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Abstract Many concepts in computational flow visualization operate in the La-

grangian frame—they involve the integration of trajectories. A problem inherent to

these approaches is the choice of an appropriate time length for the integration of

these curves. While for some applications the choice of such a finite time length is

straightforward, it represents in most other applications a parameter that needs to

be explored and well-chosen. This becomes even more difficult in situations where

different regions of the vector field require different time scopes. In this chapter,

we introduce Lyapunov time for this purpose. Lyapunov time, originally defined for

predictability purposes, represents the time over which a trajectory is predictable,

i.e., not dominated by error. We employ this concept for steering the integration

time in direct visualization by trajectories, and for derived representations such as

line integral convolution and delocalized quantities. This not only provides signifi-

cant visualizations related to time-dependent vector field topology, but at the same

time incorporates uncertainty into trajectory-based visualization.

1 Introduction

Vector fields play an important role in various domains, and appropriate understand-

ing is essential in many respects. While in the early years scientific visualization

tended to employ the Eulerian view, e.g., using color coding or arrow glyphs for

local quantities, it is nowadays increasingly the Lagrangian view based on trajecto-

ries that is employed for visualization of vector fields. This is in particular the case

for time-dependent vector fields, where the straightforward Eulerian view would

necessitate time-dependent visualizations, while concepts based on time-dependent

trajectories, i.e., pathlines, in these fields are able to provide a notion of their true

dynamics in a static picture.
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(a) (b)

Fig. 1 Buoyant Flow dataset. The time-dependent 2D air flow is driven by a heated boundary at

the bottom and a cooled boundary at the top, while gravity is pointing downward. (a) Temperature

distribution at time t0 = 50.5008 s, with blue at 278.15 K and red at 348.15 K. (b) Velocity field at

the same time step visualized with streamlines of length 0.04 s (seeds by black dots).

Visualization techniques based on integral curves can be categorized into two

main fields: dense and sparse. While dense visualizations basically represent the

vector field at each point of its domain, e.g., by drawing a dense set of instanta-

neous trajectories (i.e., streamlines), sparse techniques, on the other hand, typically

focus on salient features, e.g., they try to draw only the most important streamlines.

Prominent examples of the two extremes are line integral convolution [5] (LIC)

(Fig. 2), where a dense texture is obtained by smearing noise along trajectories, and

vector field topology [13, 14] (Fig. 3), where isolated zeros (i.e., critical points) with

saddle-type behavior of the vector field are extracted and streamlines (i.e., separa-

trices) are computed from these points forward and reverse, providing the essential

structure of a vector field by separating its regions of qualitatively different behavior.

These two concepts, dense and sparse visualization, are typically applied sepa-

rately, but cases where both are combined in an additive manner are not uncommon,

since both complement each other well. While, for example, vector field topology

provides a notion of the overall transport due to the vector field, LIC provides de-

tailed morphological information about this dynamics and is therefore often used to

augment topology-based visualization (Fig. 3).

Traditional vector field topology is defined in terms of asymptotic behavior of

streamlines as time goes to ±∞, i.e., in practice the separatrices are integrated un-

til they converge sufficiently close to other critical points, periodic orbits (closed

streamlines), or reach the domain boundary. This raises several issues, in particular

with respect to appropriateness and visual clutter. Separatrices can grow arbitrarily

far from the seeding saddle point, with the result that the phenomenon of interest

(the saddle-type flow behavior at the saddle point which causes the respective sepa-

ratrices) has only a very remote connection to that part of the separatrix. If it makes

sense to visualize and investigate such long separatrices typically depends on the

application. However, such long streamlines suffer from error accumulation during
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(a) (b) (c)

Fig. 2 Line integral convolution in Buoyant Flow dataset at t0 = 50.5008 s, based on streamlines in

original field (no normalization of velocity). No advection LIC (a) reveals noise texture, advection

with T =±0.01 s (b) indicates flow, while advection time T =±0.1 s (c) reveals its features.

(a) (b) (c)

Fig. 3 Traditional vector field topology extracting saddle-type critical points (green) and integrat-

ing separatrices (white) therefrom in forward and reverse direction. LIC with T =±0.1 s provides

context. (a) Separatrices of integration length 2.0 s indicate qualitatively different regions of the

vector field. (b) Increasing integration of separatrix streamlines to 100.0 s can clutter visualization

(in this case due to non-vanishing divergence), in particular if integration time is further increased

(1000.0 s) (c). Besides insignificant visualization, this can cause prohibitive computational cost.

integration, and visual clutter during inspection. Visual clutter can in particular im-

pede proper analysis if the vector field exhibits vortical flow that is not divergence-

free. The example shown in Fig. 3(c) does, due to constraints in computation time,

not show the full-size separatrices, which would fill the complete vortical structure,

resulting in insignificant visualization. Hence, limiting the length of separatrices can

make sense both with respect to error accumulation and perception.

A further drawback of traditional topology-based visualization of vector fields is

that it takes an instantaneous view on the field because it is based on streamlines.

Thus, in the case of time-dependent vector field data, it would need to be applied

to isolated time steps, which cannot provide appropriate insight into the true time-

dependent dynamics. During the last decade, the finite-time Lyapunov exponent [11]

(FTLE) field proved successful in providing a basis for topology-based visualization

of time-dependent vector fields. As will be detailed in Sec. 3, the FTLE measures

the divergence of pathlines with finite time length and is therefore able to indicate
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(a) (b) (c)

Fig. 4 Pathline-based FTLE in Buoyant Flow dataset, with t0 = 50.5008 s, forward (red) and re-

verse (blue), with zoomed-in region (black box). Resolution of FTLE features is independent of

original vector field data. (a) Velocity magnitude reflects resolution of original data. (b) FTLE

with advection time T = ±0.1 s exhibits features that require higher resolution, and FTLE with

advection time T =±1.0 s (c) requires even higher resolution.

the boundaries between regions of qualitatively different time-dependent transport

behavior. As a consequence, computation of the FTLE field requires to start a path-

line at each sample point (and time step of the FTLE field), turning this concept into

a large-scale problem, even for vector fields with very low resolution. The rationale

behind this is that due to its Lagrangian nature, the FTLE does not reflect the lo-

cal properties of a vector field. Since each pathline traverses a substantial part of

the vector field, the FTLE typically exhibits highly complex structures, far beyond

the variation of, e.g., tensor-product linear interpolation of the vector field itself

(Fig. 4). In fact, its detail, including the length and sharpness of its ridges, grows

with increasing finite advection time T (Fig. 5). The high computational cost led

to various acceleration techniques, e.g., related to adaptive mesh refinement [8, 26]

and using distributed compute environments [20].

So far, Lagrangian visualization techniques, such as the FTLE or LIC, typically

employ uniform integration time, i.e., all underlying integral curves are of equal

integration length. Depending if the vector field is normalized or not, this leads

to constant-length or constant-time integral curves, respectively. In time-dependent

fields, where such a normalization is not directly applicable, the integration time has

to be adjusted to the phenomenon under investigation. While finding a global inte-

gration time that fits the overall visualization goal might be possible in some cases,

it is rather common that a vector field exhibits different spatial and temporal scales,

which necessitate different finite time intervals for Lagrangian analysis. This diffi-

culty was the motivation for the finite-size Lyapunov exponent (FSLE) introduced

by Aurell et al. [2]. Instead of prescribing the integration time and measuring the

divergence of the endpoints of the trajectories, as in the case of the FTLE, the FSLE

prescribes a separation factor and measures how long it takes for particles (trajec-

tories) to separate by this factor. Hence, the FSLE can be seen as the dual for the

FTLE. In other words, instead of prescribing a time scale for the analysis, as in the

case of the FTLE, the FSLE employs a spatial scale by varying the time scale.
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(a) (b) (c)

Fig. 5 Pathline-based FTLE with t0 = 50.5008 s, forward (red) and reverse (blue). Increasing ad-

vection time T increases length of its ridges, T = ±0.1 s (a), T = ±1.0 s (b), and T = ±5.0 s (c).

Insufficient advection time results fuzzy features which do not reflect the topology of the vector

field (a). Too high advection time makes it very difficult to sample the features due to aliasing (c).

In this chapter, we employ Lyapunov time (LT) for the visualization of 2D time-

dependent vector fields to address the aforementioned issues. Lyapunov time reflects

the limits of predictability of a system, i.e., it relates to the duration over which

trajectories are not dominated by error accumulation. Hence, we propose to utilize

LT for steering the integration duration in trajectory-based visualization. Due to

its close relation to the FTLE and FSLE, the resulting visualizations are related to

time-dependent vector field topology. In Sec. 2, we give an overview of less closely

related work, followed by a more formal introduction to the FTLE, FSLE, and LT

concepts in Sec. 3. In Sec. 4, we present the results of LT-guided visualization, and

in Sec. 5 we draw conclusions and discuss possible future work.

2 Related Work

Most closely related works in the field of dense Lagrangian visualization are tex-

ture advection techniques such as line integral convolution due to Cabral and Lee-

dom [5], and delocalization of quantities due to Fuchs et al. [7], where quantities

such as temperature or vortex indicators are averaged along pathlines.

Traditional (streamline-based) vector field topology was established in visualiza-

tion by the works due to Perry and Chong [23], Helman and Hesselink for 2D [13]

and 3D [14] flow, and Globus et al. [9]. Later works include those by Hauser et

al. [18] and Theisel et al. [33], the former in the field of dynamical systems, and the

latter regarding the visualization of homoclinic (heteroclinic) orbits, i.e., stream-

lines that connect the same (different) saddle point in 3D. Beyond that, the vector

field topology concept was utilized in a variety of visualization techniques, e.g., for

achieving significant streamline placement [38] or guiding streamsurface-based vi-

sualization in recirculating flow [21]. Other works in the context of recirculating

flow include the visualization of the magnetic field in fusion reactors [30] and recir-
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culation in general [22]. More recently, Bachthaler et al. [4] derived a vector field

topology concept for the visualization of magnetic flux in 2D fields.

In the field of time-dependent vector field topology, Haller proposed [11] and

Shadden et al. defined [32] Lagrangian coherent structures (LCS), the counterpart

to separatrices in time-dependent fields, to be ridges in the FTLE field. A good in-

troduction to the topic is the tutorial due to Shadden [31] and the survey by Pobitzer

et al. [24]. Sadlo and Peikert [27] proposed to extract LCS using the height ridge

concept due to Eberly [6]. Shadden et al. [32] and later Sadlo et al. [28] investi-

gate the choice of the uniform finite time scope for FTLE computation, while Kas-

ten et al. [17] proposed a local computation, and Üffinger et al. [37] examined the

linearization involved in traditional FTLE computation and proposed alternatives

beyond first-order approximation. While the majority of research focuses on the

geometric shape of LCS, Bachthaler et al. [3] presented a visualization technique

for the dynamics within LCS in 2D fields, i.e., for the stretching and squeezing

in tangential direction. Beyond that, the LCS concept was also extended to tensor

fields [35, 15] and transport in advection-diffusion flow [25], and used for compu-

tational steering of flow simulations [1]. Recent advances in time-dependent vector

field topology include the reinterpretation of LCS as streakline-based vector field

topology in 2D [29] and 3D [36] vector fields. Based on the findings of Haller [10],

Ide et al. [16], and Mancho et al. [19], Sadlo et al. reinterpreted hyperbolic trajec-

tories [10] as degenerate streaklines with hyperbolic behavior and their manifolds

(LCS) as streak manifolds converging forward or reverse to these degenerate streak-

lines within finite time intervals. In contrast to traditional LCS extraction based on

FTLE ridges, streak-based LCS avoid false positives caused by shear flow (similar

to [12]), provide high-quality results, and are of lower computational cost, however,

with the drawback that the degenerate streaklines (hyperbolic trajectories) have to

be determined at high accuracy.

None of these techniques employ varying integration time for sets of trajectories

and neither do they involve predictability considerations in this respect, in contrast

to the approach based on Lyapunov time we propose.

3 FTLE, FSLE, and Lyapunov Time

As introduced above, the FTLE σT
t0
(x) measures Lagrangian separation by deter-

mining the growth of the distance between particles during their advection over a

finite advection time T . Haller [11] proposed to determine the FTLE by means of

the flow map φφφ T
t0
(x), which maps the seed points x of pathlines started at time t0 to

their endpoints after advection for time T . Based on this, the FTLE can be obtained

using the spectral norm ‖·‖2 as

σT
t0
=

1

|T |
ln‖∇φφφ T

t0
‖2 =

1

|T |
ln

√

λmax

(

(∇φφφ T
t0
)⊤∇φφφ T

t0

)

, (1)
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with λmax( ·) representing the major eigenvalue. It can be readily seen that the FTLE

basically measures the gradient of the flow map, i.e., a linearization of the largest

separation of pathline endpoints with uniform advection time T .

The FSLE can be seen as a dual approach: here, the separation factor s is pre-

scribed and the time Ts is measured, until this factor is achieved. As proposed by

Sadlo and Peikert [26], the FSLE σ̂ s
t0
(x) can be also computed from the flow map,

using the FTLE as follows:

σ̂ s
t0
=

1

|T s
t0
|

lns , (2)

with

T s
t0
= arg min

|T |

‖∇φφφ T
t0
‖2

!
= s . (3)

For efficient computation [26], the flow map φφφ T
t0
(x) can be computed incrementally

for increasing T until Eqn. 3 is satisfied.

The Lyapunov time τe
t0
(x) represents the smallest time interval that is necessary

for a perturbation started at x and time t0 to grow by a factor of Euler’s number e,

τe
t0
= arg min

|T |

‖∇φφφ T
t0
‖2

!
= e . (4)

Hence, using Eqn. 2, LT relates to the FSLE as follows:

τe
t0
=

1

σ̂ e
t0

lne =
1

σ̂ e
t0

. (5)

Throughout this chapter, we compute LT according to Eq. 5, using the algo-

rithm [26] for FSLE computation. Due to its high computational complexity, the cost

for LT computation typically predominates that of the subsequent LT-constrained

trajectory-based visualization (Sec. 4).

It is of course possible to compute the FTLE, FSLE, and LT for stationary vector

fields, or for isolated time steps of time-dependent fields, using streamlines. It has to

be noted, however, that the resulting structures cannot be consistent with traditional

vector field topology in general, although they may be similar sometimes [34, 27],

because, while the FTLE, FSLE, and LT are Galilean-invariant, traditional vector

field topology is not. This is demonstrated in Fig. 6.

4 Lyapunov Time for Visualization

The utility of constraining integration time with LT in trajectory-based visualization

is demonstrated with three applications using the Buoyant Flow dataset (Fig. 1).

First, we include LT in sparse trajectory-based visualization (Sec. 4.1). Then we

exemplify LT-based visualization by means of LIC (Sec. 4.2). Finally, we provide

results for LT-constrained delocalization of quantities (Sec. 4.3).
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(a) (b) (c)

Fig. 6 Galilean invariance of FTLE in Buoyant Flow dataset at t0 = 50.5008 s. Traditional vector

field topology is not Galilean-invariant, i.e., result from original frame of reference (a) (Fig. 3(a))

differs from result if observer moves from right to left at speed 0.05 m/s (b). (c) Streamline-based

FTLE with T = 1 s, forward (red) and reverse (blue), is identical in both frames and exhibits, in

this example, features similar, but not identical, to (a).

(a) (b) (c)

Fig. 7 (a) FSLE σ̂ e
50.5008 forward (red) and reverse (blue). (b) LT τe

50.5008 computed from (a), for-

ward (red) and reverse (blue). (c) “Lyapunov time” τ10
50.5008 with scaling factor 10 for comparison.

Since LIC requires streamlines for its generation and to support comparability

and interpretability, we use streamlines for generating all results in this section, i.e.,

the FTLE, FSLE, and LT as well the derived trajectories and delocalizations are

based on streamlines. In practice, however, our approach does address both steady

and time-dependent vector fields. Our results are based on the fields shown in Fig. 7.

Figure 7(a) shows the streamline-based FSLE with separation factor e and Fig. 7(b)

the LT τe
50.5008 derived therefrom. Since τe

50.5008 is rather restrictive, we also provide

results for τ10
50.5008, the “Lyapunov time” with separation factor 10 (Fig. 7(c)).

4.1 Sparse LT Trajectories

Motivated by the difficulties demonstrated in Fig. 3, we first employ LT for limiting

the integration length of separatrices (Fig. 8). Since the goal of vector field topol-
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(ii)

(i)

(a)

(ii)

(i)

(b)

Fig. 8 (a) Visualization by separatrices with uniform integration length of 3 s. While the sepa-

ratrices just reach the originating saddle point at (i), they pass it at (ii), resulting in insignificant

visualization there. (b) Visualization by separatrices constrained to 8.0 ·τe
50.5008. Separatrices reach

saddle point both at (i) and (ii), providing a more concise and better comprehensible visualization.

Confer Fig. 3(a) for uniform integration length of 2 s, where separatrices reach (ii) but not (i).

ogy is to depict the regions of qualitatively different behavior and since divergence

is comparably small in the examined data, we aim at separatrices that perform a

“single turn”, i.e., that reach the critical point where they were seeded. This way

they indicate the substantial regions and at the same time the effects of divergence.

While a global selection of integration time cannot achieve this goal (see Figs. 3(a)

and 8(a)), constraining integration by 8.0 ·τe
50.5008 achieves this goal for the saddles

at (i) and (ii) (Fig. 8(b))—providing a significant visualization of the dynamics.

Next, we limit integration time with LT for regularly seeded streamlines (Fig. 9).

Figures 9(a) and 9(d) show uniform integration in forward and reverse direction,

respectively. Note that in our current approach, we do not employ streamline place-

ment to achieve an even placement of the lines—instead we use rather short in-

tegration times to prevent excessive visual clutter. We want to address streamline

placement that involves LT as future work. Limiting integration length with LT not

only incorporates predictability aspects, it provides at the same time structures that

reflect the coherent structures. We found that limiting integration time with τe
50.5008

(Figs. 9(b) and 9(e)) was rather restrictive, we preferred using τ10
50.5008 (Figs. 9(c)

and 9(f)), as these provided more pronounced structures. As illustrated in Figs. 9(g)

and 9(h), our approach reveals the regions of qualitatively different behavior.

4.2 LT LIC

The results from regularly seeded streamlines from Sec. 4.1 directly motivate limit-

ing integration in LIC using LT (Fig. 10). Again, τ10
50.5008, in particular 0.01 ·τ10

50.5008
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 (a)–(c) Forward streamlines at t0 = 50.5008 s, of length 0.4 s (a), 0.3 ·τe
50.5008 (b), and

0.1 ·τ10
50.5008 (c). (d)–(f) Same for reverse streamlines. It is apparent that 0.1 ·τ10

50.5008 provides more

expressive results. (g) Comparison of (c) with forward FTLE from Fig. 6(c) shows that coherent

regions are well represented. (h) Same for (f) with reverse FTLE. (i) Forward (c) and reverse (f)

streamlines together with forward (red) and reverse (blue) 0.1 ·τ10
50.5008 for context.

(Fig. 10(f)), leads to results that depict coherent regions in a more pronounced man-

ner. In LT LIC visualizations, chaotic (less predictable) regions can be identified by

more noisy areas whereas predictable regions are represented with more line-like

structures. Compared to LT trajectories (Sec. 4.1), LT LIC provides a more contin-

uous and more detailed picture of predictability and coherence.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Limiting LIC with forward and reverse τe
50.5008, using 1.0 ·τe

50.5008 (a), 0.1 ·τe
50.5008 (b),

and 0.01 ·τe
50.5008 (c) shows coherent regions. However, using forward and reverse τ10

50.5008, using

1.0 ·τ10
50.5008 (d), 0.1 ·τ10

50.5008 (e), and 0.01 ·τ10
50.5008 (f) provides more significant results.

4.3 LT Delocalization

In our final example, we employ LT for the delocalization [7] of scalar quantities.

The concept of delocalization was originally used to make vortex indicators more

coherent. For each sample point, a trajectory is seeded there, a scalar field, in our

case temperature, is averaged along the trajectory, and the result is stored at the

seed point of the trajectory. Hence, delocalization can be interpreted as Lagrangian

averaging of quantities (Fig. 10).

In contrast to the original approach (Figs. 11(a)–(e)), which uses uniform integra-

tion length, we limit the trajectories by LT (Figs. 11(g)–(i)). While the temperature

field from the simulation is subject to excessive diffusion (Fig. 11(c)) due to nu-

merical diffusion in the solver, delocalization provides a tool for investigating the

advection of quantities with reduced diffusion, in particular the delocalization in di-

rection reverse to the flow. Compared to traditional delocalization, LT delocalization

takes at the same time into account predictability of the involved trajectories, which

limits the resulting structures but prevents misinterpretation with respect to accu-

mulation of integration error. Nevertheless, we find it more difficult to interpret the

overall results from LT delocalization—providing a visualization of the underlying

LT trajectories for context is important.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11 Delocalization of temperature (c) (blue at 278.18 K, red at 348.18 K) at t0 = 50.5008 s,

using streamlines of length 1.0 s forward (a) and reverse (b), with selected streamlines. Delocaliza-

tion with length 10.0 s forward (d) and reverse (e) reveals coherent structures (compare streamline-

based FTLE (f), same as Fig. 6(c)). Limiting delocalization time with 1.0 ·τ10
50.5008 forward (g) and

reverse (h),(i) does not provide coherent structures as clearly, but shows predictability, i.e., only

predictable structures with respect to temperature advection are shown.

5 Conclusion

We introduced Lyapunov time in trajectory-based visualization and demonstrated

its use for separatrices and direct visualization by sets of trajectories, for LIC, and

for the delocalization of quantities. The resulting visualizations not only reflect pre-

dictability limitations in these concepts, they reveal at the same time the topological
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structure of the vector fields due to the close relation between Lyapunov time and

the FSLE field. As future work inspired from our results in Sec. 4.1, we plan to

develop streamline placement strategies that take into account Lyapunov time, both

for predictability purposes and topological expressiveness.
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36. M. Üffinger, F. Sadlo, and T. Ertl. A time-dependent vector field topology based on streak

surfaces. IEEE Trans. Vis. Comput. Graphics, 19(3):379–392, 2013.
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