdges in the finite-time

Lyapunov exponent (FTLE). This allows to perform steeririthwespect to the true
time-dependent dynamics in a given time scope. Based onglghis from the FTLE

visualization, our CUDA-based implementation allows efifexinteractive manipu-
lation of boundary conditions such as solid obstacles ayoil profiles.

Keywords: computational steering, flow visualization, time-departidector fields,
Lagrangian coherent structures, finite-time Lyapunov epd, vector field topology,
GPU.

1 Introduction

Interactive investigation of CFD flow has several advantagfesan provide a means
of achieving targeted flow behavior fast and in an intuitiveywsince changes of the
parametrization of the simulation are directly reflectethmvisualization. Interaction
with such a system can also provide faster and better uadhelisg of the underlying
mechanisms, improving design efficiency, and possiblyitegi new approaches and
even theories.

Whereas building such a system for steady-state simulatiorerely a question of
compute time and efficient simulation, it is not straightfard to design such systems
for time-dependent flow. Although using traditional vigmation concepts such as
instantaneous glyphs or streamlines can provide somehinsigese typically lack the
notion of time-dependency, or in other wordgjrae scopeto account for dynamic



processes inside the flow.

Lagrangian coherent structures (LCS) represent an inclggspopular concept
that features such a time scope: it reflects the overall @gaon in flow maps, which
take seed points of path lines to their end points over a dgives scope. In our con-
text, LCS are present as ridges in the finite-time Lyapunowe&pt (FTLE) field [1],
which is computed by finite-time advection. This not only\pdes a large-scale rep-
resentation of the structure of vector fields similar to geéield topology [2], it fur-
thermore accounts for time-dependency by incorporating &dvection processes.
We provide an introduction to FTLE and its computation inti&ec?2.

Besides FTLE and LCS, traditional flow visualization techmis|like geometric
path lines or streak lines [3] provide additional tools fector field exploration and
are also capable of interactive performance with moderplgea hardware [4, 5].
Advanced systems like VisTrails [6] combine features ofkfloxww and visualization
systems for exploratory computational tasks.

Computational steering is the process of reparametrizirggpgfication or a simu-
lation based on the analysis from visualization to improgelation to a given prob-
lem. Van Liere et al. [7] presented a formal description obenputational steering
environment (CSE) and its requirements. Mulder et al. [8}sifeed CSEs such as
SCIRun [9] with a taxonomy in a survey paper, which we will adi@ptour approach
in Section 3.3. However, typical steering environmentsG&D applications exhibit
large compute clusters to achieve interactive performange, the Lattice Boltzmann
approach by Hardt et al. [10]. In this paper, we employ comityagaphics hardware
on a standard workstation to perform interactive flow stegri

2 Background of Finite-Time Lyapunov Exponent

Vector fields exhibit a spectrum of Lyapunov exponents. Ihis largest exponent
in this spectrum that has become a prominent tool for pralility analysis in time-
dependent vector fields: denoted Lyapunov exponent (LButiirout this paper. The
LE can be determined by computing two neighboring trajéesoin phase space and
measuring their separation rate as time approaches infifitgreby, precaution has
to be taken to assure that the trajectories do not separafarie.g., by renormaliza-
tion [11].

Since the systems under investigation are often defined oit@t®@mporal domain
only, or because it is often the aim of the researcher tocesie analysis to a temporal
region of interest, a variant has becoming more and morelaopthe finite-time
Lyapunov exponents (FTLE). Again, there are techniquessoir@ proximity of the
(implicitly) involved trajectories, such as the localiZETLE [12].

Whereas the LE and FTLE have been used for a long time for peddlity anal-
ysis, there is a recent trend in the visualization commuioityse FTLE for revealing
the topology of time-dependent vector fields. Haller [1]whd that ridges present
in the FTLE represent a time-dependent counterpart to aeas from vector field



topology [2]; they separate regions of different behavior.

In the context of time-dependent vector field topology, th&E is typically com-
puted from theélow mapg!*” (x), a mapping from seed poimnsof trajectories to their
end point after advection for finite tim&. According to Haller [1], the finite-time
Lyapunov exponent(x, t) computes from the flow magp as follows:

1 T () dettT(x)
a(x,t)_mln Amax [( I ) I ], (1)

Amax De€iNng the largest eigenvalue.

Beyond separating regions of qualitatively different beba\LCS represent trans-
port barriers with respect to advection. Hence, they candesl,ufor example, in
the context of pollution: if diffusive mechanisms are neggel, they provide time-
dependent barriers for transport of a pollutant [13]. Awothpplication is in the
context of mixing processes. FTLE can be computed from botwdrd (I" > 0)
and backward® < 0) flow maps and if ridges inside the former intersect ridges in
the latter, this gives rise to the Lagrangian skeleton ofimgX14]. We utilize this
property in Section 5.2. Intersections of forward-time agxkerse-time LCS also give
rise to the concept of hyperbolic trajectories [15, 16], ipath lines passing through
these intersections, important in the context of time-depeat vector field topology
and mixing.

3 Interactive Flow Steering

CFD simulations are hard to parametrize with respect to angijaal. The complex
relationship between flow and boundary conditions requesg¢ensive experience to
achieve a certain behavior. Typical simulations exhibgthhcomputational cost and
generate vast amounts of multi-attribute data. The argmlystheir results usually
leads to a redesign of boundary conditions and to a reparaai@in of the sim-

ulation. Typically, this time-consuming process is itechuntil the desired aim is
achieved.

In this section, we demonstrate methods for steering 2D flowesactively as
shown in Figure 1 with the help of parallel graphics proaggsinits (GPUs). We
employ an interactive flow simulation based on the incongbds Euler equations
that is capable of manipulating boundary conditions, swscbadid walls and velocity
profiles, interactively. The spatio-temporal structureha unsteady velocity field is
then visualized with FTLE and advected particles for prowgdnsight into the flow
behavior. Depending on the application, an engineer cartifgigegions of flow sep-
aration or attachment, related to ridges in the FTLE fieldyall as general barriers
of advective transport, separating regions of differeiaveor. The instant feedback
of the simulation lends itself to steer the flow and to imprtheoverall result interac-
tively by modifying the shape of solid boundaries or by chiaggrescribed velocity
conditions.
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Figure 1: Process of interactive flow steering. The simoitedjenerates data processed
with specific visualization techniques, e.g., FTLE or gatirajectories. The engineer
interprets the results visually and modifies parametexs) ag boundary conditions,
to steer the simulation interactively into a desired diett

3.1 Flow Simulation

The first step of the interactive steering process depictdtgure 1 is an interactive
flow simulation. Typically, full 3D Navier-Stokes solversgtebit high computational

expense and are hence not capable of interactive perfoend@herefore, we demon-
strate our approach by reverting to the incompressibler&gjeations in 2D:

ou 1
E+(U'V)U:—;vp+f7 (2)

V-u=0, (3)

whereu = (u,,u,)" is the unsteady velocity vector fielg, is the constant mass
density,p the pressure, anfd= (f,, f,)" the sum of all external forces.

Equations (2) and (3) are solved numerically by splitting tiperators to seperate
the advection, external force, and pressure/incompriégsjarts. Then, we advance
the simulation with an explicit Euler step in time. Furthena, the spatial domain is
discretized with a uniform grid in 2D. For background infaton on CFD and its
numerical solutions we refer the reader to Anderson’s teoklj17]. Details of our
approach are given next and in Section 4.1.

3.1.1 Veocity Advection

After splitting the equations, we can solve the advectiep sieparately, which boils
down to the inviscid Burgers equation. For interactive satiohs, comparably large
time steps are required; hence it should be ensured thatuimencal solver does
not become unstable. Stam [18] presented the semi-Lagmaagivection technique,
which is unconditionally stable and well suited for largaéi steps. Stam’s approach
is based on the method of charateristics by tracing pastlzdek in time. The velocity



is then interpolated and is advanced forward in time. Thevdask of this method
is numerical diffusion. It can be shown that the method dlstisolves theviscid
Burgers equation; it introduces artifical viscosity to thengiation. However, this
behavior alleviates the missing viscosity term in Euledsaions to some extent. In
the following, we use this technique as a building block fon@e advanced method
and we denote the semi-Lagrangian advection with an opeddto.

Selle et al. [19] introduced a modified MacCormack method dhaseback and
forth error compensation and correction (BFECC):

0 = AW, (4)
' = AR, ©)
u* = Ut—i—l + % (ut i Ut) : (6)

where A% is the semi-Lagrangian advection reversed in time @and the result of
the advection step. This method reduces numerical diffusignificantly compared
to Stam’s approach. For our simulation, we stick to Equati@)-(6).

3.1.2 PressureProjection

The second step of the operator splitting is enforcemenh@dmpressibility. The
intermediate result* from the advection step is usually not free of divergence, du
to advection and interpolation. As in Stam [18], we emploggsure projection to
calculate the final velocity’*!. Helmholtz-Hodge decomposition and the appliance
of the divergence operator on both sides lead to the follgWwioisson equation for the
pressure:

P *

Ap = A_tv U, (7)
whereAt is the time step. The discretization of the Laplacian omeran a uniform
grid with finite differences leads to a large but sparse sysitlinear equations. We
solve the system numerically with a conjugate gradientesdier the unknown pres-
sure. For more details on numerical solutions of linearesyst we refer the reader
to Saad'’s textbook [20]. Once the pressure is calculatedntermediate result* is
projected onto its solenoidal component:

Ut = - p, ®)

with V - u*! = 0. At this stage, one simulation step is finished and is readyeto
visualized.

3.2 Visualization

In this section, we demonstrate how the data from the prevsmnulation step is

visualized to provide insight into the spatio-temporalisture of the unsteady vector
field. Our main technique is the visualization of Lagrangiaherent structures with
FTLE. Furthermore, we discuss well-established meth&eglhie visualization of path

lines, particle tracing, and vorticity briefly.



3.2.1 Lagrangian Coherent Structureswith FTLE

The FTLE in Section 2 can be calculated using positive anathagadvection times

T'. For positive values df’, the FTLE measures separation and yields repelling coher-
ent structures (Figure 2(a)). For negative values,dhe FTLE measures separation in
reverse time and hence yields attracting coherent strestulustrated in Figure 2(b).

@_j
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Attracting LCS

Figure 2: (a) Repelling LCS present as ridge (red) in the foiwEFLE; adjacent
particles diverge when advected with the flow. (b) AttragtlrtCS present as ridge
(blue) in reverse FTLE; particles converge to the LCS.

In general, the FTLE is calculated continuously throughbetentire space-time
domain of the fluid. In practice, however, the domain is ditzed with a finite FTLE
grid that is independent from the simulation grid. For eactenof the grid, a par-
ticle is seeded and is advected forward or backward in tiespectively. When the
advection timetT" has passed, the final position of each particle is used toleddc
the flow map and the FTLE is obtained according to Section 2.

As the FTLE is a scalar value, it can be visualized with a cotmling. A contin-
uous image of the discrete values is obtained with bilinetrpolation. High values
of the FTLE indicate areas of strong Lagrangian separaticiné resepective flow
direction. In the visualization, these areas typicallyriaolored ridges that represent
Lagrangian coherent structures of the flow. Shadden etHIsfibwed that the sharp-
ness of the ridges is a measure for the flux across an LCSheeqguality of an LCS
as a flow barrier. Therefore, we do not perform explicit ridg&action, e.g. of height
ridges [22], but leave it to the user to judge the quality asid of the ridges. Figure 3
depicts an example of both FTLE visualizations.

3.2.2 Other Visualization Techniques

In addition to FTLE, we also support typical traditional flevgualization techniques.
Together with FTLE, they provide valuable tools to analymd anderstand complex
unsteady vector fields.

Path lines are trajectories that individual particlese¢rae when they are advected
with time-dependent flow. A path line can be formulated asstiation of an inital
value problem of a non-autonomous ordinary differentialampn from the vector
field. A path line contains the integrated time history ofrtii&ion of a single massless
particle. It can be visualized experimentally by taking mgdime exposure record of
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Figure 3: Example of FTLE visualizations of two rivers. s flowing from left to
right in both cases. (a) Bifurcation in forward time. The flasplit into two parts at
the wedge-shaped obstacle. The Lagrangian dynamics cffhiigng is conveyed by
the long red ridge. Furthermore, it is visualized how the flowhe bottom arm gets
turbulent. (b) Confluence with reverse-time FTLE. The longelidge visualizes the
Lagrangian process of merging.

the motion of the particle. We visualize path lines by trggoarticles from discrete
locations in the fluid domain and by connecting the positiohsach particle over
time with a line strip. As path lines can be considered asphés-temporal record of
the flow map, they facilitate the interpretation of the FTLiEedtly and they provide
additional information about flow direction.

Injecting particles into unsteady flow is a common visudi@atechnique. It is
the direct analogon to injecting tracers in real-world floxperiments. We support
this method by placing particle emitters interactivelyoirthe fluid domain and by
advecting the particles with the flow. The particles are ldigpd as colored points.
Each emitter is able to color its particles in a differentbcphence mixing or clustering
processes can be visualized in a straightforward manner.

Furthermore, we visualize vorticity magnitude. This is mglie way to locate
eddies in turbulent flow. We calculate the curl of the velpditld and map it to a
color value. Figure 4 shows the three different visual@atmethods for the same
setup.

3.3 Computational Steering

With the visualization techniques from the previous settem engineer can modify
parameters of the simulation while it is in progress, legdasncomputational steering.
In general, Mulder et al. [8] developed a taxonomy to clgssifimputational steering
environments (CSEs) concerniagopearchitecture anduser interface The diagram
of a generic CSE is illustrated in Figure 5.
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Figure 4: Flow from left to right around a sphere. Visualiaatwith (a) path lines,
(b) particle injetion and tracing, and (c) colorcoding ofticity magnitude.
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Figure 5: Diagram of a computational steering environméet Mulder et al. [8].

According to Mulder’s taxonomy, thecopeof our CSE provides steering for model
exploration of unsteady vector fields from CFD. In general,|ddds definition of
model exploration deals with the application’s output data its input parameters
which are in our case the velocity field and its boundary cions.

Thearchitectureof our prototype is a standalone single-threaded CPU proaéss
access to a parallel GPU for accelerated computation. Thenation provided to
the user include results from flow visualization (see Sacd@). Steerable items that
the user can manipulate are the insertion and the removalliof @bstacles to and
from the fluid domain, which allows the user to modify the shamd position of
geometry interactively. Furthermore, boundary condgisach as velocity profiles
can be inserted or removed to modify flow control.

The user interfaceof our application is handled with a graphical user intezfac
(GUI). For monitoring, the user can choose which visualmatechnique is best for
the current task and furthermore, multiple visualizatioaa be blended together to
provide an overall picture of the flow that a single technigaenot reveal. The steer-
ing interface lets the user modify solid and velocity bougdaonditions directly in
the view port window, which is discussed in detail in Sectos.

Interactive steering enhances productivity because maesl the time between
changes of parameters and the visualization of the regiifiantly, allowing for



a tight design cycle. However, steering typically requinegh performance comput-
ing on large and expensive clusters with low-latency nekimerconnects to perform
simulations and to visualize the vast amount of data atactese speed. In this paper,
we take a first step to perform interactive flow steering oticesdti 2D model complex-
ity on a single PC with commaodity graphics hardware.

4 Implementation

In this section, we describe our implementation of intavactlow steering on the
GPU. We employ NVIDIA's Compute Unified Device Architectui@{DA) for gen-
eral purpose programming of graphics hardware. CUDA givegldpers access to
the instruction set and memory of the GPU. The high floatiag{performance and
the high bandwidth of GPUs become accessible for computatip providing an ab-
straction layer on top of the rendering pipeline. GPUs hgwarallel throughput archi-
tecture that emphasizes executing many concurrent th(sadge intruction, multiple
threads). The programming of the GPU with CUDA is realizebesitwith Fortran or
C and for our implementation we used the latter. The GPU cedscapsulated in
kernels, which are called as functions from the regular CRi¢c®ne of the specifics
of CUDA is the possibility to use 2D and 3D textures to storeddextures are spa-
tially uniform data containers that are usually used to agtdits on geometric meshes
in computer graphics. We make use of textures because thep&iMdles very fast
bi-/trilinear interpolation in hardware and read accessashed efficiently as long as
spatial coherence is ensured.

4.1 Fluid Solver

The 2D Euler solver is an implementation of [19] for the adie@tand of a precon-
ditioned conjugate gradient algorithm for the pressurgegtmn, described in Sec-
tion 3.1. The velocity field is stored in a 2D float2 (i.e., witto floating-point com-
ponents) texture with a resolution according to the grié.siZhe semi-Lagrangian
advection in Equations (4) and (5) benefits from fast intlfpen and caching from
the texture unit. For the Poisson Equation (7), we employptheonditioner by Ament
et al. [23] to accelerate convergence. The method is sytecifically for the Poisson
problem and for parallel GPU processing. To achieve intetaérame rates, we are
currently bound to single precision for the numerical golut With current graphics
hardware, we can simulate fluids of interactive performanmitie a grid resolution of
up to 1024x 1024 on a single PC. However, the computation of the FTLE imthe
section is memory-consuming and we revert to a fluid domabil@fx 512 for most
cases.



4.2 FTLE Computation

The computation of the FTLE requires particle trajectofasvard and backward in
time according te+-Tiorwarg @Nd—Thackwara FOr unsteady vector fields, the FTLE is also
time-dependent, which requires continuous recomputatien animated time series
of the FTLE. In a n&ve implementation, each frame requires to simulate thd ftani

1 = (Tiorward + Thackward /At time steps with interleaved particle tracing for the path
lines. For interactive performance, this approach is gipianot feasible.

We observe that there are many redundant computations &etwe frames, i.e.,
(n—1) time steps are identical to the previous frame. For thabreage come up with
a time sliding window that stores redundant vector fieldsstaaked buffer object. On
the GPU, this buffer is represented by a 3D float2 texturehitexture, we keep all
vector fields for a period dfpackwargbackward in time and dffowarg @head of current
time. Figure 6 shows our approach for two time stepsndt; .
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Figure 6: Left: Time line with sliding window. For each franasualized, we store
vector field information for the backward (blue) and forwéreld) FTLE. The simu-
lation runs(Ttomara + At) ahead of time. Right: Texture memory layout. Each 2D
vector field is represented as a time slice in a 3D texturehdtiansition from, to

t1, the “oldest” slice is replaced with new simulation data.
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With this approach, we can reduce the computational expemgee simulation
to one time step per visualization frame. When time is advaufican ¢, to ¢;, the
sliding window is moved forward in time. Before the next fragen be visualized,
the new simulation data is copied to the 3D texture. To rethacelwidth we employ a
dynamic time coordinate in the 3D texture, i.e., we do nobade all the data forward
in time which would induce heavy data transfer, but insteadeep a dynamic pointer
to the current time slice (gray shaded in Figure 6) and ovélre earliest time slice
with new simulation data. With this approach the memory ieguent is proportional
to the grid size and to the advection timBgwarg and Thackwarda FOr €xample, a grid
size of 512x 512 and 256 discrete time steps for each FTLE window has a memo
consumption of 1GB.

For the visualization of both FTLEs in each frame, we intégzarticle trajecto-
ries numerically through the spatio-temporal 3D texturéesicted in Figure 7. The
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computation is very efficient because the GPU threads sawe texture slice by
slice in parallel, i.e., they traverse time simultaneou3lgerefore, random access is
rather small within one integration step, yielding highliacoherence and thereby
good performance.

Figure 7: Left: Particle trajectories for tintg. Right: Trajectories for time;. The
time line is wrapped around as the sliding window is moveaéod.

Once the final positions(t + Ttorward) @aNAX(t — Thackward Of the particles are cal-
culated, we store them in the flow map kept in another 2D flaattite. This means,
for each node of the FTLE grid (white points in Figure 7), tlusigons of the ad-
vected particles (red and blue points in Figure 7) are stordige texture, depending
on which FTLE-type is visualized.

Afterwards, we compute the gradient of the flow map with finierences. For
example, at an arbitrary poifi, j) in our FTLE grid withT = Tiorware, CENtral differ-
ences yield:

d¢t+T( ) Tit1, i (HT) =21, (4T) i1 (E4+T)—24,5—1(¢+T)
— Ti+1,j5 (t) 731 1,5 (t) Yi,j+1 (t) Yi,j—1 (t) (9)
dx Yit+1,5 (t+T) (t+T) Yij+1 (t+T) Yij—1 (t+T)
Xi,j Ti+1 J(t)_xl 1 J(t) Yi J+1( )—Yi = 1(t)

The FTLE is then calculated according to Equation (1) anahadlif stored in a 2D
float texture used for mapping the FTLE value to color. Thel image is visualized
as a textured quad with OpenGL.

The choice ofl" is dependent on the particular application. In generalldhger
T is, the more refined the LCS become. However, an importantanal for the
appropriate choice df is the time it takes particles to exit the domain. Therefdre,
nearly all points in the FTLE grid leave the domain in, for exde 2 seconds, then
it does not make sense to chodse- 2s, since further integration would not change
the FTLE field. Therefore, it is difficult to employ a constaatvection time for all
applications and as a consequence our tool offers the pldggibadjust the advection
time for both FTLEs independently.
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4.3 Steering of Boundary Conditions

In our implementation of interactive steering, we providecd manipulation of bound-
ary conditions. For simple editing, our application offangencil tool for image-based
steering in the visualization view port. The pencil can hawe of the following
modes: set/erase solid obstacles or set/erase prescehmtities. Furthermore, the
pencil size is variable, similar to well-known tools fromage editing. For the veloc-
ity, the direction and magnitude is set with a seperate Geineht. The dialog for
boundary interaction is shown in Figure 8.

Set Obstacle

0.1000 '
W=I095,0.21,0,

Figure 8: The user can choose the type of editing with the ¢P&tode” together with
the corresponding “Pencil Size” (in grid cells). On the |&fie mouse cursor is shown
and the white square underneath is a representation of th&l'pdootprint. The
direction and magnitude of prescribed velocity conditimnset with the yellow arrow
and the “Inlet Power” GUI element (velocity magnitude), pestively. In addition
to steering parameters, the interaction dialog also iredutie placement of particle
sources and the control of the FTLE window sizes.

With the selected tool from the GUI, boundary conditions barmodified easily
with a mouse by drawing into the window domain. In our impleta¢ion, we keep
two textures for representing boundary conditions. Fa&iD unsigned char texture is
used to tag each grid cell with the boundary type, which caeitherBC FLUI D=0,
BC.SOLI D=1, or BC.VELQOCI TY=2. Second, a 2D float2 texture is required to store
vector information about velocity conditions. These tegtuare used in our kernels
to determine the boundary type of each cell. The appliant®ondary conditions is
implemented in the pressure projection step of the simanatirherefore, we update
the matrix of the discretized Laplacian in Equation (7) wiie help of these textures
whenever the boundary conditions change.

As the simulation runs ahead of the visualized time framgufg 6), it takes
(Ttorward + Thackwarat+ At) /At time steps until the sliding window is recalculated and
the FTLE visualization is up to date. However, as our entiogkffow runs interac-
tively, this process takes only a few hundred milliseconu$ during that time visu-
alization remains smooth and responsive. An alternatirategty would be to blank
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the visualization screen for the duration of the sliding daw after each update of
boundary conditions.

5 Resultsand Applications

5.1 Performance

In this section, we provide performance evaluations of mylémentation with CUDA.
Our test system is a standard PC platform with an Intel Cor&@g@0CPU at 3.33GHz,
12GB RAM, and an NVIDIA GTX-480 graphics card with 1536 MB oti&o memory.
Figure 9 illustrates performance in frames per second.(fps)
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Figure 9: Performance evaluation of our interactive stepworkflow. We evalu-
ate 3 different grid sizes for the fluid and FTLE domains. Tiféeently colored
bars depict performance for varying integration lengththefforward and backward
FTLE. The drop down in performance for larger advection smesults from the in-
creased expense for calculating longer FTLE particledtajees. For large grid sizes,
there is insufficient GPU memory to store the textures fogdaf TLE sliding win-
dows.

We evaluate performance for resolutions of 25866, 512< 512, and 1024 1024
cells for both grids, fluid and FTLE. In addition, we show thepiact of growing ad-
vection times for the FTLE computation of Section 4.2. Thgeled on the right of
Figure 9 depicts the sizes of the sliding windows for forwaral backward FTLE.
The computational expense grows linearly with the integnalength due to the in-
creased duration of particle tracing. The strong drop dawrdrge advection times
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(see 512« 512 between 80/80 and 96/96) results from a bottleneck ia tlahsfer
as video memory and texture cache run out. However, for igedgiurposes, our im-
plementation reaches interactive performance for gridssaf up to512 x 512 and
advection times of up t80 - At for each FTLE.

5.2 Application: Air Conditioning

In the following, we show typical applications for interiet flow steering based on
our method. First, we present an example of an air condrtgpsetup for a com-
puter cluster, shown in Figure 10. The spatial arrangemehieacompute nodes with
respect to the inflow from the air conditioning system is @lifor a good cooling

performance. Insufficient mixing reduces the overall penfance of cooling, which
can cause overheating and damage of hardware.

In the top row of Figure 10, the nodes are arranged in a magaedi manner com-
pared to the bottom row. While the glyph visualization in Fegd0(a) provides only
limited insight into the flow and its mixing properties, thélEE visualization in Fig-
ure 10(b) depicts a rather simple LCS. According to Mathur.gtld], intersections
of repelling and attracting LCS in the Lagrangian skeletahaate turbulent areas of
high mixing; hence the first arrangement of nodes is likelggaooled insufficiently.
In the second arrangment, the nodes are positioned in areeted manner. The
glyphs in Figure 10(c) show hardly much difference compaoeithe aligned arrang-
ment but the FTLE visualization in Figure 10(d) depicts pyesf intersecting forward
and backward LCS, indicating enhanced mixing. The fluid andE-@omain sizes
are512 x 512 and the advection time i - At for both FTLES.

5.3 Application: Airfoilswith Active Flow Control

In our second example, we investigate active flow contrdl{@dairfoil design. By in-
jecting energy via actuators into key areas, changes ihdocgobal flow can improve
performance of aircrafts significantly. Our computatiostalering supports engineers
in positioning actuators and adjusting their power acewdo the desired flow be-
havior; Shadden et al. [21] have shown that FTLE can inditateseparation, one of
the main mechanisms for efficiency drops in aircraft operatiwWith our exemplary
implementation, we can model 2D airfoil profiles and insetuators in the form of
velocity boundary conditions. Figure 11 illustrates thegauot of an actuator com-
pared to the uncontrolled flow around an airfoil. The fluid &1d.E domain sizes are
512 x 512 and the advection time ! - At for the FTLE.

6 Conclusion

In this paper, we presented interactive steering of a 2D flowlation on a GPU. We
employed an Euler solver to simulate inviscid and incomgbds fluids with inter-
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active performance. Our visualization with FTLE in forwanshe and reverse-time
allows insight into the complex behavior of the unsteadpey field, which is cru-

cical for improving applications. We provide interactiveering by modifying solid

and velocity boundary conditions similar to well-known ®fsom image editing. The
instant feedback of our CUDA implementation allows efficiemddeling and contin-
uous redesigning towards a certain goal.

Our performance-oriented implementation of the fluid setioh with CUDA is
currently bound to single precision, which limits numefr@ecuracy accordingly. Fur-
thermore, the rather high memory consumption of the FTLEmaation becomes a
limiting factor for long advection times. However, in cat to CPUs, performance
of graphics processors still grows very fast due to massaraliglism, which can
remedy some of these issues in the near future.

Apart from specifics of the implementation, we have demansttthat FTLE lends
itself for interactive flow steering and has several advgedacompared to traditional
flow visualization techniques. Future systems could ingast what other methods of
flow feature extraction, e.g. vortex extraction, are welleslifor interactive steering.
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Figure 10: Air conditioning of a compute cluster: alignedhagement (top row) ver-
sus optimized arrangement (bottom row). Air flows in from téf (green) into a
closed room. (a) Arrow glyphs provide limited insight intovil. (b) Forward (red)
and backward (blue) FTLE visualize comparably simple LCHO(atimized arrange-
ment exhibits slightly more vortices. Overall mixing belmvis still hard to judge.
(d) FTLE exhibits complex Lagrangian skeleton of mixing (mantersections of at-
tracting and repelling LCS), indicating increased mixing.
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(©) (d)

Figure 11: Airfoils with active flow control. Visualizationith backward FTLE (blue)
and two particle tracers (red, dark green) around an apfoiile. (a),(c) Uncontrolled
flow generates high wake turbulence. (b),(d) A velocity atiu (light green) attaches
the flow; the resulting wake turbulence is diminished sigaifitly.
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