
Abstract

We present an exemplary steering system that performs 2D flowsimulation and vi-
sualization on graphics processing units (GPUs). The topology of a vector field pro-
vides the overall structure and therefore lends itself for steering purposes. We build
on the concept of Lagrangian coherent structures present asridges in the finite-time
Lyapunov exponent (FTLE). This allows to perform steering with respect to the true
time-dependent dynamics in a given time scope. Based on the insights from the FTLE
visualization, our CUDA-based implementation allows effective interactive manipu-
lation of boundary conditions such as solid obstacles or velocity profiles.

Keywords: computational steering, flow visualization, time-dependent vector fields,
Lagrangian coherent structures, finite-time Lyapunov exponent, vector field topology,
GPU.

1 Introduction

Interactive investigation of CFD flow has several advantages. It can provide a means
of achieving targeted flow behavior fast and in an intuitive way, since changes of the
parametrization of the simulation are directly reflected inthe visualization. Interaction
with such a system can also provide faster and better understanding of the underlying
mechanisms, improving design efficiency, and possibly leading to new approaches and
even theories.

Whereas building such a system for steady-state simulation is merely a question of
compute time and efficient simulation, it is not straightforward to design such systems
for time-dependent flow. Although using traditional visualization concepts such as
instantaneous glyphs or streamlines can provide some insight, these typically lack the
notion of time-dependency, or in other words, atime scope, to account for dynamic

1

processes inside the flow.

Lagrangian coherent structures (LCS) represent an increasinlgy popular concept
that features such a time scope: it reflects the overall organization in flow maps, which
take seed points of path lines to their end points over a giventime scope. In our con-
text, LCS are present as ridges in the finite-time Lyapunov exponent (FTLE) field [1],
which is computed by finite-time advection. This not only provides a large-scale rep-
resentation of the structure of vector fields similar to vector field topology [2], it fur-
thermore accounts for time-dependency by incorporating true advection processes.
We provide an introduction to FTLE and its computation in Section 2.

Besides FTLE and LCS, traditional flow visualization techniques like geometric
path lines or streak lines [3] provide additional tools for vector field exploration and
are also capable of interactive performance with modern graphics hardware [4, 5].
Advanced systems like VisTrails [6] combine features of workflow and visualization
systems for exploratory computational tasks.

Computational steering is the process of reparametrizing anapplication or a simu-
lation based on the analysis from visualization to improve asolution to a given prob-
lem. Van Liere et al. [7] presented a formal description of a computational steering
environment (CSE) and its requirements. Mulder et al. [8] classified CSEs such as
SCIRun [9] with a taxonomy in a survey paper, which we will adoptfor our approach
in Section 3.3. However, typical steering environments forCFD applications exhibit
large compute clusters to achieve interactive performance, e.g., the Lattice Boltzmann
approach by Hardt et al. [10]. In this paper, we employ commodity graphics hardware
on a standard workstation to perform interactive flow steering.

2 Background of Finite-Time Lyapunov Exponent

Vector fields exhibit a spectrum of Lyapunov exponents. It isthe largest exponent
in this spectrum that has become a prominent tool for predictability analysis in time-
dependent vector fields: denoted Lyapunov exponent (LE) throughout this paper. The
LE can be determined by computing two neighboring trajectories in phase space and
measuring their separation rate as time approaches infinity. Thereby, precaution has
to be taken to assure that the trajectories do not separate too far, e.g., by renormaliza-
tion [11].

Since the systems under investigation are often defined on a finite temporal domain
only, or because it is often the aim of the researcher to restrict the analysis to a temporal
region of interest, a variant has becoming more and more popular: the finite-time
Lyapunov exponents (FTLE). Again, there are techniques to assure proximity of the
(implicitly) involved trajectories, such as the localizedFTLE [12].

Whereas the LE and FTLE have been used for a long time for predictability anal-
ysis, there is a recent trend in the visualization communityto use FTLE for revealing
the topology of time-dependent vector fields. Haller [1] showed that ridges present
in the FTLE represent a time-dependent counterpart to separatrices from vector field

2

topology [2]; they separate regions of different behavior.

In the context of time-dependent vector field topology, the FTLE is typically com-
puted from theflow mapφt+T

t (x), a mapping from seed pointsx of trajectories to their
end point after advection for finite timeT . According to Haller [1], the finite-time
Lyapunov exponentσ(x, t) computes from the flow mapφ as follows:

σ(x, t) =
1

|T |
ln

√

√

√

√λmax

[

(

dφt+T
t (x)
dx

)⊤

dφt+T
t (x)
dx

]

, (1)

λmax being the largest eigenvalue.

Beyond separating regions of qualitatively different behavior, LCS represent trans-
port barriers with respect to advection. Hence, they can be used, for example, in
the context of pollution: if diffusive mechanisms are neglected, they provide time-
dependent barriers for transport of a pollutant [13]. Another application is in the
context of mixing processes. FTLE can be computed from both forward (T > 0)
and backward (T < 0) flow maps and if ridges inside the former intersect ridges in
the latter, this gives rise to the Lagrangian skeleton of mixing [14]. We utilize this
property in Section 5.2. Intersections of forward-time andreverse-time LCS also give
rise to the concept of hyperbolic trajectories [15, 16], i.e., path lines passing through
these intersections, important in the context of time-dependent vector field topology
and mixing.

3 Interactive Flow Steering

CFD simulations are hard to parametrize with respect to a given goal. The complex
relationship between flow and boundary conditions requiresextensive experience to
achieve a certain behavior. Typical simulations exhibit high computational cost and
generate vast amounts of multi-attribute data. The analysis of their results usually
leads to a redesign of boundary conditions and to a reparametrization of the sim-
ulation. Typically, this time-consuming process is iterated until the desired aim is
achieved.

In this section, we demonstrate methods for steering 2D flowsinteractively as
shown in Figure 1 with the help of parallel graphics processing units (GPUs). We
employ an interactive flow simulation based on the incompressible Euler equations
that is capable of manipulating boundary conditions, such as solid walls and velocity
profiles, interactively. The spatio-temporal structure ofthe unsteady velocity field is
then visualized with FTLE and advected particles for providing insight into the flow
behavior. Depending on the application, an engineer can identify regions of flow sep-
aration or attachment, related to ridges in the FTLE field, aswell as general barriers
of advective transport, separating regions of different behavior. The instant feedback
of the simulation lends itself to steer the flow and to improvethe overall result interac-
tively by modifying the shape of solid boundaries or by changing prescribed velocity
conditions.

3

Interactive

Visualization

Engineer

Interactive

Simulation

Data

InterpretationSteering

Figure 1: Process of interactive flow steering. The simulation generates data processed
with specific visualization techniques, e.g., FTLE or particle trajectories. The engineer
interprets the results visually and modifies parameters, such as boundary conditions,
to steer the simulation interactively into a desired direction.

3.1 Flow Simulation

The first step of the interactive steering process depicted in Figure 1 is an interactive
flow simulation. Typically, full 3D Navier-Stokes solvers exhibit high computational
expense and are hence not capable of interactive performance. Therefore, we demon-
strate our approach by reverting to the incompressible Euler equations in 2D:

∂u
∂t

+ (u · ∇) u = −
1

ρ
∇p+ f, (2)

∇ · u = 0, (3)

whereu = (ux, uy)
⊤ is the unsteady velocity vector field,ρ is the constant mass

density,p the pressure, andf = (fx, fy)
⊤ the sum of all external forces.

Equations (2) and (3) are solved numerically by splitting the operators to seperate
the advection, external force, and pressure/incompressibility parts. Then, we advance
the simulation with an explicit Euler step in time. Furthermore, the spatial domain is
discretized with a uniform grid in 2D. For background information on CFD and its
numerical solutions we refer the reader to Anderson’s textbook [17]. Details of our
approach are given next and in Section 4.1.

3.1.1 Velocity Advection

After splitting the equations, we can solve the advection step separately, which boils
down to the inviscid Burgers equation. For interactive simulations, comparably large
time steps are required; hence it should be ensured that the numerical solver does
not become unstable. Stam [18] presented the semi-Lagrangian advection technique,
which is unconditionally stable and well suited for large time steps. Stam’s approach
is based on the method of charateristics by tracing particles back in time. The velocity

4

is then interpolated and is advanced forward in time. The drawback of this method
is numerical diffusion. It can be shown that the method actually solves theviscid
Burgers equation; it introduces artifical viscosity to the simulation. However, this
behavior alleviates the missing viscosity term in Euler’s equations to some extent. In
the following, we use this technique as a building block for amore advanced method
and we denote the semi-Lagrangian advection with an operator A(u).

Selle et al. [19] introduced a modified MacCormack method based on back and
forth error compensation and correction (BFECC):

ût+1 = A(ut), (4)

ût = AR(ût+1), (5)

u∗ = ût+1 + 1
2

(

ut + ût
)

, (6)

whereAR is the semi-Lagrangian advection reversed in time andu∗ is the result of
the advection step. This method reduces numerical diffusion significantly compared
to Stam’s approach. For our simulation, we stick to Equations (4)-(6).

3.1.2 Pressure Projection

The second step of the operator splitting is enforcement of incompressibility. The
intermediate resultu∗ from the advection step is usually not free of divergence, due
to advection and interpolation. As in Stam [18], we employ pressure projection to
calculate the final velocityut+1. Helmholtz-Hodge decomposition and the appliance
of the divergence operator on both sides lead to the following Poisson equation for the
pressurep:

∆p =
ρ

∆t
∇ · u∗, (7)

where∆t is the time step. The discretization of the Laplacian operator on a uniform
grid with finite differences leads to a large but sparse system of linear equations. We
solve the system numerically with a conjugate gradient solver for the unknown pres-
sure. For more details on numerical solutions of linear systems, we refer the reader
to Saad’s textbook [20]. Once the pressure is calculated, the intermediate resultu∗ is
projected onto its solenoidal component:

ut+1 = u∗ −∇p, (8)

with ∇ · ut+1 = 0. At this stage, one simulation step is finished and is ready tobe
visualized.

3.2 Visualization

In this section, we demonstrate how the data from the previous simulation step is
visualized to provide insight into the spatio-temporal structure of the unsteady vector
field. Our main technique is the visualization of Lagrangiancoherent structures with
FTLE. Furthermore, we discuss well-established methods like the visualization of path
lines, particle tracing, and vorticity briefly.

5

3.2.1 Lagrangian Coherent Structures with FTLE

The FTLE in Section 2 can be calculated using positive and negative advection times
T . For positive values ofT , the FTLE measures separation and yields repelling coher-
ent structures (Figure 2(a)). For negative values ofT , the FTLE measures separation in
reverse time and hence yields attracting coherent structures, illustrated in Figure 2(b).

Repelling LCS

Integration

(a)

Attracting LCS

Integration

(b)

Figure 2: (a) Repelling LCS present as ridge (red) in the forward FTLE; adjacent
particles diverge when advected with the flow. (b) Attracting LCS present as ridge
(blue) in reverse FTLE; particles converge to the LCS.

In general, the FTLE is calculated continuously throughoutthe entire space-time
domain of the fluid. In practice, however, the domain is discretized with a finite FTLE
grid that is independent from the simulation grid. For each node of the grid, a par-
ticle is seeded and is advected forward or backward in time, respectively. When the
advection time±T has passed, the final position of each particle is used to calculate
the flow map and the FTLE is obtained according to Section 2.

As the FTLE is a scalar value, it can be visualized with a colorcoding. A contin-
uous image of the discrete values is obtained with bilinear interpolation. High values
of the FTLE indicate areas of strong Lagrangian separation in the resepective flow
direction. In the visualization, these areas typically form colored ridges that represent
Lagrangian coherent structures of the flow. Shadden et al. [21] showed that the sharp-
ness of the ridges is a measure for the flux across an LCS, i.e., the quality of an LCS
as a flow barrier. Therefore, we do not perform explicit ridgeextraction, e.g. of height
ridges [22], but leave it to the user to judge the quality and role of the ridges. Figure 3
depicts an example of both FTLE visualizations.

3.2.2 Other Visualization Techniques

In addition to FTLE, we also support typical traditional flowvisualization techniques.
Together with FTLE, they provide valuable tools to analyze and understand complex
unsteady vector fields.

Path lines are trajectories that individual particles traverse when they are advected
with time-dependent flow. A path line can be formulated as thesolution of an inital
value problem of a non-autonomous ordinary differential equation from the vector
field. A path line contains the integrated time history of themotion of a single massless
particle. It can be visualized experimentally by taking a long-time exposure record of

6

Inflow

Turbulence

Outflow

Outflow

(a)

Inflow

Inflow

Outflow

(b)

Figure 3: Example of FTLE visualizations of two rivers. Fluid is flowing from left to
right in both cases. (a) Bifurcation in forward time. The flow is split into two parts at
the wedge-shaped obstacle. The Lagrangian dynamics of thissplitting is conveyed by
the long red ridge. Furthermore, it is visualized how the flowin the bottom arm gets
turbulent. (b) Confluence with reverse-time FTLE. The long blue ridge visualizes the
Lagrangian process of merging.

the motion of the particle. We visualize path lines by tracing particles from discrete
locations in the fluid domain and by connecting the positionsof each particle over
time with a line strip. As path lines can be considered as the spatio-temporal record of
the flow map, they facilitate the interpretation of the FTLE directly and they provide
additional information about flow direction.

Injecting particles into unsteady flow is a common visualization technique. It is
the direct analogon to injecting tracers in real-world flow experiments. We support
this method by placing particle emitters interactively into the fluid domain and by
advecting the particles with the flow. The particles are displayed as colored points.
Each emitter is able to color its particles in a different color, hence mixing or clustering
processes can be visualized in a straightforward manner.

Furthermore, we visualize vorticity magnitude. This is a simple way to locate
eddies in turbulent flow. We calculate the curl of the velocity field and map it to a
color value. Figure 4 shows the three different visualization methods for the same
setup.

3.3 Computational Steering

With the visualization techniques from the previous section, an engineer can modify
parameters of the simulation while it is in progress, leading to computational steering.
In general, Mulder et al. [8] developed a taxonomy to classify computational steering
environments (CSEs) concerningscope, architecture, anduser interface. The diagram
of a generic CSE is illustrated in Figure 5.

7

(a) (b) (c)

Figure 4: Flow from left to right around a sphere. Visualization with (a) path lines,
(b) particle injetion and tracing, and (c) colorcoding of vorticity magnitude.

Interpretation

Manipulation

Visualization

Input

Handling

Data

Collection

Reconfiguration

Algorithm

Adaption

Parameter

Updating

Configuration

Code

Data

and

Parameters

User User Interface

Communication

and

Data Transfer Application

or

Simulation

Computational Steering Environment

Figure 5: Diagram of a computational steering environment after Mulder et al. [8].

According to Mulder’s taxonomy, thescopeof our CSE provides steering for model
exploration of unsteady vector fields from CFD. In general, Mulder’s definition of
model exploration deals with the application’s output dataand its input parameters
which are in our case the velocity field and its boundary conditions.

Thearchitectureof our prototype is a standalone single-threaded CPU processwith
access to a parallel GPU for accelerated computation. The information provided to
the user include results from flow visualization (see Section 3.2). Steerable items that
the user can manipulate are the insertion and the removal of solid obstacles to and
from the fluid domain, which allows the user to modify the shape and position of
geometry interactively. Furthermore, boundary conditions such as velocity profiles
can be inserted or removed to modify flow control.

The user interfaceof our application is handled with a graphical user interface
(GUI). For monitoring, the user can choose which visualization technique is best for
the current task and furthermore, multiple visualizationscan be blended together to
provide an overall picture of the flow that a single techniquecannot reveal. The steer-
ing interface lets the user modify solid and velocity boundary conditions directly in
the view port window, which is discussed in detail in Section4.3.

Interactive steering enhances productivity because it reduces the time between
changes of parameters and the visualization of the result significantly, allowing for

8

a tight design cycle. However, steering typically requireshigh performance comput-
ing on large and expensive clusters with low-latency network interconnects to perform
simulations and to visualize the vast amount of data at interactive speed. In this paper,
we take a first step to perform interactive flow steering of reduced 2D model complex-
ity on a single PC with commodity graphics hardware.

4 Implementation

In this section, we describe our implementation of interactive flow steering on the
GPU. We employ NVIDIA’s Compute Unified Device Architecture (CUDA) for gen-
eral purpose programming of graphics hardware. CUDA gives developers access to
the instruction set and memory of the GPU. The high floating-point performance and
the high bandwidth of GPUs become accessible for computation, by providing an ab-
straction layer on top of the rendering pipeline. GPUs have aparallel throughput archi-
tecture that emphasizes executing many concurrent threads(single intruction, multiple
threads). The programming of the GPU with CUDA is realized either with Fortran or
C and for our implementation we used the latter. The GPU code is encapsulated in
kernels, which are called as functions from the regular CPU code. One of the specifics
of CUDA is the possibility to use 2D and 3D textures to store data. Textures are spa-
tially uniform data containers that are usually used to add details on geometric meshes
in computer graphics. We make use of textures because the GPUprovides very fast
bi-/trilinear interpolation in hardware and read access iscached efficiently as long as
spatial coherence is ensured.

4.1 Fluid Solver

The 2D Euler solver is an implementation of [19] for the advection and of a precon-
ditioned conjugate gradient algorithm for the pressure projection, described in Sec-
tion 3.1. The velocity field is stored in a 2D float2 (i.e., withtwo floating-point com-
ponents) texture with a resolution according to the grid size. The semi-Lagrangian
advection in Equations (4) and (5) benefits from fast interpolation and caching from
the texture unit. For the Poisson Equation (7), we employ thepreconditioner by Ament
et al. [23] to accelerate convergence. The method is suited specifically for the Poisson
problem and for parallel GPU processing. To achieve interactive frame rates, we are
currently bound to single precision for the numerical solution. With current graphics
hardware, we can simulate fluids of interactive performancewith a grid resolution of
up to 1024× 1024 on a single PC. However, the computation of the FTLE in thenext
section is memory-consuming and we revert to a fluid domain of512× 512 for most
cases.

9

4.2 FTLE Computation

The computation of the FTLE requires particle trajectoriesforward and backward in
time according to+Tforward and−Tbackward. For unsteady vector fields, the FTLE is also
time-dependent, which requires continuous recomputation, i.e., animated time series
of the FTLE. In a näıve implementation, each frame requires to simulate the fluid for
n = (Tforward+ Tbackward) /∆t time steps with interleaved particle tracing for the path
lines. For interactive performance, this approach is typically not feasible.

We observe that there are many redundant computations between two frames, i.e.,
(n−1) time steps are identical to the previous frame. For that reason, we come up with
a time sliding window that stores redundant vector fields in astacked buffer object. On
the GPU, this buffer is represented by a 3D float2 texture. In this texture, we keep all
vector fields for a period ofTbackwardbackward in time and ofTforward ahead of current
time. Figure 6 shows our approach for two time stepst0 andt1.

t

Visualization & Steering Simulation

t0

t
t1

t0 t1

Backward

Window

Forward

Window

x

y

t

x

y

t

t0

Simulation

2D Texture

Simulation

2D Texture

Time Sliding

3D Texture

Time Sliding

3D Texture

t1

copy data

Δt

Figure 6: Left: Time line with sliding window. For each framevisualized, we store
vector field information for the backward (blue) and forward(red) FTLE. The simu-
lation runs(Tforward + ∆t) ahead of time. Right: Texture memory layout. Each 2D
vector field is represented as a time slice in a 3D texture. At the transition fromt0 to
t1, the “oldest” slice is replaced with new simulation data.

With this approach, we can reduce the computational expensefor the simulation
to one time step per visualization frame. When time is advanced from t0 to t1, the
sliding window is moved forward in time. Before the next framecan be visualized,
the new simulation data is copied to the 3D texture. To reducebandwidth we employ a
dynamic time coordinate in the 3D texture, i.e., we do not advance all the data forward
in time which would induce heavy data transfer, but instead we keep a dynamic pointer
to the current time slice (gray shaded in Figure 6) and overwrite the earliest time slice
with new simulation data. With this approach the memory requirement is proportional
to the grid size and to the advection timesTforward andTbackward. For example, a grid
size of 512× 512 and 256 discrete time steps for each FTLE window has a memory
consumption of 1GB.

For the visualization of both FTLEs in each frame, we integrate particle trajecto-
ries numerically through the spatio-temporal 3D texture asdepicted in Figure 7. The

10

computation is very efficient because the GPU threads traverse the texture slice by
slice in parallel, i.e., they traverse time simultaneously. Therefore, random access is
rather small within one integration step, yielding high cache coherence and thereby
good performance.

x

y

t

x

y

t

Figure 7: Left: Particle trajectories for timet0. Right: Trajectories for timet1. The
time line is wrapped around as the sliding window is moved forward.

Once the final positionsx(t + Tforward) andx(t − Tbackward) of the particles are cal-
culated, we store them in the flow map kept in another 2D float2 texture. This means,
for each node of the FTLE grid (white points in Figure 7), the positions of the ad-
vected particles (red and blue points in Figure 7) are storedin the texture, depending
on which FTLE-type is visualized.

Afterwards, we compute the gradient of the flow map with finitedifferences. For
example, at an arbitrary point(i, j) in our FTLE grid withT = Tforward, central differ-
ences yield:

dφt+T
t (x)
dx

∣

∣

∣

∣

∣

xi,j

=

(

xi+1,j(t+T)−xi−1,j(t+T)

xi+1,j(t)−xi−1,j(t)

xi,j+1(t+T)−xi,j−1(t+T)

yi,j+1(t)−yi,j−1(t)
yi+1,j(t+T)−yi−1,j(t+T)

xi+1,j(t)−xi−1,j(t)

yi,j+1(t+T)−yi,j−1(t+T)

yi,j+1(t)−yi,j−1(t)

)

(9)

The FTLE is then calculated according to Equation (1) and is finally stored in a 2D
float texture used for mapping the FTLE value to color. The final image is visualized
as a textured quad with OpenGL.

The choice ofT is dependent on the particular application. In general, thelonger
T is, the more refined the LCS become. However, an important indicator for the
appropriate choice ofT is the time it takes particles to exit the domain. Therefore,if
nearly all points in the FTLE grid leave the domain in, for example 2 seconds, then
it does not make sense to chooseT > 2s, since further integration would not change
the FTLE field. Therefore, it is difficult to employ a constantadvection time for all
applications and as a consequence our tool offers the possibility to adjust the advection
time for both FTLEs independently.

11

4.3 Steering of Boundary Conditions

In our implementation of interactive steering, we provide direct manipulation of bound-
ary conditions. For simple editing, our application offersa pencil tool for image-based
steering in the visualization view port. The pencil can haveone of the following
modes: set/erase solid obstacles or set/erase prescribed velocities. Furthermore, the
pencil size is variable, similar to well-known tools from image editing. For the veloc-
ity, the direction and magnitude is set with a seperate GUI element. The dialog for
boundary interaction is shown in Figure 8.

Figure 8: The user can choose the type of editing with the “Pencil Mode” together with
the corresponding “Pencil Size” (in grid cells). On the left, the mouse cursor is shown
and the white square underneath is a representation of the pencil’s footprint. The
direction and magnitude of prescribed velocity conditionsis set with the yellow arrow
and the “Inlet Power” GUI element (velocity magnitude), respectively. In addition
to steering parameters, the interaction dialog also includes the placement of particle
sources and the control of the FTLE window sizes.

With the selected tool from the GUI, boundary conditions canbe modified easily
with a mouse by drawing into the window domain. In our implementation, we keep
two textures for representing boundary conditions. First,a 2D unsigned char texture is
used to tag each grid cell with the boundary type, which can beeitherBC FLUID=0,
BC SOLID=1, orBC VELOCITY=2. Second, a 2D float2 texture is required to store
vector information about velocity conditions. These textures are used in our kernels
to determine the boundary type of each cell. The appliance ofboundary conditions is
implemented in the pressure projection step of the simulation. Therefore, we update
the matrix of the discretized Laplacian in Equation (7) withthe help of these textures
whenever the boundary conditions change.

As the simulation runs ahead of the visualized time frame (Figure 6), it takes
(Tforward+ Tbackward+∆t) /∆t time steps until the sliding window is recalculated and
the FTLE visualization is up to date. However, as our entire workflow runs interac-
tively, this process takes only a few hundred milliseconds and during that time visu-
alization remains smooth and responsive. An alternative strategy would be to blank

12

the visualization screen for the duration of the sliding window after each update of
boundary conditions.

5 Results and Applications

5.1 Performance

In this section, we provide performance evaluations of our implementation with CUDA.
Our test system is a standard PC platform with an Intel Core i7 X980 CPU at 3.33GHz,
12GB RAM, and an NVIDIA GTX-480 graphics card with 1536MB of video memory.
Figure 9 illustrates performance in frames per second (fps).

Figure 9: Performance evaluation of our interactive steering workflow. We evalu-
ate 3 different grid sizes for the fluid and FTLE domains. The differently colored
bars depict performance for varying integration lengths ofthe forward and backward
FTLE. The drop down in performance for larger advection times results from the in-
creased expense for calculating longer FTLE particle trajectories. For large grid sizes,
there is insufficient GPU memory to store the textures for large FTLE sliding win-
dows.

We evaluate performance for resolutions of 256×256, 512×512, and 1024×1024
cells for both grids, fluid and FTLE. In addition, we show the impact of growing ad-
vection times for the FTLE computation of Section 4.2. The legend on the right of
Figure 9 depicts the sizes of the sliding windows for forwardand backward FTLE.
The computational expense grows linearly with the integration length due to the in-
creased duration of particle tracing. The strong drop down for large advection times

13

(see 512× 512 between 80/80 and 96/96) results from a bottleneck in data transfer
as video memory and texture cache run out. However, for practical purposes, our im-
plementation reaches interactive performance for grid sizes of up to512 × 512 and
advection times of up to80 ·∆t for each FTLE.

5.2 Application: Air Conditioning

In the following, we show typical applications for interactive flow steering based on
our method. First, we present an example of an air conditioning setup for a com-
puter cluster, shown in Figure 10. The spatial arrangement of the compute nodes with
respect to the inflow from the air conditioning system is crucial for a good cooling
performance. Insufficient mixing reduces the overall performance of cooling, which
can cause overheating and damage of hardware.

In the top row of Figure 10, the nodes are arranged in a more aligned manner com-
pared to the bottom row. While the glyph visualization in Figure 10(a) provides only
limited insight into the flow and its mixing properties, the FTLE visualization in Fig-
ure 10(b) depicts a rather simple LCS. According to Mathur et al. [14], intersections
of repelling and attracting LCS in the Lagrangian skeleton indicate turbulent areas of
high mixing; hence the first arrangement of nodes is likely tobe cooled insufficiently.
In the second arrangment, the nodes are positioned in an interleaved manner. The
glyphs in Figure 10(c) show hardly much difference comparedto the aligned arrang-
ment but the FTLE visualization in Figure 10(d) depicts plenty of intersecting forward
and backward LCS, indicating enhanced mixing. The fluid and FTLE domain sizes
are512× 512 and the advection time is56 ·∆t for both FTLEs.

5.3 Application: Airfoils with Active Flow Control

In our second example, we investigate active flow control [24] for airfoil design. By in-
jecting energy via actuators into key areas, changes in local or global flow can improve
performance of aircrafts significantly. Our computationalsteering supports engineers
in positioning actuators and adjusting their power according to the desired flow be-
havior; Shadden et al. [21] have shown that FTLE can indicateflow separation, one of
the main mechanisms for efficiency drops in aircraft operation. With our exemplary
implementation, we can model 2D airfoil profiles and insert actuators in the form of
velocity boundary conditions. Figure 11 illustrates the impact of an actuator com-
pared to the uncontrolled flow around an airfoil. The fluid andFTLE domain sizes are
512× 512 and the advection time is64 ·∆t for the FTLE.

6 Conclusion

In this paper, we presented interactive steering of a 2D flow simulation on a GPU. We
employed an Euler solver to simulate inviscid and incompressible fluids with inter-

14

active performance. Our visualization with FTLE in forward-time and reverse-time
allows insight into the complex behavior of the unsteady velocity field, which is cru-
cical for improving applications. We provide interactive steering by modifying solid
and velocity boundary conditions similar to well-known tools from image editing. The
instant feedback of our CUDA implementation allows efficientmodeling and contin-
uous redesigning towards a certain goal.

Our performance-oriented implementation of the fluid simulation with CUDA is
currently bound to single precision, which limits numerical accuracy accordingly. Fur-
thermore, the rather high memory consumption of the FTLE computation becomes a
limiting factor for long advection times. However, in contrast to CPUs, performance
of graphics processors still grows very fast due to massive parallelism, which can
remedy some of these issues in the near future.

Apart from specifics of the implementation, we have demonstrated that FTLE lends
itself for interactive flow steering and has several advantages compared to traditional
flow visualization techniques. Future systems could investigate what other methods of
flow feature extraction, e.g. vortex extraction, are well suited for interactive steering.

Acknowledgements
The authors would like to thank the German Research Foundation (DFG) for finan-
cial support of the project within the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart and within the Transregional Collaborative
Research Center SFB-TRR 75.

References

[1] G. Haller, “Distinguished Material Surfaces and Coherent Structures in Three-
Dimensional Fluid Flows”,Phys. D, 149: 248–277, March 2001.

[2] J. Helman, L. Hesselink, “Representation and Display of Vector Field Topology
in Fluid Flow Data Sets”,Computer, 22(8): 27–36, 1989.

[3] T. McLouglin, R.S. Laramee, R. Peikert, F.H. Post, M. Chen, “Over Two
Decades of Integration-Based Geometric Flow Visualization”, Computer Graph-
ics Forum, 29(6): 1807–1829, 2010.

[4] K. Bürger, J. Schneider, P. Kondratieva, J. Krüger, R. Westermann, “Interactive
Visual Exploration of Unsteady 3D Flows”, inProc. Eurographics/IEEE VGTC
Symposium on Visualization (EuroVis), pages 251–258. Eurographics Associa-
tion, Norrköping, Sweden, 2007.

[5] J. Krüger, P. Kipfer, P. Kondratieva, R. Westermann, “A Particle System for
Interactive Visualization of 3D Flows”,IEEE Transactions on Visualization and
Computer Graphics, 11: 744–756, 2005.

15

[6] URL http://www.vistrails.org, VisTrails: A Scientific Workflow
Management System, Scientific Computing and Imaging Institute (SCI).

[7] R. van Liere, J.D. Mulder, J.J. van Wijk, “Computational Steering”, Future
Gener. Comput. Syst., 12: 441–450, April 1997.

[8] J.D. Mulder, J.J. van Wijk, R. van Liere, “A Survey of Computational Steering
Environments”,Future Generation Computer Systems, 15: 119–129, February
1999.

[9] URL http://www.scirun.org, SCIRun: A Scientific Computing Prob-
lem Solving Environment, Scientific Computing and Imaging Institute (SCI).

[10] P. Hardt, S. K̈uhner, M. Krafczyk, E. Rank, “Computational Steering of a
Lattice-Boltzmann based CFD-Solver in Virtual Reality”, inProc. Conference
on Construction Applications of Virtual Reality. Virginia, USA, 2003.

[11] G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, “Lyapunov Characteristic
Exponent for Smooth Dynamical Systems and Hamiltonian Systems; a Method
for Computing All of Them”,Mechanica, 15: 9–20, 1980.

[12] J. Kasten, C. Petz, I. Hotz, B. Noack, H.C. Hege, “LocalizedFinite-time Lya-
punov Exponent for Unsteady Flow Analysis”, in M. Magnor, B. Rosenhahn,
H. Theisel (Editors),Vision Modeling and Visualization, Volume 1, pages 265–
274. Universiẗat Magdeburg, Inst. f. Simulation u. Graph., 2009.

[13] C. Coulliette, F. Lekien, J. Paduano, G. Haller, J.E. Marsden, “Optimal Pollution
Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dy-
namics”,Enviromental Science and Technology, 41: 6562–6572, August 2007.

[14] M. Mathur, G. Haller, T. Peacock, J.E. Ruppert-Felsot, H.L. Swinney, “Uncov-
ering the Lagrangian Skeleton of Turbulence”,Phys. Rev. Lett., 98(14): 144502,
April 2007.

[15] G. Haller, “Finding Finite-Time Invariant Manifolds in Two-Dimensional Ve-
locity Fields”, Chaos, 10(1): 99–108, 2000.

[16] F. Sadlo, D. Weiskopf, “Time-Dependent 2-D Vector Field Topology: An Ap-
proach Inspired by Lagrangian Coherent Structures”,Computer Graphics Fo-
rum, 29(1): 88–100, 2010.

[17] J.D. Anderson,Computational Fluid Dynamics: The Basics with Applications,
McGraw-Hill, New York, NY, USA, 1995.

[18] J. Stam, “Stable Fluids”, inProc. 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’99, pages 121–128. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

16

[19] A. Selle, R. Fedkiw, B. Kim, Y. Liu, J. Rossignac, “An Unconditionally Stable
MacCormack Method”,J. Sci. Comput., 35: 350–371, June 2008.

[20] Y. Saad,Iterative Methods for Sparse Linear Systems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[21] S.C. Shadden, F. Lekien, J.E. Marsden, “Definition and Properties of Lagrangian
Coherent Structures from Finite-Time Lyapunov Exponents inTwo-Dimensional
Aperiodic Flows”,Physica D: Nonlinear Phenomena, 212(3-4): 271–304, 2005.

[22] D. Eberly, Ridges in Image and Data Analysis, Computational Imaging and
Vision. Kluwer Academic Publishers, 1996.

[23] M. Ament, G. Knittel, D. Weiskopf, W. Strasser, “A Parallel Preconditioned Con-
jugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform”, in
Proc. 18th Euromicro Conference on Parallel, Distributed, and Network-based
Processing, pages 583–592. IEEE Computer Society, Los Alamitos, CA, USA,
2010.

[24] M. Gad-el Hak,Flow Control: Passive, Active, and Reactive Flow Management,
Cambridge University Press, Cambridge, United Kingdom, 2000.

17

(a) (b)

(c) (d)

Figure 10: Air conditioning of a compute cluster: aligned arrangement (top row) ver-
sus optimized arrangement (bottom row). Air flows in from theleft (green) into a
closed room. (a) Arrow glyphs provide limited insight into flow. (b) Forward (red)
and backward (blue) FTLE visualize comparably simple LCS. (c) Optimized arrange-
ment exhibits slightly more vortices. Overall mixing behavior is still hard to judge.
(d) FTLE exhibits complex Lagrangian skeleton of mixing (many intersections of at-
tracting and repelling LCS), indicating increased mixing.

18

(a) (b)

(c) (d)

Figure 11: Airfoils with active flow control. Visualizationwith backward FTLE (blue)
and two particle tracers (red, dark green) around an airfoilprofile. (a),(c) Uncontrolled
flow generates high wake turbulence. (b),(d) A velocity actuator (light green) attaches
the flow; the resulting wake turbulence is diminished significantly.

19

