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Abstract Concepts from vector field topology have been successfully applied to

a wide range of phenomena so far—typically to problems involving the transport

of a quantity, such as in flow fields, or to problems concerning the instantaneous

structure, such as in the case of electric fields. However, transport of quantities in

time-dependent flows has so far been topologically analyzed in terms of advection

only, restricting the approach to quantities that are solely governed by advection.

Nevertheless, the majority of quantities transported in flows undergoes simultaneous

diffusion, leading to advection-diffusion problems. By extending topology-based

concepts with diffusion, we provide an approach for visualizing the mechanisms in

advection-diffusion flow. This helps answering many typical questions in science

and engineering that have so far not been amenable to adequate visualization. We

exemplify the utility of our technique by applying it to simulation data of advection-

diffusion problems from different fields.

1 Introduction

Vector field topology is a powerful tool for the analysis of vector fields, since it

reveals their overall structure and provides insights into their intrinsic dynamics.

In the visualization community, the problem of extracting topological features has

been extensively researched for more than two decades. Visualization by traditional

(stationary) 2D vector field topology builds on the concept of critical points which

represent isolated zeros of the vector field, i.e., isolated points where velocity mag-

nitude vanishes. By additionally extracting separatrices, i.e., sets of stream lines

that converge to these points in forward or reverse time, one obtains the overall

structure of a vector field, i.e., these sets of lines divide the domain into regions of

qualitatively different behavior. Nevertheless, there arise some issues regarding the
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extraction of topological structures from time-dependent vector fields. The separatri-

ces no longer provide information on the true transport of massless particles, since

stream lines (or stream surfaces in 3D) only capture the instantaneous structure of

the field. Thus, an alternative approach has recently gained importance that obtains

a time-dependent counterpart to separatrices called Lagrangian coherent structures

(LCS). The LCS represent transport barriers in time-dependent flow and can be ob-

tained as ridges of the finite-time Lyapunov exponent (FTLE) [7], which measures

the separation of neighboring particles as they are advected by the flow. This ap-

proach allows for qualitative analysis of time-dependent flows, as the LCS separate

regions of different behavior over time.

So far, however, only advective transport has been taken into account in topology-

based flow visualization, neglecting additional mechanisms that can cause transport,

such as diffusion. Diffusion is present in a wide range of physical and mathematical

processes including flows, where it leads to advection-diffusion flow problems. Tra-

ditional LCS computed from the velocity field by means of the FTLE obviously can-

not depict the true transport of species of interest, such as temperature or solubles, in

time-dependent advection-diffusion flow. These LCS exhibit substantial cross-flux

of the species due to the involved diffusion and hence cannot separate regions of

qualitatively different advection-diffusion. By including diffusion flux of the quan-

tity under examination into the flow map computation, we obtain FTLE ridges

that are consistent with the true transport of the respective quantity in advection-

diffusion flow. Beyond the resulting LCS, we also show the utility of combining the

velocity field with the involved diffusion fluxes. The resulting advection-diffusion

field represents the instantaneous transport of the quantity of interest—and because

it represents a vector field, the entire body of literature on flow visualization can be

applied to it. We demonstrate this for the example of temperature diffusion (thermal

conduction) in flows by extracting, additional to LCS, vortex core lines from this

field and by providing respective interpretations.

This chapter is organized as follows: In Sec. 2 we discuss related work. In Sec. 3

we introduce the advection-diffusion field that provides a basis for generic visual-

ization of advection-diffusion processes. Two existing feature extraction techniques

are briefly described in Sec. 4, while in Sec. 5 these features are extracted from three

advection-diffusion CFD datasets and discussed. Sec. 6 concludes this work.

2 Related Work

Flow visualization by topological features has proven successful in a wide range of

applications. The field was founded by the works of Perry and Chong [25], Helman

and Hesselink [9, 10], and Globus et al. [5]. About a decade later an increase in

research in this field has taken place, in the works of Hauser et al. [18] regarding

dynamical systems, and Weinkauf et al. with respect to new topological features—

starting with saddle connectors [40], and followed by connectors of boundary switch

curves [45]. They also proposed a first approach [41] to topological features that are
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able to reflect the true transport behavior in time-dependent vector fields—motivated

by the incapability of traditional vector field topology in this respect due to its defi-

nition by (instantaneous) stream lines. By introducing the concept of the local Lya-

punov exponent [19], later called direct Lyapunov exponent by Haller [7], and fi-

nally called finite-time Lyapunov exponent (FTLE), into the field of visualization,

Garth et al. [4] and Sadlo and Peikert [29] provided a nowadays popular basis for sci-

entific visualization by means of topological features in time-dependent vector fields.

As proposed by Haller [7] and subsequently defined by Shadden et al. [36], the local

maximizing curves in the FTLE field, called Lagrangian coherent structures (LCS),

represent a time-dependent counterpart to separatrices. Several (and even contra-

dicting) definitions for these curves have been proposed by Haller [7], Shadden et

al. [36], and others. In the field of visualization, Sadlo and Peikert [29, 28] proposed

the extraction of LCS by means of height ridges [2].

It has to be noted that FTLE ridges can fail to represent LCS due to two reasons:

insufficient advection time [36, 30] or shear. More recently, Sadlo and Weiskopf [31]

have generalized 2D vector field topology to time-dependent vector fields by replac-

ing the role of stream lines by streak lines in the concept, and Üffinger et al. [44]

have extended this approach to 3D. It is worth noticing that these approaches (and

the recent work by Haller [8]) obtain only LCS caused by hyperbolic mechanisms—

avoiding those caused by shear flow which do not necessarily represent transport

barriers even if long advection times are used for the FTLE computation (resulting

in sharp ridges). We refer the reader to the state of the art report by Pobitzer et

al. [26] for further details on topology-based visualization in time-dependent vector

fields. The FTLE has further been extended to tensor fields by Tricoche et al. [43]

and Hlawatsch et al. [11]. Furthermore, it has been applied to a wide range of prob-

lems including video analysis by Kuhn et al. [16]. More recently the FTLE has been

extended to uncertain vector fields by Schneider et al. [35], while Otto et al. [20] ex-

tended the traditional instantaneous vector field topology to uncertain vector fields.

Further works beyond hyperbolic topological structures include those focusing

on critical point analogues by Kasten et al. [15] and Fuchs et al. [3], and those by

Peikert and Sadlo [22, 23, 24] to reveal the structure in recirculating flow, in par-

ticular vortex breakdown bubbles. These have been followed up by techniques due

to Tricoche et al. [42] and Sanderson et al. [32] for visualizing the structure of the

recurrent magnetic field in Tokamak fusion reactors. More recently, [34] applied

FTLE ridges for analyzing the air flow in revolving doors. In contrast to our results,

[34] reports only a very loose relation between FTLE ridges and temperature, pos-

sibly because thermal conduction (numerical diffusion in the solver) or sub-scale

mixing due to turbulence was not taken into account.

Only few works have so far been presented related to advection-diffusion flow.

The most closely related work is by Karch et al. [14], where we present an inter-

active dye advection technique that can take into account diffusion fluxes, i.e., can

move the virtual dye according to the true advection-diffusion transport of quantities.

Other works have made use of diffusion-related concepts for visualizing advection-

only flow, such as the reaction-diffusion technique by Sanderson et al. [33], or the

anisotropic diffusion approach by Bürkle et al. [1].
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3 Advection-Diffusion Field

In [14] we achieved a visualization of the transport of quantities in advection-

diffusion flow by moving virtual dye according to the combination of advective

fluxes (i.e., the velocity field) and diffusion fluxes. While we formulated the dye

advection by means of the finite volume method, i.e., in terms of fluxes at the bound-

aries of each sampling cell, we derive here the so-called advection-diffusion field, a

vector field describing the true transport of the respective quantity, such as tempera-

ture or solubles, due to advection-diffusion.

The advection-diffusion vector field is derived from the dye advection formula-

tion [14] as follows. Pure advection of the virtual dye concentration φ = φ(x, t) with

respect to the simulated velocity field u = u(x, t) is modeled by

∂φ

∂ t
+(∇φ)u = 0.

Including passive diffusion, i.e., the motion of the dye with respect to the diffusion

fluxes of the simulated quantity ψ = ψ(x, t), such as temperature or a soluble, with

its constant of diffusivity Dψ , according to Fick’s law of diffusion, reads

∂φ

∂ t
+(∇φ)u = (∇φ)Dψ ∇ψ

and leads to equation 7 from [14]

∂φ

∂ t
+(∇φ)(u−Dψ∇ψ) = 0.

This represents again a pure advection problem, however, now with respect to the

advection-diffusion field

uψ = u−Dψ ∇ψ. (1)

Hence, uψ describes the transport of the quantity ψ by means of advection-diffusion.

Since uψ represents a vector field, all techniques from flow visualization can be

applied to it, however, with the difference that they then reveal the transport of ψ
with respect to advection-diffusion, instead of the transport of massless particles due

to u, as in the majority of traditional flow visualization.

In this work we present the extraction of topological features from uψ and show

how they can be interpreted. The contribution of this chapter is not in terms of

techniques for the extraction of topological features per se, but the introduction of

the advection-diffusion field and in particular the application of topological feature

extraction to this field. To the best of our knowledge, there has not been any work

on the visualization of features in advection-diffusion flow yet, and due to the wide

presence of advection-diffusion problems and the importance of the visualization

of the involved transport of quantities, we see this as an important contribution to

the field of scientific visualization. The extraction of LCS, for example, enables

answering questions such as where heat is transported from by advection-diffusion—
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since the LCS represent transport barriers with respect to advection-diffusion. While

the potential of visualization by LCS from uψ is evident, we also provide examples

how the topology-related concept of vortex core lines in uψ can provide insight into

the transport behavior of the quantity under examination.

The advection-diffusion field uψ(x) can either be computed on the fly during vi-

sualization, i.e., u(x) and ∇ψ(x) can be interpolated/evaluated at required positions

x and then combined according to Eq. 1, or it can be precomputed at the nodes of the

simulation grid and directly fed into existing visualization algorithms. In this work

we follow the latter approach since interchanging interpolation and, e.g., multiplica-

tion is a common approach in visualization, in particular in feature extraction (see,

e.g., [39]). However, it has to be noted that it introduces (typically negligible) er-

ror, which did not represent a problem in our experiments. We estimate the gradient

∇ψ(x) using least squares fitting according to [28]. Note that the constant of diffu-

sivity Dψ that was used in the CFD simulation has to be available for visualization,

however, it is typically uniform and hence only a single number.

4 Feature Extraction

We exemplify feature extraction from the advection-diffusion field uψ using LCS

by means of FTLE ridges (Sec. 4.1) and vortex core lines (Sec. 4.2). In Sec. 5 we

present the results obtained from applying the feature extraction techniques to three

CFD results of advection-diffusion flow.

4.1 Lagrangian Coherent Structures

Lagrangian coherent structures serve as a replacement for separatrices from tra-

ditional vector field topology, with the important difference that they are able

to correctly depict transport in time-dependent vector fields. Several—and even

contradicting—definitions for coherent structures exist. Hussain [12] defined them

in terms of the curl of the velocity field, while Robinson [27] provided a more gen-

eral definition based on correlation of flow variables—both defining coherent struc-

tures as volumes in 3D vector fields. In contrast, in the definitions of Haller [6] and

Ide et al. [13], Lagrangian coherent structures represent the counterpart to invari-

ant manifolds, i.e., they separate regions of qualitatively different behavior. As dis-

cussed in Sec. 2 it was proposed by Haller [7] and subsequently defined by Shadden

et al. [36] that ridges in the finite-time Lyapunov exponent (FTLE) field represent

LCS. In this work we follow the approach by Sadlo and Peikert [28] and extract

LCS from the FTLE field by means of height ridges [2]. To assure sufficiently sharp

ridges—according to Shadden et al. [36] a prerequisite for FTLE ridges to repre-

sent LCS—we reject ridge regions where the modulus of the respective eigenvalue

of the FTLE Hessian is too small or where the FTLE value itself does not reach a
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user-defined threshold. Due to space limitations, we refer the reader to [28] for all

details of our LCS extraction.

The FTLE is a scalar field that describes the separation of neighboring trajecto-

ries after a finite advection time interval T . The FTLE at point x and time t0 with

respect to the time interval T reads

σ(x, t0,T ) =
1

|T |

√

λmax

(

(∇φ
t0+T
t0

(x))⊤∇φ
t0+T
t0

(x)
)

where
√

λmax( ·) represents the spectral norm ‖·‖ of a matrix with λmax(A) being

the major eigenvalue of matrix A. ∇φ
t0+T
t0

(x) is the gradient of flow map φ
t0+T
t0

(x)
which maps starting points x(t0) of trajectories to their end points at time t0 +T :

φ
t0+T
t0

(x) = x(t0)+
∫ t0+T

t0

u(x(τ),τ)dτ.

Depending on the sign of T , i.e., if forward or reverse trajectories are used for

the computation of the FTLE, the FTLE ridges represent either repelling (T > 0) or

attracting (T < 0) LCS. We color repelling LCS red and attracting ones blue. It has to

be noted that the FTLE field can be sampled independently from the simulation grid

on which u, or uψ , is given. In this work we use uniform sampling grids, although

some of the used advection-diffusion CFD simulations are given on unstructured

grids. The integration of the trajectories is accomplished by the 4th-order Runge-

Kutta scheme.

4.2 Vortex Core Lines

Vortex core lines—sometimes also denoted as vortex axes—are in close relation

to topological features for several reasons. First of all, they are typically identical

to critical points of type center and focus in 2D flow. While in 3D the so-called

topological vortex cores due to Globus et al. [5] directly represent 1D manifolds of

spiral saddle critical points, the relation is less obvious for other definitions of vortex

core lines. Since not all vortex core lines represent stream lines, it is nowadays

more common to extract them according to the definitions by Levy [17] or Sujudi

and Haimes [38]. In this work we use the definition by Sujudi and Haimes, which

identifies those points as part of a core line where velocity is parallel or antiparallel

to a real eigenvector of the velocity gradient and the other eigenvectors are complex.

If the flow is projected on the eigenplane spanned by the complex eigenvectors,

this definition corresponds to a critical point of type center or focus in the projected

field—further supporting the proximity of vortex core lines and vector field topology.

Due to the same reasons, spiral saddle and spiral source critical points typically

reside on vortex core lines according to Sujudi and Haimes. As with the other feature

extractions, we apply the concept to uψ instead of u for analyzing the transport of

the quantity that is governed by advection-diffusion.
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We extract the vortex core lines using the parallel vectors operator due to Peikert

and Roth [21], according to their algorithm that triangulates the faces of each cell

and solves for the points where the core lines intersect the faces. These points are

then connected by piecewise linear segments to obtain the final polyline representa-

tion of the core lines.

5 Results

We demonstrate our approach using three advection-diffusion CFD simulations—a

static mixer (Sec. 5.1), a flow around a heating coil (Sec. 5.2), and a buoyant flow in

a room that is heated at its bottom and cooled at the top (Sec. 5.3). The FTLE field

(and its ridges) is computed on a uniform grid in the regions marked by black boxes,

while the u and uψ fields are evaluated at the original grid without resampling.

5.1 Static Mixer

The first simulation is steady-state and was conducted on a unstructured grid con-

sisting of 2266894 tetrahedra. It represents a mixing device that mixes a hot and a

cold fluid by means of a strong vortex that is maintained by the tangential inflows.

The mixed fluid is provided at an axial outlet at the top, see Fig. 1(a). The upper half

of the solid boundary is not visualized to reveal the interior flow—the removed part

is illustrated by its edges and a half in wireframe representation. Hot air at 700 K

enters at the left lower inlet while cold air at 300 K enters at the lower right inlet.

While in Fig. 1(a) the path lines follow the velocity field u, they follow the

advection-diffusion field uψ in Fig. 1(b). It is apparent that the lines of the hot fluid

are attracted toward the center (which exhibits average temperature due to mixing)

in (b), starting right after they have left the inlet tube. This directly visualizes the

transport of heat by advection-diffusion from the left inlet, in contrast to (a) where

the lines only show the advection part—using (a) for the interpretation of heat trans-

port would give the wrong picture. Surprisingly, there is an asymmetry with respect

to the cold flow in (b). Since there is no negative heat, the blue lines of the cold

fluid are not attracted toward the center as they enter the mixer from the right inlet—

instead, they are pushed against the outer wall (see that these lines approach the

center vortex slower than the blue lines in (a)) because heat from the mixed fluid at

the center of the mixer is diffusing into the cold fluid. Hence, the blue lines in (b)

depict how heat contained in the cold fluid is transported by advection-diffusion—it

is ’avoiding’ the heat from the warmer fluid. Because the center of the vortex con-

sists of mixed fluid, there is no detectable deviation between the vortex core line in

(a) and (b), i.e., heat is transported there almost purely by advection and therefore

the vortex core lines are basically identical.
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(a) (b)

(c) (d)

Fig. 1 Static Mixer flow example. (a) Visualization of u (advection only) by path lines (red: hot;

blue: cold; seeds by spheres), a vortex core line (green), and two transparent isosurfaces (red:

550 K; blue: 450 K, same in (a)–(d)). (b) Same as (a), but path lines and vortex core line visualizing

advection-diffusion field uψ . Hot path lines are initially forced toward the center by heat diffusion

while blue path lines are initially forced toward the wall due to heat diffusion from the hot flow.

(c) Attracting LCS of u (light blue) are close to the isosurfaces (a subset of respective reverse FTLE

trajectories in gray). (d) Attracting LCS of uψ (light blue) depict regions where heat is transported

to by advection-diffusion (with a subset of respective reverse FTLE trajectories in gray).

To investigate the transport of heat from the inlets, we have computed LCS using

reverse-time FTLE on a regular sampling grid of 17×47×15 nodes from both the

u (Fig. 1(c)) and uψ (Fig. 1(d)) fields in the regions of interest marked by the black

boxes. Consistent with the observations and interpretation so far, the LCS of the hot

flow deviates toward the center in (d) while the LCS of the cold flow is attracted

toward the wall in (d). The LCS of the hot flow in (d) separates the region (bottom

of the image) where heat is transported from the left inlet by advection-diffusion.

The LCS of the cold flow in (d) separates the region (top of the image) that does not

obtain any heat on its way from the inlet. In contrast, the LCS in (c) are very similar

to the isosurfaces. Please note that the isosurface of average temperature (500 K)

extends to the center of the mixer in a helical manner.
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(a) (b)

Fig. 2 Heating Coil flow example. (a) Path lines of u (white, advection only) seeded at circles

around coil (white spheres). (b) Path lines of uψ (white, advection-diffusion) and of −Dψ ∇ψ (red,

diffusion only). Compared to (a), the white lines in (b) are attracted by the inner and outer wall.

This is due to thermal conduction (diffusion of heat) from the heated coil to the cooled walls.

5.2 Heating Coil

This dataset is quasi-stationary and consists of an unstructured grid of 93227 cells,

including tetrahedra, pyramids, and prisms. Hence, we used a single time step for

a steady-type analysis. The simulation represents a heat exchanger—a heated coil

is immersed into an air flow with the inlet at its bottom and the outlet at the top

while the inner and outer boundaries (the two vertical tubes) are cooled, see Fig. 2.

Buoyant forces have not been employed, resulting in a rather simple flow.

In Fig. 3(c) a subset of the reverse-time trajectories of u is shown that were used

for FTLE computation on a regular grid of 41×41×161 nodes within the region of

interest (ROI, black box). Fig. 3(a) shows some vortex core lines (green) extracted

from u and some stream lines that have been seeded in their vicinity (white tubes).

In Figs. 3(b) and (d), the same has been conducted for the advection-diffusion field

uψ . It is apparent that the vortices along the coil are not present in (b). This is be-

cause the transport of heat away from the coil by diffusion (see also stream lines of

−Dψ ∇ψ) is stronger than the advective recirculation at the downstream edge of the

coil, resulting in heat transport that has no upstream component. The same can be

observed at the top left vortex. It is still present because it is a longitudinal vortex

oriented in direction of heat diffusion—however, one can see that the longitudinal

component is much stronger with respect to heat transport. Nevertheless, it is an

example where heat transport by advection-diffusion exhibits a vortex. The cross

sections in Figs. 3(a) and (b) visualize ∇ ·u and ∇ ·uψ , respectively. The 25th and

75th percentiles of ∇ ·uψ are −0.276 and 0.0191, respectively (i.e., rather low com-

pared to 0.05 m/s average speed and 0.5 m ROI width). The direct impact of ∇ ·uψ

on LCS (see below) is rather low since ∇ ·uψ is substantially smaller at the LCS.
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(a) (b)

(c) (d)

Fig. 3 Heating Coil flow example, region of interest (black box) from Fig. 2. (a) Vortex core

lines (green), some forward and reverse stream lines (white) seeded therefrom, and cross section

visualizing divergence (red: −0.5, blue: 0.5), all computed from u (advection only). (b) Same as (a)

but computed from advection-diffusion field uψ . The strong heat flux from the coil dominates the

recirculations at the downstream edge of the coil, hence these vortices disappear. (c) LCS (cyan)

from reverse FTLE of u for comparison with a subset of used trajectories (gray). (d) LCS (cyan)

from reverse FTLE of uψ with a subset of used trajectories (gray). It is apparent that in (d) LCS

are repelled from the coil due to thermal conduction from the coil to the cooled walls. The LCS

separate the region that obtains heat by advection-diffusion from the respective part of the coil.

We investigated the transport of heat from the heating coil by computing LCS

from reverse-time FTLE using u (Fig. 3(c)) and uψ (Fig. 3(d)). It is apparent that in

(d) the LCS are repelled from the heating coil toward the inner and outer walls. The

LCS region at the lowest turn of the coil in (d) separates the region that is reached by

the heat from the coil by means of advection-diffusion. The levels where the LCS

reach the inner and outer walls depict the points where heat is transported from the

heated coil to the cooled walls.
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(a) (b)

Fig. 4 Buoyant Flow example at time 24.474 s with transparent isosurfaces (red at 318.5 K; blue at

308.5 K; same as in Fig. 5), region of interest (black) used in Fig. 5, and hot and cold plate. (a) Path

lines of u show advection. (b) Path lines of uψ show transport of heat due to advection-diffusion.

5.3 Buoyant Flow

The final example is a time-dependent simulation of buoyant flow consisting of 2000

time steps simulated on a uniform grid of 60×30×60 cells. There is a region heated

at 348.15 K at its bottom and a cooled region at 278.15 K at its top, and gravity is

pointing downward. The rest of the walls are adiabatic. The buoyant flow exhibits

transient aperiodic convection, see Fig. 4.

Figure 5(a) shows some of the reverse-time trajectories used for FTLE compu-

tation on a regular sampling grid of 41× 41× 41 nodes (black box) from u, while

(b) shows those computed from the advection-diffusion field uψ . It is apparent that

many trajectories that show the transport of heat in (b) leave the domain at the hot

plate. The reason for this is that heat enters the domain in this region. In (a) there is

a vortex of u (green) located about the center between the cold and hot plumes (visu-

alized by the transparent red and blue isosurfaces). In (b) the vortex of uψ is shifted

toward the bottom of the domain and it is intensified (see white stream lines of uψ

seeded in its vicinity). Here, the heat flux due to diffusion in the advection-diffusion

flow originating at the bottom hot plate rises and then diffuses partially into the cold

plume, causing the vortex to shift downward and accelerating the vortex. Such vor-

tices in heat transport can represent undesired configurations in advection-diffusion

flow because they can hinder the overall transport of heat.

In Figs. 5(c) and (d) we have computed reverse-time LCS from u and uψ , respec-

tively. In (c) the LCS attaches to the center of the hot plate at the bottom—hence it

partially separates the domain in two regions: the region that obtains its flow from

the bottom right front corner of the domain and the region that obtains the flow

from the bottom left back corner region. In contrast, in (d) the LCS wraps the com-

plete hot flow that is generated by the bottom plate. In other words, the LCS in

(c) shows where the flow comes from, while in (d) the LCS shows where the heat

comes from—it separates the region that obtains heat from the bottom hot plate by

advection-diffusion.
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(a) (b)

(c) (d)

Fig. 5 Buoyant flow example. (a) Trajectories in u. (b) Trajectories in uψ . (c) Reverse-time LCS

in u. (d) Reverse-time LCS in uψ depict region that obtains heat from hot bottom plate.

6 Conclusion

We proposed visualization of the advection-diffusion field, a field that describes

the transport of quantities due to advection-diffusion, and presented the extraction

of topological features therefrom. These features give valuable insights into trans-

port processes due to advection-diffusion. We applied our approach to three CFD

datasets and provided interpretations that gave insight into the underlying phenom-

ena. We believe that visualization by means of topological features in the advection-

diffusion field has a high potential in many fields of science and engineering, e.g., in

heat exchanger design. As future work, we plan to apply our approach to real-world

problems and to extend it to advection-diffusion of vector quantities. Future work

could also follow [37] and compare path lines of u with stream lines of −Dψ ∇ψ .
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