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Abstract. Lagrangian coherent structures play an important role in
the analysis of unsteady vector fields because they represent the time-
dependent analog to vector field topology. Nowadays, they are often ob-
tained as ridges in the finite-time Lyapunov exponent of the vector field.
However, one drawback of this quantity is its very high computational
cost because a trajectory needs to be computed for every sample in the
space-time domain. A focus of this paper are Lagrangian coherent struc-
tures that are related to predefined regions such as boundaries, i.e. re-
lated to flow attachment and flow separation phenomena. It presents an
efficient method for computing the finite-time Lyapunov exponent and
its height ridges only in these regions, and in particular, grid advection
for the efficient computation of time series of the finite-time Lyapunov
exponent, exploiting temporal coherence.

1 Introduction

One of the major challenges in scientific visualization is the visualization of time-
dependent velocity fields represented by hundreds of time steps, each given as a
large numerical dataset. Velocity fields are among the most important results of
computational fluid dynamics (CFD) simulations, and therefore visualization of
such data has been extensively studied. It is quite commonly agreed that, due
to the complexity of the data, a single visualization technique is in general not
able to reveal all the relevant structures in the flow. Structures can not only
appear at many different spatial and temporal scales, but their recognition may
also depend on the correct frame of observation.

The higher resolution of today’s simulation results leads to more and more
intricate flow details which are to be captured by appropriate visualization tech-
niques. Methods for such structural visualization can be divided into feature-
based and topological approaches. The latter have, until recently, largely been
seen as synonymous to vector field topology [8,1]. Because of its rigorous founda-
tion on the theory of dynamical systems, vector field topology is very popular in
the visualization community. One of its most powerful concepts is the separatriz
which separates two regions of qualitatively different flow behavior. Vector field
topology can also be applied to the wall shear stress field on no-slip boundaries
where the velocity vanishes. By combining it with the topology of the velocity



field in the interior, Surana et al. were able to give exact definitions of separa-
tion and attachment surfaces, and they showed that for Navier-Stokes flows, the
separation slope and angle formulas depend on on-wall quantities only [19, 20].

In a strict sense, vector field topology is only applicable to steady or instan-
taneous velocity fields. But the lack of alternatives, the simple concepts, and
the availability in visualization systems led to the frequent use of vector field
topology also for the visualization of unsteady fields. Even if most researchers
were probably aware that such a visualization based only on snapshots cannot be
correct, this was mostly seen as a theoretical blemish only. Shadden et al. [17]
demonstrated with their simple two-dimensional “double gyre” example that
the separatrix can be clearly dislocated from the actual flow separation. As a
reaction, there is currently a growing interest in the search for time-dependent
variants or extensions of vector field topology. Theisel et al. [21] and Shi et
al. [18] presented such concepts for aperiodic and periodic velocity fields, respec-
tively. As a more radical approach, visualization researchers started to look into
the theory of Lagrangian coherent structures (LCS) as a replacement for vector
field topology. In the original sense, an LCS was defined as a region of coherent
flow behavior. In Hussain’s definition [9] flow behavior is expressed by vorticity
alone, while Robinson [14] defined coherent motion as “a region over which at
least one fundamental flow variable exhibits significant correlation with itself or
with another variable over a range of space and/or time that is significantly larger
than the smallest local scales”. In a more modern sense, LCS are understood as
the boundaries of such regions. As Haller showed [7], they can be computed as
ridges of the (maximal) finite-time Lyapunov exponent (FTLE). These ridges
are lower-dimensional structures, which can be classified into attracting and re-
pelling LCS, correspond to the unstable and stable manifolds (separatrices) in
vector field topology.

Since the Lyapunov exponent is constant along a trajectory, this holds ap-
proximately for its finite-time version if the integration time is chosen to be
sufficiently long. Therefore, LCS computed numerically from this quantity are
close to material surfaces, i.e. they are essentially advected with the flow. Ideal
LCS are material surfaces [7]. For that reason, these structures are of interest for
the study of transport and mixing processes in fluid dynamics. In visualization,
LCS have been used only recently. Garth et al. [6,5] visualized the underlying
FTLE (scalar) field with slicing and direct volume rendering techniques, using
appropriate transfer functions to make LCS recognizable as the ridges of the
field. Sadlo et al. [16] compared visualizations based on vector field topology
and on LCS, and introduced visualization of the latter by explicit extraction
of height ridges of the FTLE field [15]. Biirger et al. [3] computed LCS for the
purpose of controlling the seeding in particle based visualizations.

In this paper, we present an efficient method for computing the finite-time
Lyapunov exponent and its height ridges as time series. The method maintains
a sampling grid that grows and shrinks with the ridges that it contains and
that is advected with the flow between the steps of the time series. The grid is
initialized by the user in a region of interest which can be located anywhere in



the domain. By initializing the grid near a solid boundary, flow separation and
attachment surfaces are obtained. An advantage of this visualization method is
that it does not rely mainly on the data next to the boundary, and in particular
does not need the computation of derivatives in cells adjacent to the boundary.

2 Background

In this section we give a short introduction to the two concepts which are central
for this paper, the finite-time Lyapunov exponent and the height ridge, and we
briefly discuss practical aspects of their computation from discrete data.

2.1 Finite-Time Lyapunov Exponents

Given a time dependent velocity field v(x,¢) on a domain D C R™, a trajectory
(or path line) x(¢; to, xo) starting at point x¢ at time ¢g is a solution of the initial
value problem

)'((t;to,XO) = V(X(t;to,XO),t), X(to;to,Xo) = Xq- (1)
For fixed times ¢y and ¢, the trajectories give rise to the flow map
¢hy D — D, x> x(t;to,X0). (2)

The gradient V¢! , of the flow map describes the deviation of infinitesimally close
trajectories started at the same time ¢y, and the tensor

AL = (V! (x0)) | Vi, (xo) (3)

expresses the deformation of the neighborhood of x¢ under the flow map. This
symmetric tensor has real eigenvalues \; based on which the i-th Lyapunov
exponent is defined as follows:

. 1
o= lim —Iny/A(ARTT). (4)

The spectrum of Lyapunov exponents is a property of an entire trajectory,
i.e. it does not depend on the choice of ¢y on that trajectory. By replacing the
limit with a fixed integration time T', the finite-time Lyapunov exponent (FTLE)
is obtained. Usually, only the maximum FTLE is of interest, which is given by:

1
oot T = T In \/ Amax (A2 7). (5)

Unlike the Lyapunov exponent, the FTLE depends on both the starting time ¢
and the integration time 7.

For the numerical computation of either Lyapunov exponents or FTLE, one
has to estimate the flow map gradient by using trajectories started very close to
the reference trajectory. However, trajectories may separate at an exponential



rate from the reference trajectory. In fact, detecting this behavior is the main
motivation behind these concepts. Therefore, trajectories must undergo frequent
renormalization [2], which is equivalent to breaking up the integration in pieces
and computing the flow map gradient as the product of the piece-wise obtained
gradients.

The FTLE, and even more the Lyapunov exponents, can exhibit finely de-
tailed structures with a spatial variation that can far exceed that of v(x,t).
Therefore, it is often not the goal to do an accurate computation of an FTLE
at a given point in the domain, but rather to compute a spatial average at a
resolution defined by a discretization grid. This leads to a discrete version of the
FTLE [7] where the flow map is sampled on the nodes of a grid and gradients
are then estimated by finite differences (rather than using trajectories in close
vicinity and applying renormalization).

2.2 Height Ridges

The notion of a local maximum of a scalar field s : R®™ — R is unambiguously
defined by a vanishing gradient and negative second derivatives in all possible
directions. In contrast to this, there are several ways of relaxing this definition
in order to obtain k-dimensional maxima or minima. The height ridge [4] is the
most straightforward and the most widely used such definition. For a point on
a k-dimensional ridge it requires vanishing first derivatives and negative second
derivatives only in a n — k-dimensional subspace. Formally, if H denotes the
Hessian of s, H = (825/8xi8xj)ij , and y1, - -y, are the unit eigenvectors of H
ordered by the associated eigenvalues A\; < --- < \,, then the two conditions
for a point on a k-dimensional height ridge are ds/0y; = - -+ 9s/0yn—r = 0 and
An—k < 0. Valleys of s are obtained by applying the height ridge definition to
the negative field —s.

While the height ridge definition is elegant, practice has shown that the
generated features need to be filtered. The purpose of filtering is to remove false
positives as well as “weak” features. For the case of 1-dimensional ridges, several
such filters are known which can be used alone or in combination [13].

One natural criterion for the filtering of raw ridge features is to prescribe a
minimum height of the ridge:

8> Smin. (6)

In the case of FTLE ridges, the effect of this filter is to suppress ridges with
low separation property. The reader is referred to [16] for further details on the
influence of this filtering criterion.

A related filtering criterion would be to prescribe a maximum for the second
derivative A, across the ridge, which results in suppressing regions with too
“flat” ridge property:

)\n < )\mam~ (7)

In the case of FTLE ridges this filter is relevant, since the “sharpness” of an
FTLE ridge was shown [17] to be a measure for the flux across an LCS, i.e. the
quality of an LLCS as a flow barrier.



For a reliable and temporally coherent visualization, it is important that
criteria such as (6) or (7) are not implemented as binary “pass/fail” filters. By
allowing for a certain ratio of exceptions per neighborhood, holes and popping
artifacts can be avoided to a large extent. But there is also the problem of noisy
ridge extraction results containing many small ridges. These are not necessarily
removed by (6) or (7) because the ridge might be sharp and at a high field
value. Furthermore, the application of filters can generate additional small ridges.
Therefore it is important to filter the ridges also by their size, which requires a
connected component labeling of the set of ridges.

3 Motivation

This paper, i.e. the adaptation of the uniform sampling grid to the regions con-
taining ridges, is motivated by the work by Sadlo et al. [15]. The goal is to
optimize the computation of time series of FTLE ridges to make the method
more applicable in every-day applications in research and engineering. The in-
crease in efficiency is achieved by restricting the computation to regions that
contain the LCS of interest, and, in particular, by exploiting the temporal co-
herence of unsteady vector fields for the computation of time series of FTLE by
advection of the sampling grid.

One of the application goals of this paper is to offer a method for the analy-
sis of unsteady flow separation and attachment. Separation phenomena are the
cause of many undesired effects in engineering, such as development of recircula-
tion zones, reduced throughput, reduced lift, vortex generation, lowered mixing,
and reduced flow control in general. Flow separation exhibits diverging trajec-
tories in backward time and flow attachment exhibits diverging trajectories in
forward time (see Figure la). This fact is the reason why separation and at-
tachment lines (or points) are usually accompanied by corresponding LCS and
why these processes are amenable to an analysis by FTLE ridges. Shadden et
al. [17] have already demonstrated the utility of those ridges for the analysis of
unsteady flow separation in their example of flow separation over an airfoil. We
also believe that an analysis based on LCS provides a deeper and more precise
insight into these unsteady phenomena compared to standard techniques such
as stream surface integration or particle tracing.

4 Method

The proposed method can be subdivided into two parts: one that constrains the
sampling grid to filtered ridges of interest at a given time step (or the only time
step in case of steady vector fields), described in Sections 4.1 and 4.2, and one
that exploits temporal coherence to speed up the computation of time series of
quantities computed from trajectories, such as the FTLE, in the case of unsteady
vector fields (Section 4.3). The time series are obtained by variation of the ¢,
parameter of the FTLE (compare Section 2.1).



Fig. 1. (a) Flow separation and flow attachment. The unstable manifold (blue) attracts
the fluid along the boundary and guides it into the interior of the domain whereas
the stable manifold (red) guides the fluid in opposite direction. (b) Intake dataset.
Comparison of ridge from advected grid (red) and uniform grid (blue) together with
ridge from advected grid color-coded by distance to ridge from uniform grid (colored).

Algorithm 1 describes the methods presented in Sections 4.1 to 4.3 for the
case of FTLE ridge extraction. However, it also holds for ridges of other quan-
tities based on trajectories and could be easily modified for the scalar quantity
itself instead of its ridges. If the quantity is not computed using local opera-
tors such as gradients, larger distortions may be acceptable and hence longer
advection times could be used, leading to a further increase in speedup.

4.1 Grid Initialization

In the filtered AMR ridge extraction method [15] the complete domain (or region
of interest) is sampled at low resolution and the sampling is adaptively refined in
regions containing filtered ridges. Although this results in a speedup compared to
a uniform sampling at the finest subdivision level, the method suffers from several
drawbacks when applied to quantities that can not be evaluated in a point-wise
manner but that are computed using local operators, such as gradients in the case
of FTLE ridges. The main problem here is that the value is inherently sampling
dependent because the gradient can be underestimated if the sampling is too
coarse. Together with a restrictive threshold for the ridge filtering this sometimes
results in missed ridges, because they are not detected in the coarse sampling
and hence the corresponding regions are not refined which would capture the
ridges later on. The remedy is either to use a finer initial sampling, a lower
threshold for filtering, or to increase the look-ahead count (Section 3.1 of [15]),
all leading to an increased number of samples and hence lowered speedup. See
also Section 3.2 of [15] for further information on the implications for quantities
based on local operators.



In the present approach one typically avoids sampling the whole domain
(or region of interest). Instead, we require initial sampling regions that already
capture part of the ridges (cf. Figures 4a and 5a) and adapt the sampling regions
to the present ridges (Figures 4b and 5b). This allows to use initial samplings
of sufficient resolution and avoids the need for lowered filtering thresholds. In
the case of FTLE analysis of flow separation and attachment, possible ways for
choosing the initial regions include:

— Definition from special regions of the simulation mesh, e.g. the complete
boundary of the domain, or a subset thereof such as the blades of a turbine.
These regions are often explicitly available from the native simulation file
formats.

— Automatic definition by quantities such as “surface divergence” or its local
maxima as presented by Tricoche et al. [22].

— Automatic definition by features. A possibility is to extract separation and
attachment lines according to Kenwright [11] or Tricoche et al. [22] and to
place initial sampling regions around (part of) those.

— Manual identification and definition by preceding interactive exploration us-
ing standard techniques such as path line integration or (AMR) ridge ex-
traction [15] of the FTLE in regions of interest. It might seem cumbersome
to extract FTLE ridges in a first step with a standard technique, but this
can be afforded if the goal is to compute time series of FTLE (Section 4.3).

We require the initial sampling regions and resampled regions (Section 4.3) to
be parts of a virtual uniform grid that covers the complete domain. This makes
sure that separated grids are consistently sampled and hence can merge (even
after advection) when cells are added by the procedure described in Section 4.2.

4.2 Grid Adaptation

This section describes how the initial sampling grid from Section 4.1 is adapted
to the filtered ridges (cf. Figures 4b, 4d, 5b, and 5d). To prevent long extraction
times in cases where the ridges extend into regions that are of no interest to the
user, a region of interest can be defined which restricts the adaptation, possibly
leading to truncated ridges.

Grid Growing The first adaptation step is to add new cells to the boundary of
the sampling grid where necessary. We define a ridge cell to be a cell that has
an edge intersected by a filtered ridge according to (6) or (7). Because we aim at
results that are identical to those from a uniform sampling, the support range of
the Hessian, which is needed for the height ridge extraction, has to be taken into
account. If the underlying scalar quantity is computed using a local operator (as
in the case of FTLE), its support radius has to be added to that of the Hessian
as well. Having the total support range, one needs to add all cells to the grid
that are within that topological neighborhood of any ridge cell.

In cases of steady vector fields, where the grid advection from Section 4.3 does
not apply, the sampling grid is uniform and adding cells is a trivial procedure.



However, if the grid is advected, adding cells is a challenging problem due to
the distortion of the grid. Nevertheless, the initial grid is uniform and the grid
gets uniformly resampled from time to time. If we need to add a cell to the
distorted grid, we simply go back to the last time step where the grid was
uniform, add the nodes of the corresponding cell there and advect the added
nodes to the actual time step. This makes the cell fit to the desired position.
Additionally, the computed trajectories for the advection of the nodes can be
reused for computing the quantity (FTLE), resulting in little overhead.

However, if a node of the cell in the uniform grid is located outside of the
domain, there is no vector field that could be used to advect it to the desired
timestep and position. In this case the cell can be constructed by extrapolation
of the grid or any standard meshing technique. The grid growing procedure is
iterated until convergence, meaning that each added cell and its neighbors are
tested for being a ridge cell and if this is the case, it is attempted to add the
cells inside the neighborhood range. This way, the sampling grid grows to the
necessary extent.

Grid Shrinking The next step is to remove unnecessary cells from the grid. These
are cells that are neither ridge cells nor in the relevant neighborhood of any ridge
cell, or cells where one or more nodes are outside of the domain.

4.3 Grid Advection

Lagrangian coherent structures are material lines or material surfaces [7], in
other words, they get advected with the flow, such as streak lines (surfaces) and
time lines (surfaces). This would allow to exploit temporal coherence for the
generation of time series of FTLE ridges by advection of the extracted ridges.
One could compute the ridges only after every n time steps and advect them with
the flow in between. However, this would not account for changes of the FTLE
during advection. New ridges can originate and existing ones can grow, shrink,
or disappear, especially if the ridges are filtered by the FTLE value as in our
case. Therefore we propose a different approach: the advection of the sampling
grid itself during the advection intervals. This results in a generic method for
quantities based on trajectories, not only FTLE.

During advection, a short trajectory has to be computed for each node of
the sampling grid to advance it to the next position. The striking advantage is
that these short trajectories can be appended to the existing trajectories needed
for the computation of the FTLE, making it possible to reuse large parts of the
trajectories and hence improving efficiency, see Figures 4c and 5c.

As already mentioned, advection of the sampling grid tends to distort its cells
and this in turn tends to affect the computation of derivatives, which are needed
for FTLE computation and ridge extraction. Additionally, the FTLE tends to be
sampling dependent. All in all this generally leads to artifacts in the extracted
FTLE ridges such as deformation, false negatives, and even false positives.

To restrict the artifacts to an acceptable level, the FTLE is periodically
resampled on a subset of the virtual uniform grid spanning the whole domain:



only those cells of the grid are generated (and the corresponding trajectories are
computed) which overlap with the advected grid or which are contained in the
region of the initial sampling. An additional strategy is to place the sampling grid
outside regions producing high distortion such as wakes and vortices. Although
this looks like a compromise, it is often a natural choice to analyze LCS away from
disturbing phenomena since they would also distort them, even when uniformly
sampled, and hence complicate their interpretation.

Because the flow map is computed by integrating trajectories in numerical
vector fields and because of the intricacy of gradient computation on unstruc-
tured grids, aside from the difficulty to provide an error measure between the
ridges extracted from the distorted grid and those extracted from a correspond-
ing uniform grid, it is generally not possible to provide error bounds regarding
the distortion of the grid. Garth et al. [5] measure the error for their subdivision
scheme in the flow map. Similarly, we propose to measure the error based on the
FTLE, not its ridges, and to use it for triggering the resampling procedure.

The grid is uniformly resampled (recomputing the trajectories and the FTLE)
after every r advection steps with an initial value of r = 2. After the FTLE
has been computed on the resampled grid, the FTLE of the advected grid is
interpolated at the node positions of the new grid and the root mean square
(RMS) of the difference over all nodes is computed. The RMS is then compared
to a user-defined tolerance and a new r is estimated from the RMS and from the
tolerance by linearization of the RMS over the advection steps (line 40 of the
algorithm). The algorithm then proceeds to the next advection phase. However,
the linearization of the error can fail in the sense that r is chosen too large such
that after the next r advection steps the RMS exceeds the prescribed tolerance.
One solution to this problem is to enforce the tolerance by reducing r (and
hence taking back advection steps) until the RMS tolerance is fulfilled. However,
experiments have shown that it is usually sufficient not to enforce the tolerance
and instead to prescribe a reduced tolerance, e.g. by 15 percent, to satisfy the
intended precision.

To support the user in an appropriate choice of the RMS tolerance and the
sampling region, we allow visualization of both sets of ridges, those before and
after resampling, or color-coding the former ones by their distance to the latter
ones as in Figure 1b, serving as uncertainty information. Another approach is to
judge the popping artifacts visually when moving from a time step based on an
advected grid to a subsequent time step where the grid was uniformly resampled.

Note that for the analysis of separation, time series of FTLE ridges have to
get generated by advecting the grid in positive time direction (Figure 4), whereas
for attachment the grid has to get advected in negative-time direction (Figure 5).
This is necessary since the ridges are captured at the regions of interest (at the
boundaries) and FTLE ridges for attachment approach the boundary in positive
time. Hence it is necessary to start with the last time step and to compute them
in negative time direction in order to capture all of them at the boundary, even
those that separate from the boundary. So finally, all ridges (LCS) that come in
contact with the boundary (or region of interest) at any time will get captured.



5 Results

In this section the presented method is applied to two unsteady CFD simulations.
The first one examines the flow around a cuboid, exhibiting flow similar to a von
Karmén vortex street, but in this case the vortices become tilted soon after they
detach from the cube. This leads to flow separation behavior that differs from
the standard von Karman vortex street. Secondly, the method is applied to a
simulation of an intake of a river power plant. The scope there is a construct
that prevents salmon from getting into the runner of the turbine.

5.1 Flow around a Cuboid

This example produces a kind of a von Karmén vortex street. The unsteady flow
comes from the right back and follows to the left front (Figure 2a). The main
difference to a common von Karman vortex street is that there is also flow over
the “top” face of the cuboid. The flow separation at the cuboid is the subject

(a) (b) (c)

Fig. 2. Flow around a cuboid. (a) Geometry. (b) Sampling grid adapted to ridge region
and advected. (c) Resulting FTLE ridge with some upstream trajectories (colored) from
uniform grid, and their seeds (white spheres).

of analysis in this case. The resulting FTLE ridge (Figure 2c¢) shows that flow
separation is in progress on both sides and on the top of the cuboid. It can be
seen that the FTLE ridge separates the vortex street region from the outer flow.
However, further downstream the FTLE ridge does not exhibit this property
anymore: it crosses the vortices. Time series of FTLE ridges reveal that the
separation zones are oscillating consistently with the von Karméan vortex street.

Table 1 shows some performance details for this example. The achieved
speedup in this case is only about 2.3. This is due to the relatively short trajecto-
ries. The prescribed RMS tolerance was 15.0 and at step 33 this was exceeded by
0.88 percent. There have been 12 advection phases, each performed 5 advection
steps in average. Because of the shape of the FTLE ridge and because the initial
sampling grid is already well adapted to the FTLE ridge, the expected speedup
from the grid adaptation is small and was therefore not measured.



uniform | grid uniform | direct on grid
advection adapted grid|advection
grid [nodes] | 16399 | 14220 grid [nodes]| 8800 5007 3913
(step 33) (step 39)
flow map [s]|13704.87| 2944.88 flow map [s]|15369.17| 9062.73 355.62
total [s] 13707.92| 5800.31 total [s] 15374.22| 9489.96 1026.81
speedup 1 2.36 speedup 1 1.62 14.97
Figure 2b Figure 3a 3b

Table 1. Performance analysis Table 2. Performance analysis for the turbine
for the cuboid dataset. 60 steps of intake dataset. 100 steps of grid advection com-
grid advection compared to 61 di- pared to 101 direct evaluations (on uniform grid
rect evaluations on uniform grid. and adapted grid). See also Figures 3a and 3b.
See also Figure 2b.

5.2 Intake of a Power Plant

The underlying data of this section is an existing run-of-river plant in the US. All
devices shown are installed in the intake of the plant in order to protect juvenile
salmon from passing through the runner. The water flow of the unsteady CFD
simulation comes from the right back and follows to the left front where it enters
the turbine (Figure 3).

(a) (c)

Fig. 3. Intake of a water turbine. (a) Uniform grid with some of the upstream tra-
jectories (colored) used for FTLE computation, and their seeds (white spheres). (b)
Sampling grid adapted to ridge region and advected. (c¢) Resulting FTLE ridge.

The horizontal rods at the right hand side of the image lead the salmon
into the vertical channels at the top in the installation. However, these rods
produce a noticeable wake in the upper part of the main channel (see path lines
in Figure 3a). Additionally, the backflow from the salmon channel (the opening
at the top downstream from the rods) also is involved in a recirculation zone at
the top wall, located above the sampling grid of Figure 3a. On the one hand,
a FTLE ridge was extracted using a regular grid at the confluence of the three
main channels (Figure 3a), on the other it was extracted using the presented



grid advection method (Figures 3b and 3c¢). The obtained FTLE ridge separates
well the fast flow at the bottom of the channel from the slower flow in the upper
half of the channel.

Table 2 shows some performance measurements of the presented case. The
speedup from the grid adaptation is quite low (1.62) because of the relatively
low resolution of the sampling grid and because the sampling region was already
quite well adapted to the ridge. The speedup from including grid advection is
significantly higher (about 15) and would further increase with increasing the
integration time for the trajectories. The RMS tolerance was set to 0.012 and at
step 39 this was exceeded by 14.2 percent, which was the maximum during the
13 advection phases. Figure 1b shows the corresponding distance error of the
ridge. In average, 7.7 advection steps were performed per advection phase.

6 Conclusion

We presented a generic method for accelerating the computation (of time series)
of quantities based on trajectories, such as FTLE. On the one hand the efficiency
is improved by restricting the sampling grid to the phenomena of interest, on the
other hand and more important, the computation is accelerated by reusing part
of the trajectories, which is made possible by advection of the sampling grid. In
the case of gradient-based visualizations, such as FTLE ridges, the quality tends
to suffer if the distortion caused by the advection of the grid is high. Therefore,
the obtained quality is inferior to evaluations on regular grids or that by Sadlo
et al. in terms of quality, but superior in terms of speed if time series of FTLE
ridges are computed. A comparison to the approximative method by Garth et
al. deduces from a comparison of that method to FTLE samplings on a regular
grid. All in all we propopse to use the method at least as a fast preview technique
and to use low RMS error thresholds (leading to low acceleration) or even exact
methods, such as direct computation on uniform grids or that by Sadlo et al. [15],
if exact time series are required. Future work could include local strategies for
reducing the distortion of the grid and thus lowering the frequency at which
resampling is needed. We would like to thank Sulzer Innotec for the cuboid
dataset and VATECH Hydro for the intake dataset. This work was funded by
Swiss Commission for Technology and Innovation grant 7338.2 ESPP-ES.
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Algorithm 1 Grid Advection for FTLE Ridges

45:
46:

: steps: number of steps for the FTLE ridge time series
range: topological neighborhood range around ridges
tolerance: tolerance for RMS of FTLE

place initial sampling grid

compute all trajectories and compute FTLE

Z — detect ridge cells from FTLE

N« cells in range around Z // 4 may contain existing cells and cells to add

: // compute frames of FTLE time series
: 7« 2 // number of advection steps

: lastResampleStep «— 0

: for step=1 to steps do

// grid growing
while first iteration at step or grid changed do
// add cells in neighborhood range around %2
for all cells ¢ € .4/ and not yet in sampling grid do
add c directly if grid regular, or by advection or meshing
end for
compute (or reuse) trajectories and compute FTLE
X — detect ridge cells from FTLE
N « cells in range around Z
end while

// grid shrinking
for all cells ¢ of sampling grid do
if ¢ outside domain or ¢ ¢ (Z U .4") then
remove ¢
end if
end for

// grid advection
if step < steps then
advect grid nodes to next time step
compute (or reuse) trajectories and compute FTLE
// resampling
if step — lastResampleStep > r then
resample uniformly, recompute all trajectories and compute new FTLE
RMS «— measure RMS between old FTLE and FTLE on resampled grid
r «— max(1, |r* tolerance /| RMS])
lastResampleStep — step
end if
Z — detect ridge cells from FTLE
A« cells in range around %Z
end if
end for




Fig. 4. Grid advection for flow separation. (a) Initial sampling grid. Ridge cells (dark
gray) and their neighboring cells (light gray). Cell edge intersected by negative-time
FTLE ridge (blue point). Neighborhood range is 1 for illustration purposes. (b) After
grid adaptation. (c) After one step of grid advection. (d) After grid adaptation of
advected grid.
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(a)

Fig. 5. Grid advection for flow attachment. (a) Initial sampling grid. Ridge cells (dark
gray) and their neighboring cells (light gray). Cell edge intersected by positive-time
FTLE ridge (red point). Neighborhood range is 1 for illustration purposes. (b) After
grid adaptation. (c) After one step of grid advection. (d) After grid adaptation of
advected grid.



