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Abstract

This paper presents an approach to a time-dependent variant of the concept of vector field topology for 2D vector

fields. Vector field topology is defined for steady vector fields and aims at discriminating the domain of a vector

field into regions of qualitatively different behavior. The presented approach represents a generalization for saddle-

type critical points and their separatrices to unsteady vector fields based on generalized streak lines, with the

classical vector field topology as its special case for steady vector fields. The concept is closely related to that

of Lagrangian coherent structures obtained as ridges in the finite-time Lyapunov exponent field. The proposed

approach is evaluated on both 2D time-dependent synthetic and vector fields from computational fluid dynamics.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.8]: Applications—Physical
Sciences and Engineering [J.2]: Physics—

1. Introduction and related work

Vector field topology, introduced by Helman and Hes-
selink [HH89], aims at the extraction of special stream lines
related to singularities, most importantly the isolated zeros
called critical points. Critical points, as well as 3D peri-
odic orbits (closed stream lines), can be classified into at-
tracting, repelling, or saddle-like types by analysis of the ve-
locity gradient. Vector field topology is utilized in a wide
field of applications, from fluid dynamics to the large field
of continuous dynamical systems. Löffelmann et al. visual-
ize the behavior near the singularities of a 3D system using
various techniques such as glyphs [LMGP97] and Poincaré
maps [LKG98]. The topological skeleton is obtained by ex-
tracting singularities (critical points and periodic orbits), and
if they are of saddle type, also the separatrices, i.e. their
stable and unstable manifolds. Isolated periodic orbits can
be extracted with the method of Wischgoll and Scheuer-
mann [WS01]. In two dimensions the topological skeleton
provides a segmentation of the domain into regions of qual-
itatively similar behavior. In three dimensions, the 2D sep-
arating manifolds theoretically provide segmentation. How-
ever, in practical flows, these stream surfaces are often too
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convoluted [PS07] and lead to occlusion problems. An alter-
native is to show only their pairwise intersections, known as
saddle connectors [TWHS03] or heteroclinic orbits, show-
ing the connectivity between critical points. In three dimen-
sions, there are two more types of singularities that can be
investigated beyond what the topological skeleton provides,
namely invariant tori [PS09] and strange attractors. Another
purpose of critical points, besides characterizing the neigh-
borhood and computing skeletons, is their use for seeding
stream lines and stream surfaces, as has been done e.g. by
Ye et al. [YKP05]. Even if critical points are used without
any type analysis, this strategy was shown to yield effec-
tive visualizations by Weinkauf et al. [WHN∗03]. Garth et
al. [GTS∗04] and Tricoche et al. [TGK∗04] demonstrated
how complex flow structures such as vortex breakdown bub-
bles can effectively be visualized by using stream surfaces.

However, vector field topology suffers from one impor-
tant drawback: it only gives an instantaneous view on vector
fields because it is based on stream lines and is therefore not
directly interpretable for time-dependent vector fields. The
so-called Lagrangian coherent structures (LCS) represent a
time-dependent alternative. Haller [Hal01] has shown that
they can be formulated as ridges in the field of the finite-
time Lyapunov exponent [Hal01] (FTLE), measuring the di-
vergence of trajectories, and Lekien et al. [LCM∗05] have
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confirmed that LCS behave as material lines (in 2D) or ma-
terial surfaces (in 3D). The FTLE-based approach has re-
cently attracted much interest in the visualization commu-
nity [BKKW08, STM08], however, it cannot in an intrinsic
way single out special points, classify them, and characterize
their neighborhood. There is however such a classification
for material lines and surfaces, due to Haller [Hal01]. Unlike
vector field topology, FTLE depends on the choice of the in-
tegration time and therefore, resulting LCS are parameter-
dependent. A third, more practical limitation is that their
computation is very costly, even if optimization, as pro-
posed by Garth et al. [GLT∗09] and Sadlo et al. [SP07],
is used, because a trajectory has to be integrated for each
sample. An ideal “unsteady vector field topology” would re-
spect the Lagrangian view, but not have the limitations of
the FTLE-based approach. This is of course an ambitious
goal that will require solving several problems. What we
propose here is to look into the use of generalized streak

lines (GSL) [WTS∗07] as a replacement for separatrices
and critical points. Experiments performed on analytic and
CFD vector fields showed that GSL, if appropriately seeded,
are often consistent with FTLE ridges. More prominently,
Haller [Hal00] showed in 2000 that there exist so-called hy-

perbolic trajectories with the property that neighboring path
lines converge towards them in positive or negative time. We
will reinterpret his findings in terms of vector field topol-
ogy, one result being the fact that these hyperbolic trajecto-
ries are a generalized counterpart to critical points for time-
dependent vector fields and that GSL seeded at hyperbolic
trajectories represent separatrices. GSL have the additional
advantage of being parameter-free (except for their geomet-
ric length) and easily computable by a method that generates
lines directly, not via ridge extraction.

2. Classical vector field topology

The concept of vector field topology for steady vector fields
or snapshots (single time steps) of time-dependent vector
fields was originally defined by means of special types of
stream lines, or orbits in terms of dynamical systems theory:
critical points and separatrices.

Stream lines that degenerate to points because starting at
zeros of the vector field are called stationary points and if
they exhibit a regular velocity gradient they are called criti-
cal points. Critical points constitute the basis of vector field
topology and can be classified by means of the eigenval-
ues of the velocity gradient at these locations into differ-
ent categories. Mainly, one discriminates saddle-type crit-
ical points exhibiting real eigenvalues of opposite sign (or
negative determinant), nodes where signs are equal, and foci
with a pair of complex eigenvalues. In the special case of 2D
divergence-free vector fields, centers are structurally stable
critical points, too.

Stream lines that converge to saddles in either positive or
negative time form the separatrices which separate regions

of different behavior of the vector field. In 3D, a saddle has
a pair of a one-dimensional and a two-dimensional separa-
trix, i.e. a stream line and a stream surface. The separatrices
can be further classified into stable and unstable manifolds,
converging to the critical point in positive or negative direc-
tion of time, respectively. In 3D, additional separatrices are
obtained from stream lines that converge to saddle-type pe-
riodic orbits in positive or negative time. They form a pair of
2D manifolds, a stable and an unstable one.

In the following section we motivate a time-dependent al-
ternative for the two concepts of critical points and separa-
trices, and reinterpret the concept of hyperbolic trajectories
and the trajectories that converge to them in these terms.

3. Generalized vector field topology

For steady-state vector fields, LCS defined by FTLE ridges
coincide in many cases with manifolds in the sense of vector
field topology [Hal01, SP09], stable manifolds correspond-
ing to repelling LCS and unstable ones to attracting LCS
[Hal00]. Manifolds are attracting in the sense that a pertur-
bation perpendicular to the manifold grows exponentially in
reverse time direction and repelling in the sense that such
a perturbation grows exponentially in forward time. FTLE
usually exhibits ridges along separatrices because separatri-
ces are converging to saddle-type critical points in the re-
spective direction of time whereas nearby streamlines pass
the critical point and hence typically end up at locations dis-
tant from the critical point, and hence lead to an increased
FTLE. Because LCS are material lines, this motivates to
interpret separatrices as streak lines converging to respec-
tive saddle-type critical points in the appropriate direction of
time. As in the case of classical vector field topology, these
separatrices can be constructed by seeding them at small off-
set from the respective critical point and developing them
in the appropriate direction of time. This leads to our ap-
proach to a time-dependent (generalized) vector field topol-
ogy (GVFT): simply replace the role of stream lines by gen-
eralized streak lines [WTS∗07] in the concept. Since streak
lines and stream lines are identical in steady vector fields,
this generalization does not change the classical vector field
topology but may provoke new interpretations.

In the case of time-dependent vector fields, on the other
hand, GVFT and vector field topology will usually differ
substantially. In contrast to classical separatrices, our gener-
alized separatrices (the generalized streak lines) advect with
the flow and our generalized critical points (degenerate gen-
eralized streak lines) may move over time. The fact that our
generalized critical points may move over time necessitates
to use generalized streak lines, a variant of streak lines where
the seed is allowed to move.

The above reasoning about the correspondence between
FTLE ridges and generalized separatrices (generalized
streak lines) also holds for time-dependent vector fields:
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(moving) hyperbolic regions take over the seeding role of
saddle-type critical points in the case of time-dependent vec-
tor fields. For the same reasons, the generalized streak line
converges to that region in the respective direction of time
even if the region is moving. A major drawback with clas-
sical vector field topology is its frame dependence, i.e. a
Galilean transformation can arbitrarily move critical points
and even lead to bifurcations, i.e. the creation or destruc-
tion of critical points. In the original approach [HH89], it
is therefore mentioned that an appropriate frame of refer-
ence has to be chosen when applying the concept of vector
field topology, surely a unsatisfactory circumstance in many
cases. Fortunately, FTLE and hence the concept of LCS are
Galilean invariant and since we aim at an approach inspired
by LCS, we also aim at Galilean invariance. Regions can
be defined to be hyperbolic if the determinant of the ve-
locity gradient has negative sign, hence a Galilean invariant
property, and consistent with the classification of classical
saddle-type critical points. However, on the one hand these
regions are usually quite large, and on the other they can
move at arbitrary speed in time-dependent vector fields lead-
ing to no substantial separation effect on neighboring trajec-
tories passing the region. Additionally, we propose the gen-
eralized critical points to be degenerate generalized streak
lines. Generalized streak lines are only degenerate if they
are seeded on path lines in space-time, i.e. the seed itself is
a particle that advects with the flow. All in all, this motivates
us to define generalized critical points in the space-time view
as distinguished path lines inside hyperbolic regions.

The concept of hyperbolic trajectories was already pro-
posed in 2D by Haller [Hal00] in 2000 using the so-called
hyperbolicity time: the time a trajectory spends in a hyper-
bolic region until it leaves it for the first time. He states that
a trajectory is hyperbolic if two 1D manifolds of trajecto-
ries converge towards it, one in forward and one in reverse
time direction. For finding the seed for such a hyperbolic
trajectory at a given time t0, he proposed to compute the hy-
perbolicity time in forward and backward time direction, to
detect the local maxima (which we interpret here as height
ridges according to Eberly [EGM∗94]) in these two scalar
fields and to determine the intersections of these ridges. If
the ridges are “sharp”, i.e. thin and the deformation rate of
the LCS low, these intersections already represent the seeds
for hyperbolic trajectories, otherwise one intersects the “flat”
ridge-like regions and obtains regions representing sets of
candidates for hyperbolic trajectories, which need then to get
further restricted by additional conditions in his theorem 1.

Ide et al. [ISW02] proposed an alternative approach: they
obtain candidates for their so-called distinguished hyper-
bolic trajectories from a temporal analysis of classical criti-
cal points and then find the distinguished hyperbolic trajec-
tories by construction of a time-dependent linear model. We
restrict this work to Haller’s formulation and refer the reader
to the dynamical systems and fluid mechanics literature for
methods and discussions of how to find hyperbolic trajec-

tories in general. Haller addressed 2D time-dependent vec-
tor fields that are not necessarily divergence-free, interpreted
time as third dimension, and stated that the trajectories con-
verging to the hyperbolic trajectory form 2D manifolds in
space-time (see Figure 3). This is perfectly consistent with
our approach because if these manifolds are intersected by a
plane of constant time, one obtains exactly the generalized
streak lines seeded on the hyperbolic trajectory in the appro-
priate direction of time.

The presented approach may be incomplete in the sense
that no time-dependent counterpart in terms of generalized
streak lines is given for the classical critical points of type
node, focus, and center, as well as for periodic orbits. The
authors are not aware of it in the field of dynamical systems
and fluid mechanics, and because it would probably go be-
yond the scope of this paper, it is addressed as future work.

In the following Section 4, we present methods for obtain-
ing the seeds for hyperbolic trajectories and the construction
of the space-time streak manifolds. Then, in Section 5, we
validate our method and show results using different syn-
thetic and CFD examples.

4. Method

In this section we present methods for obtaining seeds for
hyperbolic trajectories (Section 4.1) and for generating the
space-time streak manifolds (Section 4.2).

4.1. Extraction of seeds for hyperbolic trajectories

As stated by Haller [Hal00], hyperbolicity time has nice
properties compared to FTLE. Whereas FTLE builds on a
gradient between the end points of trajectories and is there-
fore highly sampling-dependent, hyperbolicity time can be
evaluated per trajectory and a value at a sample point does
therefore not depend on neighboring values. Second, it is
less dependent on the advection time T that is used for its
evaluation, compared to FTLE. He states that increasing T

renders sharper and sharper results. Therefore, T can be cho-
sen such that it covers the complete available temporal do-
main of the data. Haller proposed to sample hyperbolicity
time on a grid of initial conditions, i.e. starting points for the
trajectories. Hyperbolicity time dT of the vector field uuu(xxx, t)
at time t0 and location xxx0 computes as

dT (xxx0, t0) =

max
t∈[t0,t0+T ]

{t|det∇uuu(xxx(τ;xxx0),τ)< 0, t0 ≤ τ < t} (1)

with xxx(·;xxx0) being the trajectory started at xxx0, in other words,
the time a trajectory spends in a hyperbolic region until it
exits it the first time. Haller also proposes to apply early ter-
mination of the integration of the trajectories, meaning that
integration can be stopped as soon as the trajectory enters
a non-hyperbolic region. This accelerates the computation
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Figure 1: Forward hyperbolicity time in buoyancy dataset

(see Section 5.4) inside time interval [2,9] computed without
supersampling (top left, visible aliasing artifacts (arrows)

at thin ridges) and with supersampling (top right). For com-

parison, FTLE at t0 = 2 with advection time T = 0.5 (bottom
left) and T = 3 (bottom right).

typically substantially since vector fields usually exhibit a
high amount of (moving) non-hyperbolic regions.

Figure 1 (top row) shows a result for the buoyancy dataset
subject to investigation in Section 5.4. There are mainly two
issues with the sampling of hyperbolicity time. The first one
is that one needs to evolve time (and hence the trajectory)
in discrete steps in numerical data and a direct application
of Eq. 1 in this context would lead to quantization by these
time steps. Therefore, we detect the time step where it leaves
the hyperbolic regime, or the domain, and perform bisec-
tion search inside that time interval to determine the exit
time. The second issue is aliasing. The ridges in hyperbol-
icity time are typically extremely thin and exhibit high gra-
dients, therefore trajectories seeded on a regular grid often
miss the features, leading to aliasing as shown in Figure 1
(top left). Increasing resolution does typically not reduce the
problem because the ridges are that thin. We perform super-
sampling to address this problem. Figure 1 (top right) shows
the same region of the field but this time 5× 5 trajectories
are seeded on a regular grid covering a pixel and the result-
ing hyperbolicity times are averaged. This not only tends
to produce contiguous and smooth ridges, it also results in
reduced numerical noise. This is especially important since
the extraction of height ridges is sensitive to noise [PS08]
because it relies on second derivatives.

The straightforward approach would be now to extract hy-
perbolicity time in forward and reverse time over a suffi-

ciently large time interval to ensure sufficiently sharp ridges,
extract ridges therefrom, and use the ridge intersections di-
rectly as seeds for hyperbolic trajectories, or, depending on
the data, to additionally check if the trajectories seeded at
these intersections fulfill over the interval [t0, t0+T ] all con-
ditions in Haller’s theorem 1 [Hal00]:

det∇uuu(xxx(t), t)< 0,
√
2β

[

1

λ1min
+

1

λ2min

]

< α

with the real eigenvalues−λ1(t)< 0< λ2(t) of∇uuu(xxx(t), t),

λkmin = min
[t0,t0+T ]

λk(t), k = 1,2,

M being the matrix of the temporally consistently oriented
eigenvectors of ∇uuu(xxx(t), t), and

α = min
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With

γ =

√
2β[α2λ1minλ2min+

√
2αβ(λ1min+λ2min)+2β2]

α3λ1minλ2min
,

the additional conditions of Haller’s theorem 1 for a trajec-
tory being uniformly finite-time hyperbolic inside the inter-
val [t0, t0+T ] are:

β <
α

2

√

2λ1minλ2min,

λ1(t)> γ+
2β2

α2λ1minλ2min
λ2(t),

λ2(t)> γ+
2β2

α2λ1minλ2min
λ1(t).

Although intersecting ridges of hyperbolicity time works
well for some cases such as our oscillating gyre-saddle ex-
ample (Section 5.2), we encountered problems even for the
simple quad-gyre example (Section 5.3), and in particular in
case of CFD (Section 5.4). Several problems can arise:

• The temporal domain of the field may not allow hyperbol-
icity time to develop sharp enough ridges, meaning that
regions of constant maximum time (compare red band in
Figure 1 (top row)) remain, which do not allow for the
robust extraction of height ridges. In this case, after inter-
section of forward and backward hyperbolicity time can-
didate sets, a subset of these adjacent samples represents
candidates for uniformly hyperbolic trajectories and many
of them may fulfill the additional conditions of theorem 1,
resulting in adjacent uniformly hyperbolic trajectories, in-
stead isolated ones. Extracting ridges would have the ad-
vantage that the ridge intersections are not restricted to
the sampling grid, because ridge extraction is based on
interpolation. Hence, ridge intersections would result in a
much better approximation for the seeds, even if the ridges
are very thin and hence would be hard to sample on a grid.

• The field may lead to intricate ridges, as in the case of
the quad-gyre example (see below), making the extraction
and intersection of ridges intractable.
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• The ridge intersections may not be consistent with FTLE
ridges for a desired FTLE advection time. This is basically
no problem but the goal of this work is to derive a concept
that is consistent with LCS in terms of FTLE ridges.

Since both, ridges in the FTLE (of long enough advection
time) and ridges in hyperbolicity time represent invariant
manifolds, we prefer to extract ridges from FTLE fields and
intersect those. As already mentioned, FTLE depends on the
advection time used for its computation. This first seems as
a drawback, but it also offers a scale-dependent approach:
if the advection time is increased, FTLE ridges (the LCS)
typically also get sharper but at the same time they often get
longer and more convoluted (see Figure1 (bottom row)). In-
tersecting these massively folded LCS leads to a huge num-
ber of intersections and may lead to insignificant visualiza-
tions. Hence, the advection time for FTLE computation can
serve as a scale parameter. This motivation is supported by
the observation that we were not able to extract uniformly
hyperbolic trajectories, using both ridges in hyperbolicity
time and FTLE, in CFD data in significant regions and time
intervals, as discussed in Section 5.4. Additionally, reject-
ing FTLE ridge regions if the FTLE falls below a thresh-
old allows to quantitatively restrict the analysis to LCS of
a required strength of repulsion or attraction. Furthermore,
FTLE is, due to its spatially variational definition, typically
smooth even at low resolutions and does not exhibit flat re-
gions in non-degenerate vector fields, hence its ridges are
well defined and precise with respect to the chosen time
scale. Further, we typically impose a threshold on the in-
tersection angle between ridges to suppress intersections of
almost parallel ridges that would lead to inaccurate and also
often insignificant results.

If the data allow for it (depending on the rate at which
LCS deform [Hal00], the available temporal domain, and nu-
merics), we restrict the intersections to seeds for uniformly
hyperbolic trajectories by applying the additional conditions
of Haller’s theorem 1. Otherwise, we propose a “weak”
hyperbolicity approach: we generate the space-time streak
manifolds as long as the seeding trajectory is inside a hy-
perbolic region and stop their generation if it enters a non-
hyperbolic region (or start the reverse-time manifold only at
this time). This can be seen as a complementary approach
to filtering the trajectories by their hyperbolicity time. Al-
though these trajectories typically deviate from the inter-
section curve of the attracting and repelling invariant man-
ifolds, this is not so much of a problem because the gener-
ated streaks get quickly attracted by the attracting manifold
in the respective direction of time (compare Figure 6 and
Figure 10 (bottom)).

Accurate seeds can be extracted by filtered AMR ridge
extraction [SP07], however at the risk of missed ridges and
hence intersections. In our tests, we iteratively decrease the
size of a sampling window of constant resolution around
each intersection of the ridges until the change of the in-

tersection falls below a tolerance. To constrain the compu-
tational cost to an acceptable level and to obtain significant
visualizations in case of massively folded ridges, we super-
vised the search in these cases by adapting the ridge filter-
ing criteria. We address an advanced algorithm for the seed
search in case of massively folded ridges as future work,
possibly based on a histogram analysis of the underlying
field, also because our tests indicate that even highly accu-
rate seeds with respect to the underlying FTLE or hyper-
bolicity time field do not guarantee exact hyperbolic trajec-
tories over long time intervals (Figure 6 (bottom)), in the
sense that they follow the intersection curves of the invari-
ant attracting and repelling manifolds. It was already stated
by Haller [Hal00] that integrating hyperbolic trajectories is a
hard task because there is a repelling manifold in each direc-
tion of time and therefore errors tend to grow exponentially.

To conclude this section, we present the problems and the
chosen approach for extracting the seed for the quad-gyre
example (Section 5.3). Figure 2 (top row) shows its hyper-
bolicity time forward, and in reverse time direction. Whereas
the forward hyperbolicity time behaves well in the central
region where the seed has to be located, backward hyperbol-
icity time exhibits “resonances”: there is a very high num-
ber of vertical ridges in the region where the aimed ridge
is located (Figure 2 (top right)). This phenomenon forbids
to extract ridges in this region and zooming as well as su-
persampling did not lead to a successful extraction of the
desired (vertical) ridge. Therefore we also visualized inside
a region around the presumed ridge intersection the points of
uniform hyperbolicity according to all conditions of Haller’s
theorem 1 (Figure 2 (mid row)). Whereas the forward hy-
perbolicity time exhibits a single horizontal ridge, backward
hyperbolicity still exhibits a multitude of seeds for uniformly
hyperbolic trajectories along that line. Therefore we have
chosen to extract the ridges from FTLE (Figure 2 (bottom
row)), which resulted in a seed for an accurate uniformly
hyperbolic trajectory.

4.2. Extraction of space-time streak manifolds

As explained in Section 3, the generalized streak lines
representing time-dependent separatrices, or manifolds, are
seeded along hyperbolic trajectories. In a space-time view
(regarding time as third dimension of the 2D vector field),
the generalized streak lines become 2D manifolds (e.g. Fig-
ure 3) which we call space-time streak manifolds.

Several techniques were proposed for the extraction of the
invariant stable and unstable manifolds of hyperbolic trajec-
tories. Because the manifolds usually undergo massive thin-
ning (stretching) and also possibly folding, refinement of the
resulting lines is usually necessary. Mancho et al. [MSWI03]
give an overview of different existing approaches and also
present new ones. In general, they initially seed particles
along the eigenvector of the velocity gradient (the eigenvec-
tor corresponding to the chosen direction of time), discuss
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Figure 2: Seed extraction in quad-gyre example at time

t0 = 20. Forward hyperbolicity time (top left) and backward

(top right) of the complete region. Close-up region of uni-

form hyperbolicity (red) for time interval [20,30] (mid left)

and [10,20] (mid right) with max-time hyperbolicity (light

blue) around the “cross-shaped” high backward hyperbol-

icity time region (arrow) and corresponding FTLE of advec-

tion time T = 10 (bottom left) and T = −10 (bottom right).

The backward uniform hyperbolicity exhibits a small verti-

cal line consistent with the LCS in backward-time FTLE and

indeed, the intersection of the FTLE ridges results in an ac-

curate seed for a uniformly hyperbolic trajectory (Figure 9).

different criteria for deciding when a new trajectory (in our
sense a new streak particle) needs to get inserted during ad-
vection for obtaining manifolds without “gaps”, and insert
required particles at the previous time step by interpolation.

We follow a different approach: for a given direction of
time, we seed two generalized streak lines at an offset from
the hyperbolic trajectory (Figure 3). A seed for each streak
line is generated at regular time steps along the hyperbolic
trajectory and the offset is orientated along the eigenvector
of the velocity gradient at the respective position and time of
the hyperbolic trajectory, the largest eigenvalue for the ex-

t

Figure 3: Attracting invariant manifold (light blue) and re-

pelling invariant manifold (red) consist of trajectories (blue,

red) converging to the hyperbolic trajectory (green tube

seeded at black sphere) in the respective direction of time.

Space-time streak manifold generation: attracting streak

manifold is seeded in forward direction along hyperbolic

trajectory with offset in eigenvector direction of the ve-

locity gradient at the respective position and time (orange

spheres). The space-time streak manifold consists of the tra-

jectories (blue) of each particle of the two generalized streak

lines. An isotemporal slice of the manifold represents the two

generalized streak lines (turquoise).

traction of attracting manifolds (integration in forward time)
and the smallest for repelling manifolds (integrated in re-
verse time). We use a user-defined constant offset distance
from the hyperbolic trajectory. This offset distance has to
be small enough to allow for the linearization by the veloc-
ity gradient, also with respect to temporal change. However,
because the manifold is attracting in the respective direction
of time, errors tend to shrink and therefore tend to be neg-
ligible. It is also necessary to orientate the eigenvector to
be consistent with the respective streak in order to prevent
“switching” of the seeds.

At each time step of the space-time streak manifold gener-
ation procedure, we measure the distance between neighbor-
ing particles of each streak line and test it against a user-
defined threshold. If this threshold is violated and hence
insertion of a particle is required, we do not interpolate
between already advected streak particles, similar to the
Hultquist family of integral surface construction algorithms
[Hul92,GTS∗04,GKTJ08], but linearly interpolate between
the corresponding seed positions in space and time and use
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the interpolated seed for generating a new trajectory up to
the current time. Additionally, to avoid excessive computa-
tion, we allow to erase streak particles if the distance falls
below an other threshold. Hereby, we either allow only the
deletion of particles that were generated by interpolation of
the seed (and hence less accurate), or also allow the deletion
of particles generated by “true” seeds.

The space-time streak manifolds are terminated as soon
as the corresponding hyperbolic trajectory enters a non-
hyperbolic region. From that point on the remaining part
of the trajectory may be visualized to support the spatial
perception of where the space-time streak manifold ends
(see Figure 10 (bottom)). The corresponding reverse-time
manifold is constructed along the same hyperbolic trajec-
tory with the difference, that if the forward-time trajectory
was stopped because it entered a non-hyperbolic region, the
reverse-time manifold is constructed only from this time on
(see Figure 10 (bottom)). Of course, the manifolds can be
constructed from hyperbolic trajectories integrated in both
directions of time starting at the seeds. However, in this work
we only show the manifolds for the hyperbolic trajectories
computed in forward direction from the seeds.

5. Results

In the following sections, we examine our approach and
compare it to the approach by Haller [Hal00] using different
2D vector fields, both synthetic and from CFD. The seeds
for the hyperbolic trajectories were all obtained by ridge in-
tersections of FTLE, not hyperbolicity time.

5.1. Skewing gyre-saddle example

One of the simplest cases in the field of LCS is a saddle-
type critical point that stands still, exhibits approximately
constant eigenvalues and eigenvectors over time, and per-
sists over the entire temporal domain. Although this exam-
ple may sound academic, it is quite common in many areas.
The probably most prominent and most important area are
dynamical systems where it is quite common that the phase
space exhibits non-moving critical points. As another exam-
ple, fluid dynamics solutions at low Reynolds numbers tend
to converge to quasi-steady state flow, provided that there are
constant boundary conditions.

A time-dependent variant of the linear saddle-type vector
field

uuu(xxx) =

(

ax

−by

)

a> 0, b> 0,

which is often used as a simple test case in vector field topol-
ogy, would be a straightforward approach for our analysis.
However, this field exhibits constant velocity gradient and
because all trajectories separate at the same rate in this vector
field, it also exhibits constant FTLE. This is sometimes re-
garded as a drawback of Lagrangian methods such as FTLE,

but due to the constant velocity gradient we regard it as a de-
generate case in the Lagrangian view. Therefore, we will be
using a simple example derived from the so-called steady-
type double-gyre flow. This vector field is two-dimensional,
divergence-free, spatially periodic, features a saddle point,
and expresses FTLE ridges due to non-linearity [Sha05]. The
derived example is made spatially non-periodic for simplic-
ity, is still divergence-free, and offers a parameter for ma-
nipulating the angle at which the manifolds cross each other,
which will be varied to obtain an exemplary time-dependent
vector field. We call our example gyre-saddle and define it
inside the region D= [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ] as

uuu(xxx) =

(

−sin(πx)cos(πy)+asin(πy)cos(πx)
sin(πy)cos(πx)−asin(πx)cos(πy)

)

and outside the region D using k = (y ≥ |x|)− (y ≤ −|x|)
and l = (x> |y|)− (x<−|y|), with (·) being 1 if true and 0
if false, as

uuu(xxx) =

(

kac(πx−aπ(y− k
2 ))− lc(πy−aπ(x− l

2 ))

kc(πx−aπ(y− k
2 ))− lac(πy−aπ(x− l

2 ))

)

with the clamped cosine

c(x) =







0 if x<−π/2
cos(x) if −π/2≤ x≤ π/2

0 if x> π/2
,

and the parameter a which is used to control the skew of the
vector field. The standard configuration is a = 0. We will
vary a sinusoidally with time: a(t) = sin(2πt)/3 (Figure 4).

1

-1

0

1-1 0

1

-1

0

1-1 0

Figure 4: Gyre-saddle example. Standard configuration at

t = 0 (left) and skew configuration at t = 1/4 (right).

Figure 5 shows a visualization of the skewing saddle ex-
ample. A seed for a uniformly hyperbolic trajectory inside
the visualized time interval was found and space-time streak
manifolds are visualized together with backward-time FTLE
fields for verification of the attracting streak manifold by the
corresponding attracting LCS. Because the vector field ex-
hibits a temporal period of τ = 1, the intermediate FTLE
was chosen at t0 = 6.6 for reliable validation. It can be
seen that it is consistent. For a verification of the repelling
streak manifold, forward-time FTLE fields are also visu-
alized. Again, the LCS and the respective streak manifold
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t

t0 = 4

t0 = 6.6

t0 = 9

FTLE

0 1

t

t0 = 4

t0 = 6.6

t0 = 9

Figure 5: Space-time visualization of skewing gyre-saddle

example. Top: standard visualization. FTLE at time t0 = 4
with advection time T = 5, at time t0 = 6.6 with advec-

tion time T = −5, and at time t0 = 9 with advection time

T =−5. Space-time streak manifolds (attracting: light blue,
repelling: red) seeded along uniformly hyperbolic trajectory

(green tube) are consistent with respective LCS. Bottom: vi-

sualization for verification with reversed FTLE advection

times. The repelling LCS should preferably intersect the at-

tracting space-time streak manifold at the uniformly hyper-

bolic trajectory. This is the case over the complete time in-

terval in this example.

are consistent. The visualization in Figure 5 (bottom) also
serves as a validation of the uniformly hyperbolic trajectory:
it should stay on the intersection curve of the invariant man-
ifolds and therefore the attracting streak manifold should in-
tersect the repelling LCS at the uniformly hyperbolic trajec-
tory. It can be seen that this is the case for the visualized time
interval in this example.

5.2. Oscillating gyre-saddle example

Here, we apply our method to an other variant of the gyre-
saddle dataset from Section 5.1. Instead of a time-dependent

t

t0 = 4

t0 = 6.5

t0 = 9

FTLE

0 0.9

t

t0 = 4

t0 = 6.5

t0 = 9

Figure 6: Space-time visualization of oscillating gyre-

saddle example. Top: FTLE at time t0 = 4 with advection

time T = 5, at t0 = 6.5 with T = −5, and at t0 = 9 with

T =−5. Space-time streak manifolds (attracting: light blue,
repelling: red) seeded along uniformly hyperbolic trajectory

(green tube) are consistent with respective LCS. Additional

shear-induced LCS (arrow) are not captured. Bottom: re-

versed FTLE advection times for verification. The repelling

LCS should preferably intersect the attracting streak mani-

fold at the uniformly hyperbolic trajectory. This is still the

case at t = 6.5 but not anymore at t = 9 (arrow). Please see

Section 5.2 for a discussion of this issue.

skew, the example is at standard configuration (a = 0), and
is made time-dependent by a harmonic oscillation of the
saddle diagonally between the locations (0.25,0.25) and
(−0.25,−0.25) with a period of τ = 4. Figure 6 shows the
space-time visualization. The attracting LCS in the FTLE
is consistent with the attracting space-time streak manifold
over the entire time interval but the additional boundary-
shear induced attracting LCS are not captured because they
are not related to hyperbolic mechanisms.

For a verification of the repelling streak manifold,
forward-time FTLE fields are also visualized (Figure 6 (bot-
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tom)). Again, the LCS and the streak manifold are consis-
tent. However, the trajectory does not stay over the complete
visualized time interval on the space-time intersection curve
of the attracting and repelling LCS (compare visualization
at time t = 9). Nevertheless, it starts to deviate only at the
end of the interval. We tried to address this problem by ex-
tracting the seed at very high precision from ridges of long-
time FTLE (advection time |T |= 7.9) and also hyperbolicity
time, but this did not lead to better results. Also performing
very precise integration for the computation of FTLE and
hyperbolicity time as well as for the uniformly hyperbolic
trajectory did not reduce the problem. Since the problem
seems to be hard to isolate, we find it an interesting topic
for future research. Still, it has to be noted that the visualiza-
tion typically does not suffer because the streak manifolds
get quickly attracted by the respective invariant manifold.

5.3. Quad-gyre example

Here, we apply the method to the so-called time-dependent
double-gyre example due to Shadden [Sha05]. It is tempo-
rally and spatially periodic and we use a larger range of the
field, resulting in four gyres, hence we call this example the
quad-gyre. Using

f (x, t) = a(t)x2+b(t)x,

a(t) = εsin(ωt),

b(t) = 1−2εsin(ωt),

it is defined as follows:

uuu(xxx) =

( −πAsin(π f (x))cos(πy)

πAcos(π f (x))sin(πy) d fdx

)

.

We use the configuration ε = 0.25, ω = 2π/10, and A= 0.1.
Figure 7 shows a plot at t = 0. The saddle-type critical points
at x = 0 oscillate horizontally while those at x = −1 and
x= 1 are stationary.

y 0

1

-1

-1 0

x

1

Figure 7: Quad-gyre example at t = 0.

Figure 9 shows the visualization using our method. A seed
for a uniformly hyperbolic trajectory inside the visualized
time interval was found and space-time streak manifolds are

visualized together with backward-time FTLE fields for ver-
ification of the attracting streak manifold by the correspond-
ing attracting LCS. It can be seen that it is consistent. Be-
cause the y-symmetry of the example is not varying over
time, we do not show additional forward-time FTLE for veri-
fication of the repelling streak manifold. It is consistent with
the y = 0 plane and hence consistent with the correspond-
ing repelling LCS. The uniformly hyperbolic trajectory also
stays on that plane and hence follows the intersection curve
of the invariant manifolds.

5.4. Buoyancy example

This example is a 2D time-dependent CFD simulation of
buoyant air. The bottomwall is heated whereas the upper one
is cooled, while the left and right walls are neutral. There is
a horizontal barrier extending from the mid of the left wall
to the center (Figure 8). Convective flows are known to ex-
hibit very complicated LCS that drive the mixing in the flow,
i.e. by so-called thinning and folding.

Figure 8: Buoyancy CFD example at t = 2.

Unfortunately we were not able to extract seeds for uni-
formly hyperbolic trajectories in significant regions and for
significant time intervals, as well as in another CFD exam-
ple. It has to be subject to further investigation if this is due
to numerics, or if these are cases where the method is not
applicable; Haller stated [Hal00] that his method is only ap-
plicable if the deformation rate of the LCS is lower than typ-
ical particle speeds. Therefore, we follow our “weak” hy-
perbolicity approach discussed in Section 4.1, meaning that
we generate streak manifolds as long as the seeding trajec-
tory stays in a hyperbolic region. We obtain the seeds from
moderate-time (|T | = 0.5 seconds, same as the visualiza-
tion time interval) FTLE fields because long-time FTLE and
hyperbolicity time exhibit massively folded ridges (see Fig-
ure 1) that would lead to a very high number of seeds and
hence insignificant visualizations.

Figure 10 shows two visualizations of the data. The
space-time streak manifolds are visualized together with
backward-time FTLE fields for verification of the attract-
ing streak manifolds by the corresponding attracting LCS.
It can be seen that they are consistent. For a verification of
the repelling streak manifolds, forward-time FTLE fields are
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t

t0 = 20

t0 = 25

t0 = 30

FTLE

0 0.6

Figure 9: Space-time visualization of time-dependent quad-gyre example. FTLE at time t0 = 20 with advection time T = 10, at
t0 = 25 with advection time T = −10, and at t0 = 30 with advection time T = −10. Space-time streak manifolds (attracting:
light blue, repelling: red) seeded along uniformly hyperbolic trajectory (green tube) are consistent with respective LCS over the

entire time interval.

also visualized. Again, the LCS and the streak manifolds are
consistent. However, as in the example from Section 5.2 the
seeding trajectories do not stay on the space-time intersec-
tion curves of attracting and repelling LCS over the com-
plete visualized time interval. Nevertheless, they keep close
in the first half of the visualized time interval. As the trajec-
tory from Section 5.2 was determined to be uniformly hyper-
bolic, in contrast to our weakly hyperbolic trajectories used
here, but also exhibits deviation from the intersection curve,
we see this fact as a motivation for our approach. Addition-
ally, the resulting streak manifolds still got attracted to the
respective invariant manifold in all our experiments.

6. Conclusion

We presented an approach to a time-dependent vector field
topology. The concept is inspired by Lagrangian coherent
structures (LCS) present as ridges in the finite-time Lya-
punov exponent (FTLE). We mainly build on the findings by
Haller [Hal00] about invariant manifolds of hyperbolic tra-
jectories in time-dependent vector fields: his concept can be
directly reinterpreted as a time-dependent vector field topol-
ogy when the role of streamlines is substituted by general-
ized streak lines. In this sense one can say that vector field
topology should have been formulated based on generalized
streak lines, since they are identical to streamlines in sta-
tionary vector fields. However, we have to point out that our
approach is not complete in the sense that we only found a
time-dependent counterpart to critical points of type saddle,
the hyperbolic trajectories in space-time, and their separatri-
ces, the space-time streak manifolds. Therefore, only LCS

regions that are related to hyperbolic mechanisms are repre-
sented, e.g. LCS due to shear processes are not captured.

Our approach is not restricted to Haller’s formulation on
the basis of ridges in hyperbolicity time, we propose to alter-
natively base the concept on ridges in the FTLE. This allows
for a robust and scale-dependent approach by variation of
the advection time used for FTLE computation and for sig-
nificant visualizations that are consistent with LCS defined
by ridges in the FTLE at the chosen advection time scale.

The presented approach exhibits the following advantages
over the extraction of LCS from the FTLE:

• Efficient computation of time series: whereas the FTLE
needs to get recomputed for each frame of an animation,
which is typically very time-consuming, the streak man-
ifolds can be computed at arbitrary temporal and spatial
resolution at comparably little computational cost.

• Ridge extraction is avoided: the resulting streaks are
smooth and insusceptible to (numerical) noise.

• Hyperbolic trajectories give additional insight into the or-
ganization and dynamics of LCS.

But it also exhibits the following drawbacks compared to
LCS by FTLE:

• The approach relies on a sampled field for seeding the
streak manifolds at discrete time steps: the FTLE or
hyperbolicity time. Short-lived LCS may therefore get
missed, i.e. hyperbolic trajectories that are short in space-
time. This can lead to popping artifacts over time.

• The FTLE is not computed on the space-time streak man-
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Figure 10: Space-time visualizations of buoyancy example. Top: FTLE at time t0 = 2 with advection time T = 0.5, at t0 = 2.25
with T =−0.5, and at t0 = 2.50 with T =−0.5. Space-time streak manifolds (attracting: light blue, repelling: red) seeded along
weakly hyperbolic trajectories (green tubes) are consistent with respective LCS, although some would need longer advection

times to cover the full extent of the LCS. Bottom: FTLE with reversed advection times and additionally at t0 = 2.375 with

advection time T = 0.5. Space-time streak manifolds are stopped if trajectory gets non-hyperbolic (visualized by white tubes,

black arrow). Repelling LCS should preferably intersect attracting streak manifolds at hyperbolic trajectories. This is still

mostly the case at t = 2.25 but not necessarily at later times (white arrow), see Section 5.2 for a discussion.

ifolds and is therefore not available for a quantitative in-
terpretation of the LCS regarding attraction or repulsion.

• Hyperbolic trajectories are hard to integrate: errors in the
seeding position or during integration tend to grow expo-
nentially.

We identified several topics for future research. Finding
time-dependent counterparts to critical points of type node,
focus, and center, as well as periodic orbits is probably the
most evident but maybe also most demanding step. A ro-
bust and efficient method for extracting highly accurate ridge

intersections in case of massively folded ridges is probably
easier to achieve and therefore the next step we address. Fi-
nally, the approach could be extended to 3D vector fields.

7. Acknowledgments

We would like to thank Ronald Peikert (ETH Zurich) for his
support.



F. Sadlo & D. Weiskopf / Time-Dependent 2-D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures

References

[BKKW08] BÜRGER K., KONDRATIEVA P., KRÜGER J., WEST-
ERMANN R.: Importance-driven particle techniques for flow vi-
sualization. In Proc. of Pacific Vis. Symp. (2008), pp. 71–78. 2

[EGM∗94] EBERLY D., GARDNER R., MORSE B., PIZER S.,
SCHARLACH C.: Ridges for image analysis. J. Math. Imaging

Vis. 4, 4 (1994), 353–373. 3

[GKTJ08] GARTH C., KRISHNAN H., TRICOCHE X., JOY K. I.:
Generation of Accurate Integrat Surfaces in Time-Dependent
Vector Fields. IEEE Transactions on Visualization and Computer

Graphics 14, 6 (2008), 1404–1411. 6

[GLT∗09] GARTH C., LI G.-S., TRICOCHE X., HANSEN C. D.,
HAGEN H.: Visualization of coherent structures in transient
flows. In Topology-Based Methods in Visualization II (2009),
Hege H.-C., Polthier K., Scheuermann G., (Eds.), Springer,
pp. 1–14. 2

[GTS∗04] GARTH C., TRICOCHE X., SALZBRUNN T., BOBACH

T., SCHEUERMANN G.: Surface techniques for vortex visualiza-
tion. In VisSym (2004), pp. 155–164, 346. 1, 6

[Hal00] HALLER G.: Finding finite-time invariant manifolds in
two-dimensional velocity fields. Chaos 10, 1 (2000), 99–108. 2,
3, 4, 5, 7, 9, 10

[Hal01] HALLER G.: Distinguished material surfaces and coher-
ent structures in three-dimensional fluid flows. Physica D 149

(2001), 248–277. 1, 2

[HH89] HELMAN J., HESSELINK L.: Representation and display
of vector field topology in fluid flow data sets. Computer 22, 8
(1989), 27–36. 1, 3

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in
steady 3d vector fields. In IEEE Visualization ’92 Proceedings

(1992), IEEE Computer Society, pp. 171–178. 6

[ISW02] IDE K., SMALL D., WIGGINS S.: Distinguished hyper-
bolic trajectories in time-dependent fluid flows: analytical and
computational approach for velocity fields defined as data sets.
Nonlinear Processes in Geophysics 9, 3/4 (2002), 237–263. 3

[LCM∗05] LEKIEN F., COULLIETTE C., MARIANO A. J., RYAN

E. H., SHAY L. K., HALLER G., MARSDEN J. E.: Pollution
release tied to invariant manifolds: A case study for the coast of
Florida. Physica D 210, 1 (2005). 1
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