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Fig. 1. (a) Space-time view of the time-dependent von Kármán (left) and Hot Room A (right) data sets, with space-time similarity
clusters (blue, green, and orange, in order of decreasing size). Temporal similarity between cluster masters (spheres) is depicted by
thickness of their links (tubes). One can be interactively selected (green), and (b) the temporal similarity of the respective cluster pair
(of the smoothed and normalized signals f̄1 and f̄2 at their masters) is visualized by a similarity matrix (gray level plot). (c) The user
can interactively parametrize the extraction of temporal similarity from the matrix in terms of similarity lines (colored lines in (b)). The
clusters in (a) are obtained on the basis of these lines extracted from similarity matrices, i.e., by utilizing (b).

Abstract—This paper presents a visualization approach for detecting and exploring similarity in the temporal variation of field data.
We provide an interactive technique for extracting correlations from similarity matrices which capture temporal similarity of univariate
functions. We make use of the concept to extract periodic and quasiperiodic behavior at single (spatial) points as well as similarity
between different locations within a field and also between different data sets. The obtained correlations are utilized for visual
exploration of both temporal and spatial relationships in terms of temporal similarity. Our entire pipeline offers visual interaction and
inspection, allowing for the flexibility that in particular time-dependent data analysis techniques require. We demonstrate the utility
and versatility of our approach by applying our implementation to data from both simulation and measurement.

Index Terms—Time-dependent fields, similarity analysis, interactive recurrence analysis, comparative visualization.

1 INTRODUCTION

Large parts of science and engineering deal with time-dependent phe-
nomena. While some converge to quasi-stationary behavior after
an initial phase of temporal change, others attain periodic or quasi-
periodic behavior, or even stay chaotic. There is a multitude of well-
established analysis methods with respect to periodic behavior, in par-
ticular those operating in the frequency domain of univariate functions.
However, many phenomena are beyond strictly periodic behavior and
hence not amenable to analysis by these techniques. Nevertheless, as
stated in Poincaré’s recurrence theorem, they typically exhibit behav-
ior that is characterized by arbitrarily close, but not exact, repetition.
In addition, many problems involve multivariate data, i.e., data present
as fields parametrized by additional variables such as space.

While it is not uncommon that processes return to a previous state
to arbitrary precision eventually, the intent of our work is to reveal
similar sequences of states, or in other words, similar processes. We
not only focus on similarity with respect to time alone, but also include
temporal similarity between different locations (clustering) and even

• Steffen Frey, Filip Sadlo and Thomas Ertl are with the Visualization

Research Center (VISUS), University of Stuttgart, Germany, e-mail:

{steffen.frey, filip.sadlo, thomas.ertl}@visus.uni-stuttgart.de.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online

14 October 2012; mailed on 5 October 2012.

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

different data, providing means for classification based on temporal
similarity and comparative visualization of time-dependent fields.

Our method is based on the self-similarity matrix and cross-
similarity matrix concepts. These take as input one ( f2(t) := f1(t)) or
two ( f1(t), f2(t)) scalar function(s) of time and plot the similarity be-
tween their different states in time as a dense gray level 2D plot where
both abscissa and ordinate represent the same time interval (Fig. 2(a)).
Dark values represent high similarity of the smoothed and normalized
signals f̄1 and f̄2 (Sec. 4.2). Since similar processes represent simi-
lar sequences of states, they appear as dark lines in these plots, which
can be geometrically extracted therefrom and are denoted as similarity
lines (Fig. 2(b)). These lines represent similarity in the temporal varia-
tion of the signals (their properties are discussed in detail in Sec. 3.1),
e.g., their slope shows the temporal scale of similarity (or the “ratio
of their frequencies”). The lines serve as a basis for detection (Sec. 4)
and visualization (Sec. 5) of temporal similarity, including the spatial
clustering (Sec. 5.4) shown in Fig. 1(a). In practical applications, the
lines are filtered, as shown in Fig. 1(b)), according to Sec. 4.5, which
influences the overall visualization including the clustering.

A particularly useful property of similarity matrices is their indepen-
dence of the dimension of the input data, since similarity, as defined in
Sec. 4.2, is always a scalar. Hence, these matrices are, irrespective of
the data, always 2D scalar representations. Despite the large body of
literature on the topic in dynamical systems theory and related fields,
to the best of our knowledge, no satisfying technique exists for extract-
ing the lines from similarity matrices. Furthermore, the concepts are
basically restricted to individual univariate functions of time. In our
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work we provide a technique for extracting the similarity lines appro-
priately and present interactive analysis of 2D fields by means of this
family of concepts.

As a linked view, we provide the time-dependent fields in space-
time representation (Fig. 1(a)). This allows for temporal exploration of
the data, i.e., shifting the fields along the time axis and clipping them
at the front plane at times t1 and t2 to reveal the respective state of the
field (see also the dashed end of time indicators (tmax) in Fig. 1(a)). At
the same time it provides a visualization of the clusters and allows for
their interactive exploration, including the similarity matrix view.

In contrast to machine learning approaches, which could also be
utilized for these purposes, our entire pipeline supports visual inspec-
tion and interaction—from the choice of the underlying comparison
function over detection of processes in the similarity matrices, to the
analysis of their spatio-temporal context. We make use of linked views
and focus+context elements, and for representation of time and brows-
ing, we employ a space-time representation.

We demonstrate the utility of our approach with 2D time-dependent
scalar fields, but extension to vector-valued fields is straightforward
by substituting the comparison function in our scheme with an appro-
priate comparison function for vectors. Generally, our technique can
easily be adapted to the problem under investigation by replacing the
comparison function with an appropriate (domain specific) alternative.

Specifically, our contributions include:

• A generic approach to reveal temporal similarity in field data,
based on similarity matrices. Sequences of similar states are
present in these matrices as lines of locally higher similarity.

• A technique for subpixel-accurate extraction of these lines from
similarity matrices, based on a modified marching squares ap-
proach and allowing for intersecting lines.

• Visualization of spatial correlation of temporal variation between
different parts of fields or data sets.

• Comprehensive visual analysis pipeline providing interactive
control during the entire procedure.

This paper is organized as follows: Sec. 2 covers previous work.
The fundamentals of similarity matrices are given in Sec. 3. Detection
and visualization of similarity are discussed in Sec. 4 and 5, respec-
tively. Sec. 6 presents results and Sec. 7 concludes our work.

2 RELATED WORK

Machine learning is an automatic alternative for the analysis of (time-
dependent) data, and in visualization particularly interesting with large
data [25]. Guo et al. [13] present a system for revealing space-time
and multivariate patterns based on self-organizing maps. Berger et
al. [4] employ methods from statistical learning to achieve interactive,
prediction-based local analysis of continuous parameter spaces.

While machine learning can take place unsupervised or supervised,
there are alternative techniques that make more intense use of human
interaction, in particular those utilizing visual data exploration tech-
niques. For example, Rhyne et al. [34] discuss such techniques for
geospatial data. Köthur et al. [19] employ clustering and evaluate their
approach by means of a data set that is similar to the one we use in
Sec. 6.3. Jänicke and Scheuermann [15] use ε-machines to visualize
dynamics in world temperature amongst others.

Kehrer et al. [17] present a system for generating promising hy-
potheses based on visual data exploration. A visual exploration ap-
proach to study climate variability changes on the basis of wavelets
was introduced by Jänicke et al. [14]. Fuchs et al. [10] propose an
approach combining knowledge-based analysis and automatic hypoth-
esis generation. Lampe et al. [21] introduce a technique based on
kernel density estimation that produces expressive pictures revealing
frequency information about one or multiple curves. Lee et al. [22] vi-
sualize multivariate time-varying data sets based on trend relationships.
Kehrer et al. [16] systematically study opportunities for the interactive
visual analysis of multi-dimensional scientific data.
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Fig. 2. (a) Similarity matrix (black ≃ similar, white ≃ different) and (b)
extracted similarity lines. Red graphs (left and bottom of the matrix)
show the smoothed signals f1 and f2 of sin(x) and sin(0.01 ·x2 + 0.1 ·x),
respectively. Blue graphs (right and top) depict their normalized versions
f̄1 and f̄2 used for similarity matrix computation.

Gerber et al. [11] utilize topological and geometrical methods for
the analysis of high-dimensional scalar fields. Pham et al. [32] present
a non-spatial visualization approach of diversity in large multivariate
data, while Glatter et al. [12] use textual pattern matching for visual-
izing temporal patterns. For the visualization both in space and time,
Kristensson et al. [20] evaluate and approve the utility of the space
time cube representation of time-dependent data.

In path line based time-dependent flow visualization, Salzbrunn et
al. [36] present path line predicates, while Sadlo and Peikert [35] in-
troduce a method for analyzing vortex dynamics. Recurrent flow be-
havior in vortices was addressed by Peikert and Sadlo [30]. Sander-
son et al. [37] describe a technique to analyze recurrent patterns in
toroidal magnetic fields. An importance-driven visualization of time-
varying volume data is presented by Wang et al. [40]. Fang et al. [9]
explore time-varying volumetric medical images using time-activity
curves (TAC). TACs are also used by Lee et al. [23] to visualize the
similarity between a voxel’s time series and time-varying features.

In dynamical systems theory, there are the concepts of recurrence
plots and similarity matrices for univariate data. We build on those and
discuss them in Sec. 3. Their benefits and utility are discussed in de-
tail by Marwan et al. [27]. Vascocelos et al. [39] extend those concepts
to multivariate data by breaking down the data into one-dimensional
data series and applying recurrence analysis separately. Alternatively,
time can be extended into space [28] at the cost of high-dimensional
domains, e.g, a time-dependent 2D image is mapped to a 4D recur-
rence plot, which is, however, hard to visualize. Cutler and Davis [6]
utilize recurrence plots for analyzing videos by performing recurrence
analysis on segmented objects. Angus et al. [2] introduce conceptual
recurrence plots to visualize the similarity of utterances in human dis-
course. Kononov [18] provides software to render recurrence plots.
Bautista et al. [3] analyze the difference between recurrence plots.

Comparative visualization aims to reveal the similarity/difference
between data sets, e.g., for verifying scientific simulation codes [1].
Waser et al. [41] introduce an interactive visualization that provides
complete control over multiple simulation runs. Sauber et al. [38] dis-
cuss a graph-based approach to visualize correlations in 3D multifield
data. Malik et al. [26] carry out parameter studies of data set series.

However, to the best of our knowledge, none of these approaches
addressed the visualization of temporal similarity in time-dependent
fields, which allows control and insight by visual data analysis in
space-time, comparable to our approach.

3 FUNDAMENTALS

The concepts of self-similarity matrices and cross-similarity matrices
come from dynamical systems theory. There, the phase space Ω ⊂R

n

represents the set of all possible states of a system and the phase space
trajectory f : t 7→ Ω of a system with t ∈R its behavior over time t, i.e.,
its sequence of states in time. According to Poincaré’s recurrence theo-
rem many systems return arbitrarily close to their initial (or a previous)
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state f(ti) after sufficiently long time ∆t, i.e.,

|σ(f(ti), f(t j))|< ε, (1)

with t j = ti + ∆t and comparison function σ( · , ·), traditionally
σ(a,b) := ‖b−a‖. This gave rise to the recurrence plot concept that
encodes the recurrence property of a system over duration τ . It is a 2D
plot R : τ × τ 7→ {0,1} with 1 at (ti, t j) if Eq. 1 holds and 0 otherwise.

A difficulty with this concept is the appropriate choice of ε . Too
small values miss recurrences whereas too large ones lead to insignifi-
cant representation and will include even consecutive states along the
trajectory. The choice of ε depends strongly on the system under con-
sideration [27]. An alternative concept that does not require such a
parameter is the self-similarity matrix S : τ × τ 7→ R with

Si j = σ(f(ti), f(t j)). (2)

A multitude of distance or similarity functions σ( · , ·) can be applied
in this context. Throughout this paper we use a signed similarity mea-
sure, i.e., Eq. 5, but use its modulus for displaying gray level similarity
matrices. Note that the respective recurrence plots can simply be ob-
tained from S by a threshold operation.

Finally, the extension of the concept to two systems f,g : t 7→ Ω

yields the cross-similarity matrix C : τ × τ 7→ R with

Ci j = σ(f(ti),g(t j)). (3)

In contrast to R and S , C can be non-square because two different
systems (signals) are compared, with possibly different time ranges
(e.g., Fig. 2(a)). For additional details on the overall topic, we refer
the reader to [27]. In our approach, we build on S and C only.

3.1 Properties of R, S , and C

Recurrence quantification analysis (RQA) [42, 27] provides measures
for a quantitative analysis of R based on their small-scale structure.
These measures are based on the recurrence point density and the di-
agonal and vertical line structures of R. Since R can be obtained by a
threshold operation from S , these measures apply to S , too—and to
some extent to C . We constrain the description here to the properties
and measures that are needed in the context of our technique.

Since we focus on temporal similarity in the sense of similar se-
quences of states, the feature central to our approach are lines in these
matrices, which we call similarity lines. Only non-splitting processes
are considered in this work, i.e., the lines are not allowed to branch.
The matrices R and S represent the same system in both dimensions,
which leads to the so-called line of identity, consisting of the diagonal
elements. The properties of the similarity lines have direct interpreta-
tions (explained by means of the white-dashed line in Fig. 2(b)):

The length of a similarity line relates to the time the phase space
trajectory f(t) runs parallel to itself (in case of R or S ) or parallel to
g(t) (in case of C ). In other words, it measures the amount of sim-
ilar consecutive states. The bounding box of a similarity line gives
the intervals of temporal similarity in time. The two time intervals
spanning the bounding box represent the respective time ranges, and
their proportion gives a notion of the overall relative time scaling un-
der which the two sequences are similar. For example, the dashed line
in Fig. 2(b) covers the time interval from t1,1 to t1,2 for f1 and from t2,1
to t2,2 for f2. The slope at a given time pair of a similarity line reflects
the respective relative time scale of similarity. For periodic signals,
this represents the relative frequency. For instance, the dashed line has
a high slope close to (t1,1, t2,1), because the frequency of f1 is much
higher there than that of f2. Close to (t1,2, t2,2) the slope is approxi-
mately π/4, i.e., the frequencies are similar. The second derivative of
a similarity line (its curvature) reflects the change of temporal scale of
similarity. For periodic signals, this represents the relative frequency
change. In the example, the frequency of f1 is constant while the fre-
quency of f2 increases, reflected by the varying slope along the line.
The horizontal (or vertical) offset between two lines indicates the phase
offset of the respective processes.

There is, however, a prevalent difficulty with the RQA: it is non-
trivial to extract the lines from R, S , or C . Traditional approaches

(a) Original signal f .

(b) Signal f after smoothing with δ = 70.

(c) Normalized signal f̄ .

(d) Normalized signal f̄ , with εp = 0.035.

(e) Normalized signal f̄ , with εp = 0.07.

Fig. 3. Signal from a fixed spatial point of the ocean temperature data
set (introduced in Sec. 6 in detail). Black depicts the original signal, the
smoothed signal is drawn in red and the additionally normalized signals
using different persistence thresholds εp are depicted in blue.

are based on a thresholding operation with subsequent line extraction,
suffering from noise and discontinuities. To this end we present a
technique in Sec. 4.4 that achieves good results with an alternative for-
mulation of S and C , as presented in Sec. 4.3.

4 DETECTION OF TEMPORAL SIMILARITY

Each element (i, j) in a similarity matrix represents the similarity of
the state, or the data, at the respective times ti and t j. There is a mul-
titude of similarity measures, in different disciplines and in different
applications, each tailored to specific goals and the type of data. It is
not our aim here to come up with a new similarity measure—we pro-
vide a framework that operates on the basis of an arbitrary similarity
measure, or comparison function, σ : (Rm,Rm) 7→ R. This function
compares the two states f(ti) and f(t j) of the time-dependent signal
f : R 7→ R

m. We demonstrate our approach with scalar data, hence
m = 1 and f = f in our applications. Nevertheless, since only the com-
parison function depends on m, applying our technique to n-vector
data is straightforward.

4.1 Data

Although we treat multivariate time-dependent data, i.e., time-
dependent nD fields f (x, t) with x ∈ R

n and time t ∈ R, the compar-
ison function itself operates on points therein, hence we have a time-
dependent signal fxi

(t) := f (xi, t) at each point xi in the spatial domain.
In case of flow data, our approach provides the choice to perform sim-
ilarity visualization either in the Eulerian frame where xi is static and
fxi
(t) := f (xi, t), or in the Lagrangian frame where xi(t) moves along

a path line and fxi
(t) := f (xi(t), t). However, since appropriate eval-

uation of the Lagrangian approach would go beyond the scope of this
paper, we address it as future work.

In general, we visualize similarity between two signals f1(t) and
f2(t). In the traditional self-similarity case, f1(t) = f2(t) := fxi

(t).
When comparing different points in a field f1(t) := fxi

(t) and f2(t) :=
fx j

(t). Finally, if two different fields f (x, t) and g(x, t) are compared,

f1(t) := fxi
(t) and f2(t) := gx j

(t).

4.2 Comparison Function

A comparison function that performed well in our experiments with
scalar data applies local normalization to the time-dependent signals
f1(t) and f2(t). The motivation is to make the comparison invariant
to bias and amplitude scale. While global normalization of f1(t) and
f2(t) over the complete time domain would render two signals similar
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(a) Standard marching squares. (b) Our modified approach.

(c) (smin : 0.35,smax : 1.22, ŝ : 15) of (b) (d) Filtering (r̂ : 100,r : 0.1) of (c).

Fig. 4. Similarity lines from a time interval of the function from Fig. 3.

only if they exhibit strongly similar behavior over large intervals, lo-
cal normalization compensates for drift and change in amplitude. We
base the normalization of f (t) ( f1(t) and f2(t) are normalized inde-
pendently) on homological persistence [8, 33] of their local extrema.
First we apply a smoothing step using a hat kernel of smoothing kernel
size δ . This allows us to select the appropriate time scale (Fig. 3(b)).
Then we extract all local extrema t̂i within the time domain [tmin, tmax]
and apply topological simplification by removing all persistence pairs
(t̂i, t̂ j) where | f (t̂i)− f (t̂ j)| < εp with εp being the persistence thresh-
old. The remaining n ≥ 0 extrema partition the time domain into n−1
intervals of type τi = [t̂i, t̂i+1], with bounds

f (t) ∈ [ f (t̂i), f (t̂i+i)], ∀t ∈ τi, (4)

and possibly two additional intervals τmin = [tmin, t̂1] and τmax =
[t̂n, tmax]. On the other hand, if n = 0, there is only a single inter-
val τmin = [tmin, tmax]. Within the τi, f is simply normalized to f̄ by
mapping min( f (t̂i), f (t̂i+1)) to zero and max( f (t̂i), f (t̂i+1)) to one. In
contrast to the τi, f is not bounded within τmin and τmax by the val-
ues at their boundaries (Eq. 4), hence we step through the values in
these intervals to obtain the minimum and maximum and normalize f
therein by mapping these to 0 and 1, respectively (Fig. 3(c)–(e) and
Fig. 6(a)–(b)). Using the resulting normalized signals f̄1(t) and f̄2(t),
our comparison function, which we use throughout this paper, reads

σ( f1(ti), f2(t j)) = f̄2(t j)− f̄1(ti). (5)

Figure 6(a)–(b)) illustrates the effect of this conservative compari-
son function, which readily indicates similarity. This property is ben-
eficial for our overall approach as only the subsequent similarity line
filtering (Sec. 4.5) constrains similarity to the desired level. The re-
quired local extrema of f1(t) and f2(t) are precomputed before sim-
ilarity matrix computation and discarded afterward since the compu-
tational cost of the matrix outweighs their recomputation. The same
holds for smoothing of f1(t) and f2(t) prior to the computation of the
local extrema.
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Fig. 5. (a) Exemplary cases for our similarity line extraction scheme
around a transition node. (b) Example of our modified marching squares
algorithm to extract similarity lines. Both transition nodes in this figure
were generated from negative values.

4.3 Similarity Matrix Computation

Similarity matrix computation starts with the retrieval of the time-
discretized functions f1(t) and f2(t). As discussed in Sec. 4.1, f1(t)
and f2(t) can be identical, originating from different points in the
same data, or even belong to different data sets. We obtain the time-
discretized f1(t) and f2(t) directly from the time steps of the field data.
In a second step, smoothing may be applied to f1(t) and f2(t) and their
local extrema are determined (Sec. 4.2). The value of the similarity ma-
trix element Si j is then simply obtained as σ( f1(ti), f1(t j)) and Ci j as
σ( f1(ti), f2(t j)).

4.4 Similarity Line Extraction

Some approaches have been proposed so far for extracting the simi-
larity lines, i.e., the curves of high similarity, from similarity matri-
ces. While many approaches utilize threshold or contour concepts for
extracting the lines from nonnegative comparison functions, these ap-
proaches are subject to a common issue: since the underlying problem
is a valley extraction problem rather than a contour problem, the re-
sults typically suffer from disrupted and deviating lines. To the best of
our knowledge, ridge (valley) extraction techniques, e.g., according to
Eberly [7], have not been used so far for extracting the similarity lines.
However, our attempt to extract them using these techniques suffered
from disrupted lines too—not due to varying level of the comparison
function but due to intersection of the lines. As documented by Eberly,
and also due to the fact that codimension-1 ridge extraction [31] is
usually achieved based on marching cubes algorithms, ridges obtained
this way cannot intersect or branch, in contrast to the similarity lines in
the similarity matrices. This motivated our modified marching squares
approach together with our signed comparison function σ (Eq. 5) for
generating the similarity matrices S and C and extracting the lines
therefrom. Running the traditional marching squares algorithm on S

or C at isolevel c = 0 would theoretically produce the desired lines of
temporal similarity. However, as similarity lines often intersect, con-
tours as obtained by marching squares tend to form “islands” instead
of the desired long intersecting lines, as shown in Fig. 4(a) (not to be
confused with the ambiguous cases of traditional marching squares).

In its node-classifying pass, the traditional marching squares algo-
rithm marks each node either as positive or negative, depending on the
sign of the reduced field σ − c at the node (“equal” cases are avoided
by pertubation). Our modified version additionally introduces transi-
tion nodes and provides an additional set of marching squares cases
to handle them. A node becomes a transition node when its two hor-
izontal (or vertical) neighbors have sign opposite to that of the node.
In a second pass, we apply a connected component labeling consider-
ing the 8-neighborhood of each transition node. From each connected
component of transition nodes only the transition node is kept whose
original value is closest to zero. This guarantees that no other transi-
tion nodes exist in the 8-neighborhood of a transition node.

Then, a standard marching squares pass is performed, but skipping
all cells that include a transition node. We constrain our description
here to our modifications and refer to the literature (e.g., Lorensen and
Cline [24]) for the remaining details on traditional marching squares.
Finally, we perform a pass with our extended cases considering the 8-
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neighborhood of each transition node (Fig. 5(a)). For each of them we
look at the intersections of the surrounding cell edges (those that do
not connect to the transition node) and generate line segments depend-
ing on the total number of intersections n. The intersection points pi

with 0 ≤ i < n are labeled counterclockwise with increasing local IDs,
starting from the bottom left. Then the segments (pi, p(i+ n

2
)), ∀i < n/2

are generated (exemplified in Fig. 5(b)), i.e., they connect “opposite”
intersections. The enforcement of crossings is based on a heuristic
that proved to work well in our experiments (e.g., Fig. 4(b)). Since the
decision of crossings is application-dependent, the researcher can edit
the result during the overall visual analysis. One advantage of our ap-
proach (especially with respect to the traditional thresholding) is that
the extraction of the lines does not require any parameters. Never-
theless, as discussed above, the smoothing and persistence parameter
settings allow one to suppress noise and choose the right scale (see
Matassini et al. [29] for a detailed discussion of the general topic of
noise reduction in recurrence plots).

4.5 Similarity Line Filtering

The extraction of similarity lines as described in Sec. 4.4 is rather con-
servative. Since similarity is highly application-dependent, a large va-
riety of filtering approaches can be applied to these lines. We found
two simple filter criteria particularly useful: line slope and similarity
within a time window (Fig. 4(c) and Fig. 4(d), respectively).

First, the line is filtered by its slope (restricting it between minimum
slope smin and maximum slope smax). For instance, we may filter for
lines with positive slope, additionally discarding close-to horizontal
and close-to vertical lines as shown in Figures 4(c) and 6(d). The
filter is applied to every vertex of the line and if the test fails, the
point is removed, possibly splitting the line in two. Estimation of the
slope involves another parameter: the euclidean distance (slope scale
ŝ) between the two samples on the line which are used to measure the
slope. A large ŝ makes the filter less sensitive to small-scale noise, but
may also lose small-scale detail.

Subsequently, we filter each point of the line on the basis of the
similarity within a sliding time window (window similarity size r̂) cen-
tered at the point. Note that for computing the similarity matrix, the
signal was normalized during comparison, with respect to two sur-
rounding local extrema (Sec. 4.2), typically producing many (parts of)
similarity lines that do not represent sufficient similarity from an ap-
plication point of view. These are rejected in this step. Every line
segment defines a time window (Sec. 3.1), i.e., an axis-aligned bound-
ing box in the matrix. Within this window the original signals f1 and
f2 are normalized and compared to each other, using the root mean
square error metric (RMS). The considered point is deleted if the re-
sulting error exceeds a user-defined threshold (window similarity RMS
r). The RMS comparison makes the overall similarity detection more
restrictive with increasing r̂ and decreasing r, making it more specific
(Fig. 6(b)–(c) and 4(d)). Note that if no respective window exists be-
cause the line is too short, the line is discarded. Other methods for
filtering can be easily integrated in our approach.

5 VISUALIZATION OF TEMPORAL SIMILARITY

The similiarity lines obtained in Sec. 4 can be used for temporal simi-
larity visualization in manifold ways.

5.1 Interactive Inspection of Signals

The simplest visualization mode is to pick one or two points in the
spatial view and to inspect the respective signals as well as the cor-
responding self-similarity or cross-similarity matrix together with the
resulting similarity lines. This approach can serve for inspection of the
temporal similarity at a point, the temporal relation between locations
that are of interest beforehand, and for validation and inspection in the
context of the advanced techniques described below. It also allows for
parametrization of the different filter criteria.

5.2 Similarity Line Replay

The technique described in Sec. 5.1 provides an overview of tempo-
ral similarity for the signal(s) at the (two) selected point(s), in which

(a) εp: 1, r: 1, smax: 2π . (b) εp: 0.2, r: 1, smax: 2π .

(c) εp: 0.2, r: 0.01, smax: 2π . (d) εp: 0.2, r: 0.01, smax: π .

Fig. 6. Similarity lines with different signal comparison and filter settings
(smin is always 0). The underlying signal is sin(x) · sin(πx). (a) Unfiltered
result. (b) Restriction to “double mountain” patterns by means of εp, but
other detected similarities persist. (c) Sliding window RMS threshold r

constraints detection to “double mountain” pattern. (d) Slope thresholds
smin and smax restrict to positive time correlation.

each similarity, or correlation, is present as a similarity line. As a dual
approach to this mode, the user can pick one of the similarity lines
and concurrently replay the (two) time-dependent field(s) side by side,
with the selected points marked. The used replay speeds are kept pro-
portional to the slope of the similarity line, rendering the process at
equal speed in both views.

This mode provides both temporal and spatial context, and is there-
fore particularly useful for inspection and reasoning. Another power-
ful application are cases in which the similarity line exhibits very high
or very low slope, i.e., there is a large time scale discrepancy in sim-
ilarity of the two signals. While visual detection of these similarities
would be impossible with realtime replay of the data, our similarity
line based replay adjusts the speeds of the replay such that the phe-
nomena appear synchronously.

5.3 Automatic Detection of Self-Similarity

The building blocks described so far required spatial user input: the
selection of one or two points. While this can represent a sufficient
technique if locations of interest are known a priori, this pointwise
technique is inefficient for spatial exploration of large unsteady fields.

Since the extracted similarity lines provide a measure for temporal
similarity, we can utilize them for automatic detection of self-similar
processes. As this approach operates on data points of the field inde-
pendently, it is based on S .

This mode addresses the research question if a given point in the
field is part of a self-similar temporal variation at a given instant in
time. To this end we construct for each point in the spatial domain
the respective self-similarity matrix, extract all filtered similarity lines
and mark the point in all time steps where time intersects one of these
similarity lines. As demonstrated in Sec. 6.3 this technique is not only
able to reveal periodic processes such as von Kármán vortex streets—
it also represents a basis for a more detailed analysis based on spatio-
temporal similarity clustering described in Sec. 5.4. To provide tem-
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poral context, the data is displayed in the space-time domain, i.e., with
depth representing time (see, e.g, Fig. 9(b)).

5.4 Spatial Clustering of Temporal Similarity

The basic idea of this step is to aggregate similar voxels not only tem-
porally but also spatially and to analyze cross-relations between these
space-time aggregates. We do this by computing a self-similiarity ma-
trix for every cell of a data set, as well as two cross-similarity matrices,
one with its bottom and one with its right neighbor (throughout this
paper we address only hexahedral structured grids, but the extension
to unstructured grids is straight-forward). We then extract similarity
lines in the cross-similarity matrices, imposing a smin and smax on the
lines to assure a line slope sufficiently close to π/2, i.e., we require
temporal similarity at similar time scale between neighboring pixels.

In the space-time volume, the self-similarity matrix and the two
cross-similarity matrices are used to measure similarity to temporal
and spatial neighbors, respectively. We establish similarity clusters
based on the 6-connectivity of each space-time cell (26-neighborhood
would induce a much higher computational cost). For the cross-
similarity matrices, we quantify similarity by counting the number
of similarity lines that intersect the time coordinate of the respective
space-time cell. In the self-similarity matrix, we count the number of
lines that intersect with that time step as well as the next time step, to
establish temporal connectivity. These similarity counts are computed
in a pre-processing step in our implementation.

In the subsequent aggregation step, we apply connected component
labeling by a region growing procedure, iteratively considering each
space-time voxel as a seed for a new region that has not yet been as-
signed to a region. We grow the region from one space-time voxel
to the other if the respective line count (i.e., the number of detected
similar processes) is above a user-defined threshold. This can be ac-
complished at almost interactive rates, depending on the size of the
data set. Note that the shape of a resulting cluster is independent of
the chosen seed, and that continuously varying signals will result in
a common cluster, which is a desired property in many applications.
Likewise, moving regions of temporal similarity will get recognized
as single space-time structures. Finally, clusters with a size below a
user-defined threshold can be removed to reduce visual clutter.

Our clustering is comparably robust against noise as it considers a
large number of similarity matrices and lines (a gap in the lines only
leads to small “holes”). We investigate the impact of noise in Sec. 6.1.
In the case of substantial noise, choosing a lower similarity connec-
tivity threshold for more robust detection, however, at the cost of less
clearly defined clusters, may be a worthy trade-off.

For visualization, the space-time volume containing the clusters is
uploaded to the GPU to a 3D texture, every voxel containing its clus-
ter ID. A color is assigned to each cluster and the cluster volume is
rendered alongside with the spatio-temporal data set (in gray level for
context) using raycasting (e.g, Fig. 9(b)). The user can interactively
browse through time which moves the volume(s) w.r.t. the clipping
plane in front of the viewer. Cells directly behind the clipping plane
(i.e., at the current time) are rendered opaque with accentuated con-
tours to better convey the cluster extent at the chosen time (Fig. 1(a)).

5.5 Cluster Comparison

The relation between the clusters can provide valuable insight. To this
end, we determine the pairwise similarity of all cluster pairs on-the-fly
and visualize it via the width of cluster-connecting lines (Fig. 1(a)).
The similarity of two clusters is measured by means of their mas-
ters. The master of a cluster is simply the space-time cell that it most
strongly connected to its six neighbors (in terms of similarity line in-
tersection (Sec. 5.4)). The cross-similarity matrix between pairs of
masters, i.e, of the signals at the masters, is then computed and the
length of the longest similarity line therein represents the cross-cluster
similarity. Other metrics such as the line count or total length (this
would however not be invariant to the frequency of temporal variation)
can easily be included in our approach. Using the clusters masters
for cross-comparison of clusters (instead of comparing single spatio-
temporal cells) drastically reduces the number of cross-similarity eval-

Hot Room A

Velocity mag.

Hot Room A

Temperature

Hot Room B

Temperature

von Kármán

Velocity mag.

Oceans

Temperature

Fig. 7. Overview of data sets. Selected time steps with time progressing
from top to bottom.

uations from the square of all pixels, to the square of all clusters. One
can reduce this even further by only considering clusters meeting cer-
tain criteria, e.g., their size. This is important as without this reduction
the cross-similarity tests would be infeasible and the resulting con-
nections would lead to significant clutter when displayed. Basing the
cross-cluster similarity measurement only on a line of one similarity
matrix can make it susceptible to noise (although we did not expe-
rience this issue in our experiments). We suggest that for scenarios
featuring strong noise the width of the cluster-connecting lines could
be based not only on the master of the cluster but on multiple cells of
a cluster.

Cluster-connecting lines can be selected (green line in Fig. 1(a))
for a detailed investigation of the similarity relation by means of the
cross-similarity matrix (Fig. 1(b)). Amongst others this also shows
why the two clusters were classified the way they were, providing the
possibility to adjust the filter criteria, thus triggering the reevaluation
of all cross-connections between clusters.

6 RESULTS

We implemented our approach using a CUDA-based raycaster for the
space-time view, combined with OpenGL geometry to draw the links
between clusters as well as the domain outlines. We demonstrate our
approach by means of measured and simulated data sets (Fig. 7 and
Table 1). Due to the fact that all parts of our approach are easily par-
allelizable, simple interaction operations like the inspection of signals
by selecting single points, or similarity line replay, run interactively
without any precomputation in our tests. This means that the signal
comparison and the line filtering can be interactively adjusted with in-
teractive feedback. We performed our evaluation on a Core i7 with
2.66 GHz using OpenMP, 8 GB of main memory, and an NVIDIA
GTX580 with 3 GB of memory. The space-time visualization part
of our method basically boils down to volume raycasting and runs at
interactive rates. However, extracting the similarity information re-
quired for the detection of self-similarity and clustering is expensive,
as it requires per spatial point the computation of similarity lines, and
additionally two cross-similarity line sets in the case of clustering. Yet,
these computations can be carried out independently from each other
and distributed across a cluster (timings in Table 1). Our code was not
explicitly tuned and there should be potential for large speedups.

Table 1. Data sets for evaluation. Timings list the duration of the con-
nectivity extraction phase (Sec. 5.4) for our results on an 8 Node cluster.
Timings may vary with different parameter settings.

Name Width × Height Timesteps Timing

von Kármán Vel. Mag. 301×101 800 4 Mins

Hot Room A Temp. 101×101 1600 8 Mins

Hot Room A Vel. Mag. 101×101 1600 7 Mins

Hot Room B Temp. 101×101 1600 8 Mins

Ocean Temp. 360×180 1826 89 Mins
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Interactive inspection. Single points or pairs are selected in the data set (a). For these, self-similarity ((b), (c)) as well as cross-similarity
lines (d) are visualized. The similarity line replay mode follows a selected similarity line (red in (e)) through time, playing the time-dependent data
set in two windows (f) (abscissa), (g) (ordinate) at respective speeds.

We provide an overview on all presented visualization techniques as
well as the impact of noise by means of the von Kármán CFD data set
(Sec. 6.1). Then we evaluate the similarity between different buoyant
CFD simulations (Sec. 6.2). Finally, we look for periodic processes at
different scales in measured ocean data (Sec. 6.3).

6.1 Overview with von Kármán Data Set

The data set used in this section is a 2D time-dependent CFD simula-
tion of a von Kármán vortex street (Fig. 7). We use this example both
for providing insight and to exemplify the techniques and methodol-
ogy described in the previous sections.

The interactive inspection of signals is demonstrated on this exam-
ple in Fig. 8. When points are picked in a data set directly, the respec-
tive similarity matrix and similarity lines are computed and visualized
on the fly. In this example, we selected one point in the center of
the data set and one right to it (Fig. 8(a)). The similarity lines of the
left and the right point (Figure 8(b) and (c)) show that there is a large
number of recurrent processes running at comparable frequencies with
respect to each other (45 degrees slope of similarity lines). They also
show that recurrent behavior does not start until a certain point in time.
Their (varying) period can be judged from the distance between the
lines. The cross-similarity lines computed from both points (Fig. 8(d))
show that the variation of the two compared signals does not take place
at the same frequency but that the frequency at the left point is about
twice the one at the right.

While looking at the similarity lines already provides some insight
regarding temporal variation of the data set, tracking the lines and
showing the meaning of a similarity line is crucial in real data. To
this end, we selected a similarity line (Fig. 8(e)) for similarity line re-
play. As each point in the similarity line defines two time instances,
two views are employed to display them side-by-side (Fig. 8(f) and
8(g)). Replay in Fig. 8(g) is about twice the speed of Fig. 8(f) but the
variation in the replay is perceived consistent.

The manual selection of points is very helpful when the user al-
ready has an idea what he is looking for, but can be tedious in the
case of more complex data sets, or absence of a priori knowledge. To
overcome this issue, we can run a self-similarity analysis for every
spatial point in the data set (Sec. 5.3) and visualize the resulting space-
time volume (Fig. 9(a)). This shows at which spatial point at which
times recurrent processes exist. Separating the structures using clus-
tering (Sec. 5.4) helps the visualization and enables further analysis
techniques. The coloring shows that the von Kármán vortex street con-
sists of three large clusters (Fig. 9(b)). One cluster consists of clock-
wise vortices, the other of counter-clockwise vortices, and the smallest
cluster captures the area in between that exhibits temporal change at
double frequency. The clusters are also compared amongst each other
(Sec. 5.5). By filtering the similarity lines, the user can define the kind
of similarity appropriate for his needs. In this case, we restricted the
angle to about 45 degrees. Hence, there is a thick link between the
left and the right cluster, representing strong temporal similarity be-
cause their processes are basically mirrored horizontally, and two thin
links to the middle cluster because its signals differ and run at higher
frequency. This shows in a fully spatio-temporal manner what has al-

(a) (b)

Fig. 9. Visualizing self-similarity (a) and clusters (b) in the von Kármán
data set. Thick lines connect regions with similar frequency (defined by
smin and smax), while thin lines connect regions that are not as closely
related (the lines in the top similarity matrix are filtered in this example
and shown with relaxed angle constraints for demonstration purposes).

ready been detected for single spatial points earlier (Fig. 8).

We exemplify the robustness of our technique by superimposing the
data with increasing levels of noise (Fig. 10). Compared to the refer-
ence with n = 0 (Fig. 10(a)), n = 0.1 (Fig. 10(b)) shows no significant
difference. With stronger noise (n = 0.2, Fig. 10(c)) gaps in formely
straight similarity lines occur, which possibly results in the splitting of
clusters. With even stronger noise (n = 0.3, Fig. 10(d)), disruptions of
similarity lines occur more often, leading to the splitting of clusters in
thin cluster regions. The results show that small to moderate noise has
only minor impact, while even with strong noise basic characteristics
are preserved.

6.2 Inter-Data Similarity with Hot Room Data Set

This data set results from a time-dependent 2D simulation of air flow
within a closed container, driven by buoyant forces imposed by a
heated bottom plate and a cooled top plate. To provoke transient aperi-
odic flow, the container exhibits two barriers. Two variants of this data
set are used. They are part of a design study with different configura-
tion and only differ in the size of the barrier at the bottom wall. Variant
“Hot Room A” exhibits a square obstacle there, whereas “Hot Room
B” features a quadrangular obstacle of double height (Fig. 7). Both
data sets include velocity and temperature. The data sets (Table 1)
consist of 1600 timesteps, but we skip the first 800 in our analysis to
focus on the interesting effects between time steps 800 and 1600.

We compare the temperature of Hot Room A both to the velocity
magnitude of Hot Room A as well as the temperature of Hot Room B
(Fig. 11). First, we compare the temperature fields of the two simula-
tions. The difference of the shape of the obstacle at the bottom wall
results in a significant change in the time frame of recurrent processes
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(a) Temperature in Hot Room A (left) and B (right). (b) Temperature (left) and velocity (right) in Hot Room A.

Fig. 11. Cross-comparisons between (a) temperature development in Hot Room A and Hot Room B as well as (b) temperature with velocity
magnitude of Hot Room A. In (a), the onset of the von Kármán Vortex Street is much later in A than in B. On the other hand, B exhibits two
interruptions of temporal similarity, resulting in an additional cluster (orange). Both the time frame of the cluster in A as well as the two interuptions
in B appear in the similarity matrix of the respective masters. In (b), the cluster connecting lines show that two major and one minor clusters of the
velocity magnitude are similar to the major temperature cluster, while one velocity cluster (orange) substantially differs.

(a) n = 0 (b) n = 0.1 (c) n = 0.2 (d) n = 0.3

Fig. 10. Time subset (500 to 800) of the von Kármán data set with
the original signals si being superimposed with noise: si

n(t) = si(t) +
n ·α ·ui(t) with ui(t) delivering uniform noise in [−1,1] and α being the
data range of si. Parameter settings from Fig. 9 were adjusted to a lower
cluster size threshold and only central clusters are visualized to clearly
show the effects of noise. Similarity matrices (both unfiltered and fil-
tered) are shown for the spatial position of the gray sphere.

as visualized in Fig. 11(a). Most prominently, data set A features
only two clusters of sufficient size, compared to seven in B. It can
also be seen that the recurrent processes in B start earlier (front-most
clusters (1) and (3) as well as their similarity lines (Fig. 11(a) right)).
The cross-similarity lines show that the processes run at approximately
the same frequency. The temporal disruption of clusters (3), (4) and
(5) as well as the temporal offsets of the clusters also show up in the
cross-similarity lines (note that the masters of clusters (3), (4) and (5)
are virtually identical). The thickness of the cluster-connecting lines
shows that there is high similarity between clusters (1) from A and (3),
(4), and (5) from B. This means that despite all differences between

the two data sets, the spatial points right of the horizontal obstacles
in both data sets exhibit similar variation, however, at different points
in time. This is in accordance with the investigation of the velocity
fields: both exhibit von Kármán vortex street behavior. Furthermore,
in B the clusters (6), (7), (8) and (9) also exhibit a strong connection.
Hence, there are two different structures in B, both are periodically in-
terrupted: the von Kármán vortex street and the recurrent behavior in
the left upper corner induced by the vortex street. In contrast, (2) in A
does not exhibit a strong connection to any other cluster.

As shown with Figures 9(b) and 11(a) (disregarding the similarity
matrices), just looking at the similarity clusters and their connections
already gives a good overview of the behavior of the data set(s). Ad-
ditionally browsing through time allows for a more detailed investi-
gation. Finally, we compare the velocity magnitude with temperature
of the Hot Room A data set (Fig. 11(b)). At first glance, it becomes
apparent that with the very same settings in the generation of both
volumes, the velocity magnitude splits into three regions while there
is only one large cluster for temperature. The thickness of the con-
necting lines shows that the behavior of the large temperature cluster
is similar to the bottom and top clusters in the velocity data, but not
to the middle cluster. This visualizes the fact that the middle cluster
exhibits, as in Sec. 6.1, double frequency. The fact that temperature
contains only one cluster per von Kármán vortex street visualizes that
the vortex street is driven by hot flow from the bottom, hence the dou-
ble frequency in local motion does not show up in temperature.

6.3 Periodicity in Ocean Data Set

The ocean temperature data set provides sea surface temperature mea-
sured from satellites and combined with direct in situ measurements,
provided by the Group for High-Resolution Sea Surface Temperature.
Originally, the data set features a spatial resolution of 1440× 720 at
a time resolution of one day, but we have downsampled the data to
360× 180 and a time resolution of two days to avoid out-of-core vol-
ume rendering. The time frame of our analysis is the complete 1990s.

In our experiment, we detected two major effects interacting with
each other: the Intertropical Convergence Zone (ITCZ) and the El
Niño-Southern Oscillation. The ITCZ is the area encircling the Earth
near the equator where winds originating in the northern and southern
hemispheres come together (Fig. 12). It is a key component of the
global circulation system. El Niño is a quasiperiodic climate pattern
that occurs across the tropical Pacific Ocean roughly every five years.
Its effects include warmer ocean temperatures across the central and
eastern tropical Pacific Ocean, increased convection or cloudiness in
the central tropical Pacific Ocean, and low (negative) values of the SOI
(Southern Oscillation Index).

First we applied moderate smoothing to the original data to preserve
small-scale features (Fig. 12). It can be seen that the generated clusters
classify the ITCZ as a region in which periodic behavior occurs. How-
ever, under El Niño conditions, the ITCZ region stops being periodic
according to the measurement data. This is reflected by the fact that
there are no continuous clusters covering all considered time steps in
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Manually added a posteriori for explanatory purposes:  annotations ,  Intertropical Convergence Zone Cross-recurrence red line Cross-recurrence green line

Interruptions 

due to ElNino:

97/98

94/95

91/92

Fig. 12. Similarity clustering with minor signal smoothing only (δ : 4,εp : 0.04,smin : 0.37,smax : 1.1, ŝ : 15, r̂ : 100,r : 0.2). Links between the ten largest
clusters are shown and cross-similarity matrices for red and green selection. Annotations were added a posteriori for explanatory purposes.

(a) Relaxed settings lead to many long similarity lines and clusters that are more robust to

fluctuation in the signal (δ : 17,εp : 0.3,smin : 0.24,smax : 1.1, ŝ : 15, r̂ : 100,r : 0.11). Thus

only the strongest El Niño from 1997/98 is detected (left: front view, center: top view).

(b) Stricter Settings than in (a) (δ : 21,εp : 0.1,smin : 0.24,smax :

1.1, ŝ : 15, r̂ : 180,r : 0.2), leading to increased sensitivity, thus

additionally detecting the El Niño from 1994/95 (orange).

Fig. 13. Comparably strong smoothing parameters and inverse clustering detects non-periodic behavior in otherwise predominantly periodic signals.

the Eastern Pacific. Instead, the formation of separated clusters cor-
relates to the El Niño event. The cross-similarity plot of two clusters
from the ITCZ, at different spatial locations, shows a strong cross-
correlation, that is, however, interrupted significantly around 1995 and
1998, two years in which El Niño took place. Because we apply mi-
nor smoothing only, we mainly handle small-scale features and ac-
cordingly get clusters with small-scale similar behavior. However, if
the signal is sufficiently smooth, large-scale similarity still can be de-
tected. This can be observed when looking at the cross similarity lines
belonging to the red cross-cluster link in Fig. 12. The signal (the left
red graph) shows large-scale fluctuation stemming from the seasons,
which applies to virtually all sea points in the data set, but it is de-
tected here because of the exceptional signal smoothness.

To be able to detect similar processes not only on the scale of days
but also months, we apply substantial smoothing for a second appli-
cation (Fig. 13). Clustering similarity like in previous examples, with
this setting, produces one large cluster covering almost the complete
domain, except for isolated water masses such as the Big Lakes. This
is because they all share the common temperature fluctuation linked to
seasons. In this case, not similarity or recurrence itself is interesting,
but rather whether and when non-periodic phases occur in otherwise
periodic signals. We considered a point as being part of a recurrent
process if it features at least one time period (in this case the length
of 3 years or 500 time steps) with uninterrupted recurrent behavior
as indicated by similarity lines. For these points, we cluster with an
inverse clustering criterion, i.e., merging spatio-temporal points that
would normally not be merged. Like in the previous example with
moderate smoothing, this again reveals the El Niño effects. Fig. 13(a)
depicts the effect of a particularly strong El Niño (one of the strongest
ever recorded) in 1997/98. When slightly decreasing the signal thresh-
old and the smoothing, also the weaker El Niños in 1991 and 1994 are
detected (Fig. 13(b)). This means that we detect the El Niño both by
means of the disturbance of small and large scale recurrence.

Our findings correlate not only with geospatial literature (e.g.,
Clarke [5]) but also with the effects described in the concurrent work
by Köthur et al. [19], who achieved similar results with sea level in-
stead of temperature data. In contrast to our technique that works with
the granularity of one spatial point in time, they cluster complete time

steps. This allows us, in contrast, to extract (and visualize directly) not
only when but also where effects occur. It also means that disturbances
in a certain spatio-temporal region do not interfere with a cluster cover-
ing the same time step in a remote location. Furthermore, clusters and
empty regions can be visually inspected to investigate the details be-
hind the clustering. Finally, our technique allows for cross-comparison
between different quantities like temperature and sea level.

7 CONCLUSION

We presented an interactive technique for visualizing temporal similar-
ity in fields, based on similarity matrices. It allows for visual explo-
ration of both temporal and spatial relationships in terms of temporal
variation. The whole pipeline supports visual interaction and inspec-
tion, and thus provides a flexible time-dependent data analysis tech-
nique. We demonstrated the utility of our approach by means of data
both from simulation and measurement. Our method is particularly
well-suited for continuous signals and might not perform well for dis-
continuous signals like movies. Furthermore, the size of the data sets
is limited by GPU memory for rendering the spatio-temporal clusters,
and for large data sets computing the similarity information required
for clustering is an expensive task if no optimization techniques are
applied. Nevertheless, our approach lends itself well to parallelization.
Our work introduces a new concept which requires further evaluation
(e.g., with respect to noise or runtime behavior) and performance opti-
mizaton (e.g., GPU-accelerated similarity matrix generation) that are
beyond the scope of the paper at hand. This particularly includes the
comparison with other temporal feature detection approaches as well
as a more detailed analysis with a large range of data sets.

For future work, we plan to extend our approach to not only han-
dle similarity lines but also similarity structures. We further intend
to apply our method to data along trajectories in vector fields to also
account for the Lagrangian frame.
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parameter studies of dataset series. IEEE Transaction on Visualization

and Computer Graphics, 16(5):829–840, 2010.

[27] N. Marwan, M. Carmenromano, M. Thiel, and J. Kurths. Recurrence

plots for the analysis of complex systems. Physics Reports, 438(5-6):237–

329, 2007.

[28] N. Marwan, J. Kurths, and P. Saparin. Generalised recurrence plot analy-

sis for spatial data. Phys. Lett. A 360 (45), pages 545–551, 2007.

[29] L. Matassini, H. Kantz, J. Hołyst, and R. Hegger. Optimizing of recur-

rence plots for noise reduction. Phys. Rev. E, 65(2):021102, 2002.

[30] R. Peikert and F. Sadlo. Visualization methods for vortex rings and vortex

breakdown bubbles. In Proceedings of the 9th Eurographics/IEEE VGTC

Symposium on Visualization, pages 211–218, 2007.

[31] R. Peikert and F. Sadlo. Height ridge computation and filtering for visu-

alization. In Proceedings of the 2008 IEEE Pacific Visualization Sympo-

sium, pages 119–126, 2008.

[32] T. Pham, R. Hess, C. Ju, E. Zhang, and R. Metoyer. Visualization of di-

versity in large multivariate data sets. IEEE Transactions on Visualization

and Computer Graphics, 16(6):1053–1062, 2010.

[33] J. Reininghaus, N. Kotava, D. Gunther, J. Kasten, H. Hagen, and I. Hotz.

A scale space based persistence measure for critical points in 2d scalar

fields. IEEE Transactions on Visualization and Computer Graphics,

17(12):2045–2052, 2011.

[34] T. M. Rhyne, A. MacEachren, and T.-M. Rhyne. Visualizing geospatial

data. In Proceedings of ACM SIGGRAPH 2004 Course Notes, 2004.

[35] F. Sadlo, R. Peikert, and M. Sick. Visualization tools for vorticity trans-

port analysis in incompressible flow. IEEE Transactions on Visualization

and Computer Graphics, 12(5):949–956, 2006.

[36] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Pathline predi-

cates and unsteady flow structures. Visual Computer, 24(12):1039–1051,

2008.

[37] A. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, and J. Bres-

lau. Analysis of recurrent patterns in toroidal magnetic fields. IEEE

Transactions on Visualization and Computer Graphics, 16(6):1431–1440,

2010.

[38] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-graphs: An approach

to visualizing correlations in multifield scalar data. IEEE Transactions on

Visualization and Computer Graphics, 12(5):917–924, 2006.

[39] D. Vasconcelos, S. Lopes, R. Viana, and J. Kurths. Spatial recurrence

plots. Phys. Rev. E 73, 2006.

[40] C. Wang, H. Yu, and K.-L. Ma. Importance-driven time-varying data vi-

sualization. IEEE Transactions on Visualization and Computer Graphics,

14(6):1547–1554, 2008.

[41] J. Waser, R. Fuchs, H. Ribic andic and, B. Schindler, G. Blöschl, and
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