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Abstract Finite-time and finite-size Lyapunov exponents are related concepts that
have been used for the purpose of identifying transport structures in time-dependent
flow. The preference for one or the other concept seems to be based more on a
tradition within a scientific community than on proven advantages. In this study,
we demonstrate that with the two concepts highly similar visualizations can be
produced, by maximizing a simple similarity measure. Furthermore, we show that
results depend crucially on the numerical implementation of the two concepts.

1 Introduction

The finite-time Lyapunov exponent (FTLE) has been proposed by Haller [13] as
an indicator of Lagrangian coherent structures (LCSs). The finite-size Lyapunov
exponent (FSLE) is an alternative and especially popular in oceanography [9,19]. It
seems that the preference for FTLE or FSLE is based more on the tradition within a
particular scientific community than on an evaluation of the two approaches. Direct
comparisons between FTLE and FSLE have been made by Boffetta et al. [5] and by
Sadlo and Peikert [21]. Boffetta argued that the FTLE is not capable of recognizing
the relevant structures, namely the boundaries between chaos and large-scale mixing
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regime. A recent paper by Karrasch and Haller [16] lists a number of theoretical
limitations of FSLE and proposes the use of infinitesimal-time Lyapunov exponents.

We show, based on two examples, that FTLE and FSLE, if appropriately
calibrated, produce comparable results which can be interchangeably used for most
purposes in numerical flow visualization. However, in terms of computational effort
FTLE is slightly more efficient, because computation can be based on a single
precomputed flow map. In oceanographic research, FSLE and FTLE are typically
computed from particle pairs consisting of horizontal or vertical pairs of grid points.
This means a quantization of the range of directions into a set of only four directions.
As we show, the effect of this quantization is that FTLE and FSLE values are
underestimated by a factor which can be large, especially for short integration times.
We give an example where this factor is unbounded.

Another important algorithmic aspect is the correct choice of a scale, given a
grid resolution. There are two approaches to FSLE and FTLE computation, both of
which require a scale parameter. In methods based on particle pairs, this is the initial
separation of the particles. In methods based on the Cauchy-Green tensor, a scale is
needed in gradient estimation. We demonstrate the effect of the scale parameter.

We define a similarity measure for pairs of FTLE and FSLE images, based on
which image pairs can be computed using an optimization process. For a given
FTLE or FSLE image, a corresponding image of the other field can be produced.
We discuss results of this process in Sects. 5 and 6.

2 Related Work

Particle transport is a central feature of fluid flows. In this context, the investigation
of mixing properties and the existence of transport barriers is of great interest, e.g.,
for the distribution of chemicals in the atmosphere [18] or in a bay area [8].

Transport barriers and mixing can be studied by means of the local attracting or
repelling properties of trajectories. These properties are connected to the concept
of stable and unstable manifolds in dynamical systems [12, 26]. Along these lines,
Haller proposed FTLE as a quantification method of these properties [12,13]. FTLE
is a finite-time version of the well-known Lyapunov exponent [11]. An alternative is
the finite-size Lyapunov exponent, as described by Boffetta et al. [5].

In the same paper, Boffetta et al. [5] compare FSLE to FTLE and two Eulerian-
based techniques for the identification of transport barriers in two-dimensional
incompressible fluids. The comparison is angled towards geophysical flows, like
ocean currents and atmospheric flows. The authors conclude that both FSLE and
FTLE are superior to the Eulerian-based methods in uncovering the transport barri-
ers. Furthermore, they find FSLE to be more expressive for large-scale transport,
while FTLE captures mainly small-scale properties of the particle dispersion. It
is worthwhile noticing that the comparison conducted by Boffetta et al. is based
on particle pairs, and may hence be affected by sampling issues. We comment
on this issue in Sect. 3.3.1. Joseph and Legras [15] cite Haller [12] stating that
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the distribution of pair separation is typically a “fuzzy” view of the hyperbolic
manifolds. They claim that FSLE results in a less fuzzy distribution and allows the
manifold structures to emerge more naturally.

While FSLE is usually preferred in the analysis of mixing and transport in
oceans [9,15] and atmosphere [18], FTLE has been applied to these domains as well.
Coulliette et al. [8] make use of FTLE to investigate the existing transport barriers in
a bay area in order to achieve optimal timing for the relief of contaminants into the
bay. Beron-Vera et al. [4] identify so-called invariant tori, which act as transport
barriers, in geophysical flows by means of FTLE. Üffinger et al. [25] compare
the FTLE computation based on linearization and dense direction sampling. They
conclude that a dense sampling of directions produces more accurate results than
the classical approach based on linearizion, while preserving its advantages in the
detection of topological features.

3 Finite-Time and Finite-Size Lyapunov Exponents

Given a velocity field u.x; t/, the flow map ˚tC�
t .x/ describes the advection of a

“particle” released at time t and location x over a time span � . Both t and the
integration time � are considered to be parameters, hence the flow map is mapping
from the spatial domain to itself, mapping initial locations to final locations.

3.1 Intuitive Definitions

Given a particle seeded at location x and time t , and advected over time � , the
dispersion of a neighbor particle seeded at y is observed. The location y is chosen
on a sphere of radius d around x, such that the dispersion is maximized. This leads
to the definition of the finite-time Lyapunov exponent at location x and time t , for a
given integration time � , which is

FTLE� .x; t/ D lim
d!0

max
ky�xkDd

1

j� j ln

�
�˚tC�

t .y/� ˚tC�
t .x/

�
�

d
: (1)

For a given dispersion factor r , the finite-size Lyapunov exponent [1] at location
x and time t is:

FSLEr .x; t/ D lim
d!0

max
ky�xkDd

1

j�r j ln r (2)

where �r is the minimum time for which

�
�
�˚

tC�r
t .y/� ˚

tC�r
t .x/

�
�
�

.

d D r: (3)
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3.2 Equivalent Definitions

The above equations contain a maximization over directions and a limit, which
both have to be approximated in computation. This can be avoided by using the
equivalent definitions [7]

FTLE� .x; t/ D 1

j� j ln
q

�max.CtC�
t .x// (4)

where CtC�
t .x/ D r˚tC�

t .x/
�r˚tC�

t .x/ is the (right) Cauchy-Green tensor, and

FSLEr .x; t/ D 1

j�r j ln r (5)

where j�r j is the minimum time for which

q

�max.C
tC�r
t .x// D r: (6)

3.3 Computation Based on Particle Pairs

One approach to FTLE and FSLE computation is the explicit use of particle
pairs, according to the definitions from Sect. 3.1. The limits occurring in Eqs. (1)
and (2) are approximated in practice by choosing a small d , while maximization is
approximated by testing a finite set of directions. While for a good approximation
quality sufficiently many directions are needed, it is established practice to use only
the four grid neighbors [14].

The approach based on Eqs. (1) and (2) is popular especially in the oceanography
community for FSLE computation. D’Ovidio et al. [9] describe the investigation of
mixing structures in the Mediterranean sea by FSLE, using a four neighbor-based
approximation of the maximal growth rate of particle separation. FSLE is used to
identify hyperbolic points, which indicate areas of strong mixing. The authors point
out the natural compatibility of FSLE with data collected by Lagrangian drifters,
and the possibility to suppress small-scale mixing by the dispersion factor r .

Hernández-Carrasco et al. [14] discuss the reliability of FSLE with respect to
sampling density for particles seeding and the grid resolution of the underlying
velocity field. While noting the theoretical need to investigate “all” possible
separation directions, also their computations consider two directions only. They
find that FSLE are consistent under grid refinement for both seed point and velocity
field, while the amount of details captured increases with finer resolution.
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Fig. 1 FTLE of the velocity
field u D y; v D x,
computed with particle pairs
on uniform grid. For larger �
they converge to the correct
value of 1.0

Fig. 2 Effects of
quantization of directions:
Same as Fig. 6a, but with
computation based on particle
pairs (four neighbors only)

3.3.1 Shortcoming of the Computation Based on Four Neighbors

Using the simple linear velocity field u D x; v D �y, we demonstrate that
computation using only four neighbors can lead to large errors in FTLE (and FSLE)
values. The flow map of the field after integration time � is˚�

0 .x; y/ D .xe� ; ye�� /,
its right Cauchy-Green tensor is diag.e2� ; e�2� /, and finally, the FTLE is the
constant 1. Two particles seeded at .0; 0/ and .h; 0/ are mapped to .0; 0/ and
.he� ; 0/, therefore r D e� , and the particle-based method gives the correct result. A
wrong result is obtained, however, if a 45ı rotation is applied to the velocity field.
Then, the seed points .˙h; 0/ and .0;˙h/ are mapped to .˙h cosh �;˙h sinh �/
and .˙h sinh �;˙h cosh �/, respectively, therefore r D p

cosh.2�/, and the FTLE
value is ln cosh.2�/=2� , which deviates from 1 especially for small � , as is shown
in Fig. 1. Such quantization artifacts in an FSLE computation are shown in Fig. 2.
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In order to reduce this error, one would have to use a finer quantization of
directions. This could be done by using auxiliary particles on a circle around the
reference particle as in [25].

3.4 Computation Based on the Cauchy-Green Tensor

Errors due to quantization of directions are eliminated if the definitions from
Sect. 3.2 are used. This is at the cost of errors introduced by gradient estimation,
which are typically much smaller. Therefore, computation based on the Cauchy-
Green tensor is the preferred method both in the fluid dynamics and the scientific
visualization community [7, 20, 24]. The first stage of the method is to sample the
flow map, which requires a high-quality numeric integrator. The sampling grid can
be chosen independent of the discretization of the velocity data, therefore, a uniform
regular grid is typically used. In the second stage, the flow map gradient is estimated
at each sample position, and Eqs. (4) or (5) is used to generate the final values.

3.5 Scale Considerations

Both of the above approaches contain a “scale” parameter which affects the
computed scalar field. In Sect. 3.3 this is the distance d between particle pairs,
while in Sect. 3.4 a distance d is needed for gradient estimation using, e.g., finite
differences. For setting the parameter d , in either one of its meanings, there are two
opposite approaches:

1. By choosing d very small, a good approximation of the FTLE or FSLE at
the point x is obtained. Accuracy can be further improved with Benettin’s
renormalization algorithm [2], where during integration particles are reset to a
fixed distance from the reference particle. Renormalization was originally used
for computing (non-finite) Lyapunov exponents. A variant of renormalization is
the L-FTLE proposed by Kasten et al. [17], where numerical integration and
differentiation are swapped. While pointwise exact, these methods may miss thin
ridges of high values passing between samples. Even without renormalization,
using a d smaller than the sampling distance creates artifacts, since it is
equivalent to first computing the FTLE or FSLE field at sampling distance d
and then doing a subsampling, which obviously causes aliasing in the presence
of high frequencies. This type of artifacts can be noticed in Fig. 5 of [5].

2. By choosing d in the order of the sampling distance, the obtained FTLE or
FSLE values are less accurate, but they are representative for the space between
samples. This results in unbroken ridges, which is a requirement for subsequent
ridge extraction. Figure 6b has been produced using gradient estimation from
a 5-point finite-difference stencil. For the fine structures, resulting from the
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Fig. 3 Percentiles of ln.r/ as functions of integration time of the Vatlestraumen data (with forward
integration). FTLE (FSLE) values are obtained by taking a vertical (horizontal) section. The actual
values are the slopes of the dashed (solid) lines passing through the origin and the respective point.
The filled circles mark a few pairs .�; r/, where for a given integration time � the dispersion factor
r has been computed which maximizes the similarity measure

long integration time, the chosen d is barely sufficient to avoid aliasing. For
even longer integration a smaller d would be needed [10]. The same holds
if subsequent ridge extraction is needed, where it is advantageous to compute
gradients by convolution with derivatives of a Gaussian [23].

4 Comparing FTLE and FSLE Images

Computation of FSLE samples on a given grid can be done by simultaneous inte-
gration of trajectories and computing the dispersion factors r after each integration
step. This way, a function r.�/ is obtained, from which both FTLE and FLSE can
be derived, by computing ln.r.�//=j� j for some fixed � or fixed r , respectively.
Figure 3 shows percentiles of ln.r/, computed for the data set of Sect. 6 on a 868
by 868 grid. At each point .x; y) in this plot, the actual FTLE or FSLE value is
given by the slope y=x. Taking a vertical section (marked with triangles) yields
percentiles of FTLE values for this integration time, while a horizontal section
(marked with boxes) yields FLSE values for the corresponding r . In the example
FTLE at � D 6;300 s and FSLE at ln.r/ D 2:7 are shown.
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Fig. 4 Percentiles and optimal parameter pairs for meandering jet model. .!; �/ D .0:1; 0:3/

The fact that the horizontal line does not intersect some of the curves indicates
that for some of the trajectories the dispersion factor r has not been reached. At these
points, an FSLE sample cannot be computed within the given maximum integration
time (here �max D 18;000), but it is known to be less than ln r=�max. For visualiza-
tion purposes, a value of either 0 or ln r=�max can be assigned to such points.

While FSLE and FTLE values are the same at the point where the vertical and
horizontal lines intersect, their range is in general different. In our example in Fig. 3
the range between the 80- and 100-percentiles is wider for FSLE (marked with solid
lines) than for FTLE values (marked with dashed lines).

We observed this difference in all velocity fields that we tested. A similarity
measure for comparing FTLE and FSLE fields has to account for this difference.
Therefore, the straightforward choice is to define the similarity of a pair of fields
f .x/ D F TLE�.x/ and g.x/ D FSLEr.x/ as their correlation

corr.f; g/ D cov.f; g/=
p

var.f / var.g/: (7)

Given one FTLE or FLSE field, a matching field of the other type can now be
found by maximizing the similarity. A few such pairs are represented in Figs. 3 and
4 by filled circles. Such optimal pairs, resulting from maximization of similarity, are
shown in Figs. 6 and 7.

In principle, it is possible to maximize similarity over both parameters simulta-
neously. However, this tends to result in extreme parameter values, which are not
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practically usable. By manually choosing one of the two parameters, the user can
balance the visualization with respect to the length and “sharpness” of structures
and the amount of folding.

Typically, only the higher FTLE or FSLE values are of interest, therefore the
transfer function should clamp data at a lower threshold. Furthermore, to account
for the different ranges of FTLE and FSLE data, the transfer function should either
be based on normalized data or on percentiles. We chose the second approach, and
we clamped the analytic data in Sect. 5 at the 50-percentile and the numerical data in
Sect. 6 at the 90-percentile, meaning that we focused on the highest 10 % of FTLE
and FSLE values. Which percentile range is of interest depends on the data, or
more precisely, on the size and frequency of transport barriers. The percentile plots
(Figs. 3 and 4) can then be used to map the chosen percentile range to a range in the
parameters � or r . Finally, a fast heuristic way to avoid the brute-force optimization
would be to define the midpoints of these two ranges as a matching parameter pair
(� , r). However we experienced that the similarity values obtained this way were in
some cases not near the optimum.

5 Analytic Test Case: The Meandering Jet Model

Bower [6] introduced an analytic flow field for studying the mixing behavior of
oceanic jets. Its stream function is defined as

 D � tanh

0

B
@

y � B cos kx
q

1C .kB sin kx/2

1

C
A C cy: (8)

The velocity components are then u D � @ 

@y
; v D @ 

@x
. This flow is steady in the

moving frame where it is formulated. Samelson [22] derived an unsteady version of
it by making the meander amplitude B depend on time:

B D B0 C � cos.!t/: (9)

The stream function of the flow, at times t D 0 and t D 10� (where the amplitude
takes its maximum and minimum) is shown in Fig. 5. Parameter values have been
chosen as B0 D 1:2; L D 10:0, k D 2�=L, c D 0:1, ! D 0:1 and � D 0:3. In these
images, contour lines are the streamlines of the velocity field.

5.1 Comparison of FTLE and FSLE

The meandering jet flow has been used by Boffetta et al. [5] in their comparison of
FTLE and FSLE. They used Samelson’s model with parameters B0 D 1:2; L D
10:0, k D 2�=L and c D 0:1. For the parameter pair .!; �/ the two settings
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Fig. 5 Stream function of the meandering jet (0 � x � 10;�4 � y � 4) at t D 0 (left) and
t D 10� (right)

.0:1; 0:3/ and .0:4; 0:3/were investigated. The resulting images have led the authors
to the conclusion that FSLE is preferable over FTLE, because the FTLE image
(Fig. 4 in [5]) fails to discern the structures seen in the FSLE image (Fig. 5 in [5]).

We reproduced FTLE and FSLE images for the same parameter settings, but
using computation based on the Cauchy-Green tensor. In order to obtain comparable
structures, it is necessary to adjust the parameters of each technique, i.e., the
integration time � for FTLE and the dispersion factor r for FSLE. For this purpose
we used the similarity measure from Sect. 4. Starting from the FSLE parameter
r D 100, used in [5] (see their Fig. 2a), we obtained first the FSLE image Fig. 6a.
Then, a maximally similar FTLE image 6b was obtained for the parameter value
� D 40� (having tested only multiples of 2�). Boffetta et al. were using an
integration time of only � D 4� for their FTLE image (see their Fig. 4a in [5]).
The reason for the unsharp FTLE structures is clearly the short integration time,
which does not match well the parameter chosen for the FSLE image. Our FTLE
result for a short integration time (� D 8�) is shown in Fig. 6d, and we obtained a
similar FSLE image for ln.r/ D 3 in Fig. 6c.

Aliasing artifacts, which are present in Boffetta’s FSLE images, can be avoided
by using a sufficient mesh resolution. We used 1,000 by 800, as compared to the
10,000 points mentioned in [5]. Another difference to be noted is that Fig. 4a in [5]
is missing the glide reflection symmetry, which is present in the underlying velocity
field. The explanation given for this is the dependency on the phase of the flow.
However, we obtained an FTLE field having the correct symmetry for all tested
phase shifts.

Finally, FSLE computation requires as a secondary parameter a maximum
integration time j�max j. If this is exceeded, this means that the FSLE value can be
at most ln.r/=j�maxj, and it is set to zero (black color in Fig. 6a, c). Choosing j�max j
too small results in missing structures at lower FSLE values.

By computing FTLE and FSLE from the Cauchy-Green tensor and choosing
pairs of parameters based on our proposed similarity measure, comparable struc-
tures can be found in this test data. This holds for long (Fig. 6a, b) and short (Fig. 6c,
d) integration times.
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Fig. 6 Meandering jet with .!; �/ D .0:1; 0:3/, FSLE and FTLE computed with two methods.
(a) FSLE computed with Cauchy-Green tensor. Time t D 0, dispersion factor r D 100, maximum
time 100� (five flow periods). Color map: 0.01 (blue) to 0.1 (red). (b) FTLE computed with
Cauchy-Green tensor. Time t D 0, integration time � D 40� (two flow periods). Color map:
0.01 (blue) to 0.055 (red). (c) Same as Fig. 6a, but with r D e3 � 20:1. (d) Same as Fig. 6b, but
with shorter integration time � D 8�

6 Numerical Test Case: Tidal Flow in a Narrow Passage

Our second test case is a CFD simulation of the tidal flow in the Vatlestraumen
passage, which is a part of the main shipping lane to the harbor of Bergen, Norway.
After a tragic naval accident in 2004, the tidal flow in the passage has been modeled
with the Bergen Ocean Model (BOM) [3]. The data set used in this comparison
study is a simulation of approximately one full tidal cycle (12 h). The simulation
itself is 3D, but only the surface layer was used for the study. The surface layer
flow is the essential one for, e.g., pollution by fuel leaking from the vessel. The time
resolution of the data set is 30 s, internally the simulation uses a time step of 1:5 s.

While in this kind of application FSLE is typically used, highly similar structures
are obtained with FTLE, as Fig. 7 proves. At least the strong ridges (colored red) can
be recognized in the corresponding image, even though colors can differ.
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Fig. 7 Comparison of FTLE and FSLE in tidal flow. (a) Forward (repelling) FTLE, integration
time � D 2 h 200 . (b) Forward (repelling) FSLE, dispersion factor r D exp.3:00/. (c) Backward
(attracting) FTLE, integration time � D �300. (d) Backward (attracting) FSLE, dispersion factor
r D exp.3:00/

7 Conclusion

Calibration of parameters can produce similar FTLE and FSLE fields and thus
similar visualizations of the LCSs in a flow dataset. Differences still exist, and
it would be a worthwhile goal to further analyze them. However, we showed
that differences are less fundamental than was suggested in literature. Observed
differences can be due to poor choice of parameters as well as sampling artifacts.
Using our proposed calibration method, it is now possible to compare adequate pairs
of fields and focus on the inherent differences of FTLE and FSLE. For this, pairs
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of parameters � and r have to be found such that the corresponding FTLE and
FSLE fields are similar, i.e., highly correlated. An obvious, brute-force approach
is to use an optimization strategy in order to maximize correlation. However, this
requires repeated computation of such fields. For practical purposes, a faster method
is needed. An interesting problem for future work would be to find a heuristic that
is able to find near-optimal pairs of parameters.

While the actual results that can be achieved by FTLE and FSLE are rather
similar, it is worthwhile noting the subtle conceptual difference between the two
methods: The FSLE allows us, by the choice of the parameter r , to focus on local
separation above a certain threshold. Additional information about the typical time-
scale of the observed mixing/transport is also provided, which can be a valuable
additional information [9, 14]. The FTLE, on the other hand, operate with a fixed
time-scale and detect separation at all spatial scales. This allows us also to assess
the interplay of the detected structures [26]. Depending on prior knowledge about
the time- and spatial scales of interest for a specific application, as well as whether
or not the interplay of structures is of interest, FTLE may be a more appropriate
choice than FSLE, and vice versa.
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