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Abstract. In this paper, we present an approach to analyze 1D param-
eter spaces of time-dependent flow simulation ensembles. By extending
the concept of the finite-time Lyapunov exponent to the ensemble do-
main, i.e., to the parameter that gives rise to the ensemble, we obtain
a tool for quantitative analysis of parameter sensitivity both in space
and time. We exemplify our approach using 2D synthetic examples and
computational fluid dynamics ensembles.

Keywords: Visualization of flow ensembles · parameter sensitivity.

1 Introduction

There are many problems in science and engineering that exhibit parameter
dependency. A prominent type of such dependency is regarding simulation pa-
rameters, such as initial and boundary conditions, model properties, and con-
figuration of the numerical methods. In such cases, individual simulation results
cannot provide a basis for reliable investigation of the underlying problem. By
contrast, ensemble-based analysis, i.e., the investigation of the respective pa-
rameter spaces by means of sets of simulations, has proven successful in such
situations. That is, such ensembles consist of a set of members, with each mem-
ber being an individual simulation for the respective parameter value.

One intensely researched difficulty with ensemble-based analysis, is the inter-
pretation of the results. For example, there is an increasing body of visualization
literature on the analysis of ensembles, often employing clustering techniques
and techniques based on distributions. The traditional approach to conduct
ensemble-based analysis is to choose some interval in the respective parame-
ter space, sample this range using a regular sampling—each sample representing
a respective member—followed by (visual) analysis of the resulting ensemble.
A difficulty with traditional ensemble visualization approaches is, however, that
they focus on the data. That is, they focus on the members, and do not relate
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these data to the ensemble domain, i.e., they do not relate them to the parame-
ter space that gave rise to the ensemble. In this paper, in contrast, we focus on
the variation of flow ensembles with respect to 1D parameter spaces.

The main contributions of this paper are:

– extension of the Lyapunov exponent concept to ensemble variation, and
– its decomposition into parameter sensitivity and spatial error growth.

2 Related Work

Closely related work groups into two main fields, which we address in the fol-
lowing: visualization of ensembles and uncertainty, and sensitivity analysis.

Ensemble visualization is currently one of the intensely researched topics in
visualization research. Ferstl et al. [4] present streamline variability plots, and
a technique for contour analysis based on correlation [5], similar to Sanyal et
al. [10]. Contour distribution is addressed by Pfaffelmoser and Westermann [9].
Whitaker et al. [13] introduce contour boxplots. For related work regarding un-
certainty visualization, we to refer to Bonneau et al. [1].

In the field of comparative ensemble visualization with respect to Lagrangian
transport, the most closely related work is that by Hummel et al. [7]. In their
work, they investigate the spatial spread of trajectories for each ensemble mem-
ber individually, based on principal component analysis, and the variance of the
spread of the respective spatial distribution means over all members. This en-
ables Hummel et al. to investigate the spread of any type of ensembles, i.e., also
discrete ones originating from different simulation models. On the other hand,
their method cannot provide insight into the structure of the dependence with
respect to parameter variation. Our approach, in contrast, provides this insight
in the structure of parameter dependency, but requires ensembles that originate
from variation of such a parameter. Due to our parametric representation, our
approach also enables visualization of the spread over all members. Thus, our
approach is somewhat complementary to the one by Hummel et al.

Concerning sensitivity analysis, Chen et al. [3] provide analysis with respect
to errors stemming from interpolation in time-varying data. McLoughlin et al. [8]
focus on visualizing the effects of parameter perturbations by means of the ge-
ometry of pathlines. In a similar vein, Chandler et al. [2] analyze errors that arise
from different pathline tracing methods. Nevertheless, none of these techniques
addresses sensitivity in ensemble parameter space.

3 Method

The subject of our analysis are time-dependent flow ensembles, where each mem-
ber j of the ensemble is a continuous vector field

uj(x, t) =
(

uj
1
(x, t), . . . , uj

n(x, t)
)⊤

, (1)
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with position x := (x1, . . . , xn)
⊤∈ Ω ⊆ R

n, time t, and vector component uj
i of

member j along axis of xi, i.e., j ∈ R also represents the ensemble parameter.
This leads to the ensemble domain Ω ⊆ R

n × R, space-parameter position

x = (x⊤, j)⊤ := (x1, . . . , xn, j)
⊤
∈ Ω, (2)

and the continuous ensemble vector field

u(x, t) :=
(

uj
1
(x, t), . . . , uj

n(x, t), 0
)⊤

∈ Ω. (3)

Following the finite-time Lyapunov exponent (FTLE) approach by Haller [6],
we base our approach on the flow map φφφT

t0
(x), which maps the seed x of a pathline

ξξξxt0(t) started at time t0 to its endpoint after advection for time T , i.e.,

φφφT
t0
(x) =

(

φT
t0,1

(x), . . . , φT
t0,n

(x)
)⊤

:= ξξξxt0(t0 + T ), (4)

with ξξξxt0(t0) := x, and φT
t0,i

being the ith component of the flow map. For tradi-
tional vector fields, the FTLE is defined from this by

σT
t0
(x) :=

1

|T |
ln
∥

∥∇φφφT
t0
(x)
∥

∥

2
, (5)

with ‖ · ‖2 being the spectral matrix norm, i.e., for a matrix A, the square root
of the largest eigenvalue of A⊤A.

In our ensemble field setting, this leads to the ensemble flow map φφφT
t0
(x) that

maps a space-parameter start point x of a (purely spatial) pathline seeded at x
and time t0 in member j to its space-parameter endpoint

φφφT
t0
(x) :=

(

φφφT
t0
(x)⊤, j

)⊤

(6)

after advection for time T . The mapping from 2 to 2’ in Figure 1(a) is an
example of such a trajectory within a member, and for the resulting entry in the
ensemble flow map φφφT

t0
(x).

3.1 Ensemble Spread

Following Equation 5, it would be straightforward to derive an ensemble finite-
time Lyapunov exponent field σT

t0
(x) from the ensemble flow map via

σT
t0
(x) :=

1

|T |
ln
∥

∥

∥
∇φφφT

t0
(x)
∥

∥

∥

2

. (7)

However, taking a look at the Jacobian ∇φφφT
t0
(x) reveals the following structure:

∇φφφT
t0

:=















∂
∂x1

φT
t0,1

. . . ∂
∂xn

φT
t0,1

∂
∂j
φT
t0,1

...
. . .

...
...

∂
∂x1

φT
t0,n

. . . ∂
∂xn

φT
t0,n

∂
∂j
φT
t0,n

∂j
∂x1

= 0 . . . ∂j
∂xn

= 0 ∂j
∂j

= 1















=

(

∇φφφT
t0

∂
∂j
φφφT
t0

0⊤ 1

)

. (8)
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Fig. 1. Ensemble vector field of 2D members in 3D ensemble domain (x1 × x2 × j).
(a) ES-FTLE sσT

t0
(x) measures spatial separation ( 1’ – 2’ ) with respect to spatial per-

turbation (in xi, 1 – 2 ), and thus predictability and topology of trajectories (red man-
ifold). (b) EP-FTLE pσT

t0
(x) measures spatial separation ( 5’ – 6’ ) with respect to para-

metric perturbation (in j, 5 – 6 ), and thus parameter sensitivity (red manifold).

We identify an upper left block, which has unit 1 because the flow map is de-
rived with respect to the input coordinate, and an upper right block, which has
generally a different unit: the unit of the coordinates xi divided by the unit of j.
Thus, σT

t0
has no direct utility/interpretation, and is influenced by the “scaling”

between the different units, which could be, in general, chosen arbitrarily. Ad-
ditionally, it would measure the combined spread in xi and j with respect to xi

and j, meaning that the Euclidean distance factor for the respective endpoints
in the ensemble domain Ω would be larger or equal than 1 (since, as can be seen
from Equation 3, trajectories cannot approach or deviate in j-direction). These

circumstances motivate us to decompose ∇φφφT
t0

into these two blocks.

3.2 Ensemble-Space Finite-Time Lyapunov Exponent

The upper left block in Equation 8 represents the traditional (purely spatial) flow
map gradient, as used for traditional FTLE computation (Equation 5), although
with the difference that it is now a field in the entire (n+1)-dimensional ensemble
domain Ω, i.e., we have ∇φφφT

t0
(x) instead of ∇φφφT

t0
(x), leading to the ensemble-

space finite-time Lyapunov exponent (ES-FTLE) field

sσT
t0
(x) :=

1

|T |
ln
∥

∥∇φφφT
t0
(x)
∥

∥

2
(9)

in the ensemble domain. This field captures, for each space-parameter point x,
the amount of spatial separation of trajectories started in the spatial vicinity
of x in member j. In Figure 1(a), the increase of the distance between 1 and
2 before advection to the distance between 1’ and 2’ after advection illus-
trates this. On the one hand, this traditional (spatial) FTLE in the ensemble
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domain enables us to analyze predictability, i.e., error growth with respect to
the seed position of a trajectory. On the other hand, it also enables us to re-
veal the spatial time-dependent topology [12] by extracting Lagrangian coherent
structures (LCS) in terms of height ridges therefrom [11], which separate spatial
regions of qualitatively different spatial behavior. Since our ensemble domain
is (n+1)-dimensional, the respective (n–1)-dimensional ridges (lines in case of
n = 2) in Ω are present as n-dimensional ridges (surfaces in case of n = 2) in
Ω. Since in our work the focus is on parameter sensitivity and not topology, we
visualize the resulting fields with volume rendering instead of extracting ridges.

3.3 Ensemble-Parameter Finite-Time Lyapunov Exponent

The upper right block in Equation 8 represents the partial derivative of the
flow map with respect to the ensemble parameter j. We use it to derive the
ensemble-parameter finite-time Lyapunov exponent (EP-FTLE) field

pσT
t0
(x) :=

1

|T |
ln
∥

∥

∥

∂
∂j
φφφT
t0
(x)
∥

∥

∥

2

. (10)

Since ∂φφφT
t0
/∂j is a n× 1 matrix, we may interpret it as a vector that linearizes

the flow map. Hence, its spectral norm is simply the Euclidean norm. The EP-
FTLE represents, for each position x ∈ Ω, the amount of spatial separation
of trajectories started at position x in the parametric vicinity of member j. In
Figure 1(b), the growth of the distance between 5 and 6 before advection to
the distance between 5’ and 6’ (the spatial projection of the endpoints after
advection) represents this quantity (note that the distance between 5 and 6 is
illustrated too large for clarity, it is intrinsically identical to the distance between
1 and 2 ). The EP-FTLE represents the Lagrangian parameter sensitivity of
the ensemble j at position x and time t0 with respect to perturbation of j. Thus,
regions in Ω, where the EP-FTLE is low, are not subject to substantial change
if j is varied. A possible consequence is that such regions do not need to be
explored at higher resolution with respect to j. On the other hand, in regions
with a high EP-FTLE, the choice of j has large impact on the result and thus
needs to be carefully investigated.

Notice that the (ES-)FTLE is a logarithmic measure representing a rate of
particle separation. Since it is widely used for qualitative (topological) analysis,
the logarithm is not an issue in visualization. However, we present our EP-FTLE
for quantitative analysis of parameter sensitivity. Therefore, in our visualizations,
we omit the logarithm in Equation 10.

Notice also that our approach is basically applicable to any number of en-
semble parameters, i.e., it supports an m-dimensional vector j instead of a scalar
parameter j. In this case, the upper right block in Equation 8 is a matrix ∇jφφφ

T
t0
,

which can be evaluated in Equation 10 with the spectral matrix norm. In cases
where all m parameters have the same unit, the result is well-defined and di-
rectly interpretable. Nevertheless, we do not exemplify such cases for two main
reasons: First, direct visualizations of Ω are infeasible in general because they
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exceed three dimensions. The more important reason is, however, that differ-
ent parameters typically have different units. As we argue in this paper, mixing
those units may lead to interpretation difficulties. Our technique would be able
to visualize the impact of each parameter individually, though. We leave the
problem of handling multiple parameters as future work.

4 Results

We employ our technique to a set of synthetic and simulated 2D flow ensembles of
increasing complexity. The first synthetic ensembles serve for an introduction and
illustration of the properties of our technique. The remaining examples include
cases from computational fluid dynamics (CFD) and meteorology—a field in
which ensemble simulation plays a predominant role.

4.1 Saddle

We start with a simple synthetic stationary (time-independent) 2D flow ensemble
that exhibits trajectory separation:

u(x) =





− sin(x) cos(y)
sin(y) cos(x)

0



 (11)

in the domain Ω = [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5]. This vector field repre-
sents the region around the origin of the Double Gyre example [11] in standard
configuration. As can be seen, this ensemble does not vary in (is not a function
of) j, i.e., all members are identical. It exhibits saddle-type nonlinear dynamics,
which are captured by the traditional FTLE.

Figure 2(a) illustrates the ensemble and provides the respective ES-FTLE
result with T = 100, sampled within Ω at a resolution of 400× 400× 200 nodes.
One can nicely observe the high ES-FTLE values representing a ridge surface in
Ω (yellow in Figure 2(a)). This ridge surface represents a spatial (traditional)
LCS that illustrates the bifurcation due to the saddle-type flow, i.e., it separates
the two regions of Ω. Since there is no variation of u(x) in j-direction, the EP-
FTLE field is constant zero in this case and thus not investigated.

4.2 Rotation

As a complement to the Saddle example, we now investigate a stationary field
that does not exhibit variation in space Ω within the members j, but instead
exhibits variation across the members, i.e., in j-direction:

u(x) =





cos
(

π
4
(tanh(5πj) + 1)

)

sin
(

π
4
(tanh(5πj) + 1)

)

0



 (12)
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(a) (b) (c) (d)

Fig. 2. Synthetic steady flow examples (here, and in all figures: x-axis red, y-axis green,
j-axis blue, and ES/EP-FTLE low value blue and high value yellow). Saddle (a) exhibits
ridge (yellow) in ES-FTLE sσT

t0
(x) but zero EP-FTLE pσT

t0
(x). Rotation (b) exhibits

zero ES-FTLE but our EP-FTLE clearly shows high parametric variation (yellow ridge)
at the center of the parameter interval. In the Rotating Saddle example, sσT

t0
(x) (c)

shows spatial separation but fails to capture parametric variation (see separated or-
ange lines at the center of the parameter interval). In contrast, our pσT

t0
(x) (d) captures

ensemble variation well, but does not capture spatial separation. Thus, ES-FTLE pro-
vides qualitative insight into the (topological) organization of flow ensembles, while the
EP-FTLE is a quantitative measure for ensemble variation, i.e., parameter sensitivity.

in the domain Ω = [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5]. Each member of this
ensemble is a uniform 2D vector field with magnitude one. The direction, how-
ever, varies with member parameter j according to the hyperbolic tangent, i.e.,
the angle does vary very slowly at j = −0.5 and j = 0.5 and most of the range,
except for j ≈ 0, where it changes fast. As a result, the parameter sensitivity of
the members is overall low with a peak at j = 0.

Figure 2(b) illustrates the ensemble and depicts the EP-FTLE result with
T = 100. One can see that in this case, the EP-FTLE exhibits a ridge surface
in Ω at j = 0. This visualizes that the strongest member variation, i.e., largest
parameter sensitivity, is at j = 0, and that the high EP-FTLE values separate the
two regions that are qualitatively similar and exhibit small parameter sensitivity.
Since the individual members represent uniform flow, the ES-FTLE is trivially
constant in this case and thus not investigated.

4.3 Rotating Saddle

The third and last simple example for introducing our approach, consists of a
combination of the Saddle (Section 4.1) and Rotation (Section 4.2) examples.
That is, we have the flow from the Saddle example, but in this case the members
undergo the same rotation as they did in the Rotation example:

u(x) = R(−α)





− sin(x′) cos(y′)
sin(y′) cos(x′)

0



 , R(θ) =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 , (13)

with rotated space-parameter position x′ = (x′, y′, j)⊤ := R(α)x, rotation angle
α = π

4
(tanh(5πj) + 1), rotation matrix R(θ), and domain Ω = [−0.5, 0.5] ×
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[−0.5, 0.5]× [−0.5, 0.5]. It exhibits both a spatial separation (due to the Saddle
component), and a parametric separation (due to the Rotation component).
Figure 2(c) and (d) show the respective ES-FTLE and EP-FTLE.

The ridge surface (high values) in the ES-FTLE (Figure 2(c)) represents the
LCS that still separates two spatial regions, however, now it is deformed due to
the rotation. Furthermore, we can observe that the ES-FTLE suffers severely
from aliasing, i.e., at j ≈ 0, the LCS surface degrades into lines, which do not
partition Ω. In contrast, the EP-FTLE field (Figure 2(d)) does not indicate the
spatial sensitivity, but instead depicts very well (without aliasing issues) the high
parameter sensitivity around j = 0, i.e., the high EP-FTLE values separate the
two regions of Ω with low parameter sensitivity.

4.4 Pulsating Injector

This CFD example brings us now to time-dependent simulation ensembles. It
examines the injection of pulsating flow, e.g., in the context of gas injection
for combustion, and consists of a 2D channel, with inflow on the left, outflow
on the right, no-slip boundaries on top and bottom, and an injector inlet at
the bottom left with time-dependent inflow behavior. The injector’s velocity
magnitude pulsates with a temporal sine. In this study, the pulsation frequency
is the ensemble parameter to be examined, and is investigated in the interval
[0, 7], resulting in the domain Ω = [0, 0.2]× [0, 0.1]× [0, 7], sampled on a grid of
800× 400× 568.

Computing the space-parameter flow map with reverse advection time T =
−0.1 reveals that parameter sensitivity is particularly high for low frequencies
(Figure 3(a)). We select a fixed position (curve in parameter space) and start a
pathline at this position in every 9th member, resulting in a “parameter pathline
rake”. Additionally, we map the EP-FTLE to the parameter curve, revealing that
high EP-FTLE values separate parameter ranges with qualitatively different
pathline behavior. In contrast, the ES-FTLE (Figure 3(b)), which captures the
spatial separation, does not provide such a quantitative property: it tends to be
lower than the EP-FTLE at low frequencies but higher than the EP-FTLE at
higher frequencies, although the pathlines do not exhibit high separation with
respect to parameter variation there.

4.5 Rising Bubble

This example represents a simulation of free convection of a smooth warm air
bubble surrounded by cold air, from a meteorological study, based on the Euler
equations of gas dynamics. In this example, the potential temperature vari-
ation was examined by ensemble simulation. The potential temperature vari-
ation represents the deviation of the air bubble potential temperature from
background equilibrium, and in this ensemble it was sampled at 31 equidistant
points in the interval [0.401, 0.599]. We discretized the computational domain
Ω = [0, 1500]2× [0.401, 0.599] to a grid of 1500×1500×31 nodes for our analysis.
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(a)

(b)

Fig. 3. Pulsating Injector example, with injection frequency increasing from left to
right (blue axis). (a) EP-FTLE reveals regions of high parameter sensitivity. EP-FTLE
mapped to radius and green saturation along the pathline seed “rake” reveals that large
EP-FTLE quantitatively separates parameter regions with different pathline behavior.
ES-FTLE (b) does not provide such quantitative view on parameter sensitivity, i.e., it
is not consistent with pathline behavior (here, ES-FTLE mapped to pathline rake).

We seeded the flow map trajectories at time t0 = 1000 and integrated them
in reverse direction for T = −400. Figure 4 shows our EP-FTLE result, together
with a pathline rake, and the ES-FTLE. As can be seen from the pathline vari-
ation, the EP-FTLE captures high parameter sensitivity, i.e., high EP-FTLE
values separate parameter regions of qualitatively different pathline behavior.
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(a) (b)

(c)

(d)

Fig. 4. Rising Bubble example, with warm air rising to the top and potential temper-
ature, the ensemble parameter, increasing from front to back (blue axis). Quantitative
visualization of parameter sensitivity by EP-FTLE (a), together with ES-FTLE (b)
for comparison, and parameter pathline rake with EP-FTLE (c) and ES-FTLE (d)
mapped to tube thickness and green saturation.

4.6 Rossby Waves

The large-scale atmospheric flow in the mid-latitudes is dominated by wave
structures (Rossby waves), which bring polar air down to the south in their
troughs and subtropical air up to the north in their ridges. The moist and warm
air masses in the ridges are often forced to ascend and are referred to as Warm
Conveyor Belts (WCB). The ascent leads to adiabatic cooling and to the re-
lease of latent heat by condensation and freezing of water, thus to the develop-
ment of large cloud bands and to precipitation on the ground. The ridges are
in general amplified by the diabatic process in WCBs through the associated
upper-level divergence and vertical advection of low potential vorticity. They
also pose challenges to numerical weather prediction, since the relevant quan-
tities and processes are difficult to measure and to model. The global model
ICON from Deutscher Wetterdienst (DWD) has been used to conduct a series
of experiments, where the amount of the latent heat release has been modified
by using different values for the enthalpy of condensation and freezing in the
model. The enthalpy has been varied from 80% up to 120% of its true value in
steps of 1% in this ensemble, which should lead to a damped or increased WCB
activity and associated ridge amplification.

For visualization by our technique, we discretized the computational domain
Ω = [−π, π] × [0, 17/36π] × [0.8, 1.2], representing the northern hemisphere in
terms of longitude and latitude times the ensemble dimension, to a grid of 2000×
500× 41 nodes. The flow map trajectories are seeded at t0 = 3.6 · 105 s = 100 h
and advected for T = 1.8 · 105 s = 50 h.

For analysis, we again conduct the same steps as in the previous examples.
Whereas predictability/topology by means of ES-FTLE shows many strong co-
herent vortex structures (Figure 5(d)), the EP-FTLE has only a few peaks. This
shows that although there is a large number of topological structures identified by
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(c)

(b)

(a)

(b)

(c)

(f)

(e)

(d)

(e)

(f)

Fig. 5. Rossby Waves example, with enthalpy, the ensemble parameter, increasing from
front to back (blue axis). Quantitative visualization by means of EP-FTLE (a) reveals
only few regions with strong parameter sensitivity. The ES-FTLE (d), in contrast, re-
veals strong coherent structures also toward the equator (bottom). Parameter pathline
rakes with EP-FTLE and ES-FTLE mapped to seed curve thickness and green satu-
ration. EP-FTLE captures separation due to parameter perturbation (b), (c), whereas
ES-FTLE separation only due to spatial perturbation (e), (f).

means of the ES-FTLE (Figure 5(d)), the sensitivity with respect to enthalpy in
the ensemble parameter space is constrained to small subregions (orange/yellow
in Figure 5(a)). This reveals that the structures closer to the equator are less
parameter-sensitive than those at the polar regions. A closer investigation of the
reasons and implications is, however, beyond the scope of this paper and subject
to future work in meteorology.

5 Conclusion

We presented an approach to quantify and visualize parameter sensitivity for
2D time-dependent flow ensembles. We extended the concept of the finite-time
Lyapunov exponent to the parameter space of ensembles, and presented a decom-
position, providing a “stacked” version of the traditional finite-time Lyapunov
exponent which measures predictability and which we denote ES-FTLE, and
providing its counterpart, the EP-FTLE, which measures parameter sensitivity
of ensembles with respect to the space-time behavior of pathlines integrated over
a finite time interval.

As future work, we would like to investigate parameter sampling approaches
for efficient and effective ensemble computation, and investigate related ap-
proaches for visualizing 3D time-dependent vector fields. Although our ap-
proach is applicable to multi-parameter ensembles, this would lead to higher-
dimensional space-parameter domains, involving visual representation issues.
Addressing these issues is also a direction for possible future work.
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