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Figure 1: Vortex core manifolds (blue) in higher dimensions. 1-vortex core manifolds in 3D (a), 4D (b), and 5D (c), are one-, two-, and

three-dimensional, while a 2-vortex core manifold in 5D is one-dimensional (d). The latter has two planes of rotation (orange and green

streamlines), i.e., a streamline seeded in between them exhibits a rotation within two planes of rotations simultaneously (magenta streamline).

Abstract

In this paper, we generalize the parallel vectors operator due to Peikert and Roth to arbitrary dimension, i.e., to four-dimensional

fields and beyond. Whereas the original operator tested for parallelism of two (derived) 2D or 3D vector fields, we reformulate

the concept in terms of linear dependency of sets of vector fields, and propose a generic technique to extract and filter the

solution manifolds. We exemplify our approach for vortex cores, bifurcations, and ridges as well as valleys in higher dimensions.

CCS Concepts

• Human-centered computing → Visualization techniques; • Applied computing → Mathematics and statistics;

1. Introduction

One of the striking advantages of feature extraction is that it is
often parameter-free. In that sense, features are (typically lower-
dimensional) subsets of the domain that exhibit special characteris-
tics, which do not depend on user-defined parameters. A wide range
of feature definitions, along with respective extraction techniques,
is in use in various fields, and for various applications.

For example, vortex core lines, which represent the “rotation
axis” of a vortex, provide a concise representation of vortical flow

fields, serve well for providing overview, and lend themselves as
seeding structures for particle tracing. The interaction between flow
and solids, on the other hand, can be effectively analyzed by means
of separation lines and attachment lines. These curves, located on
the surface of a solid, can indicate flow separation, for example, the
onset of stall in the flow around the wing of an airplane. Finally,
in the case of scalar fields, height ridges play an important role,
for example, for extracting vessels in medical data, or to represent
shape. All these feature types can be effectively defined and ex-
tracted by means of the parallel vectors (PV) operator due to Peik-
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ert and Roth [PR99], a framework that enables the formulation of
these features as sets of those points where two (derived) vector
fields are parallel or antiparallel.

Many physical phenomena can be described by 2D or 3D time-
independent vector fields and thus are suitable for feature extrac-
tion using the PV operator followed by representation in 2D or 3D
space. However, there are phenomena that can only be appropri-
ately modeled by higher-dimensional vector fields. Treating time
as additional spatial dimension leads to 4D vector fields if the spa-
tial domain is three-dimensional. The motion of inertial objects due
to forces in 2D or 3D space is described by respectively 4D or 6D
vector fields, called the phase space. Considering time as additional
dimension in the phase space leads to 5D and 7D vector fields. In
general, any phenomenon that is described by a continuous dynam-
ical system with an n-dimensional phase space has an underlying
n-dimensional vector field. Furthermore, higher-dimensional scalar
fields can arise from families of 2D or 3D vector fields that depend
on one or more additional parameters. For example, scalar fields
that are derived from the flow map, which maps particles seeded
at an initial time to their position after a certain advection time,
add two parameters, initial time and advection time, to the spatial
dimensions, and are thus 4D or 5D. Since the projection of higher-
dimensional objects onto 3D space usually leads to self-intersection
and is intrinsically harder to interpret, the extraction of meaning-
ful features from these higher-dimensional spaces is even more
important for their visualization. Features extracted from higher-
dimensional vector fields and scalar fields have in common that
one can no longer only consider line-type or codimension one fea-
tures, such as extracted by the PV operator. For example, vortex
core manifolds, generalized vortex core lines, are surfaces in 4D
vector fields, and lines or volumes in 5D vector fields.

In this paper, we generalize the PV operator to fields with ar-
bitrary dimension larger than one, leading to the dependent vec-
tors (DV) operator. This operator extracts manifolds, where an n-
dimensional vector field together with a set of k (derived) nD vector
fields is linearly dependent. In the 2D and 3D cases, our DV oper-
ator is identical to the PV operator. We show its utility by demon-
strating how it is used to define vortex core manifolds, bifurcation
manifolds, and height ridge manifolds in higher dimensions. For
the extraction of the respective DV solutions (i.e., the manifolds
with arbitrary dimension), we present a generic, simple, and effec-
tive algorithm, and demonstrate it at these cases. With this work, we
hope to pave the way for further research on feature extraction in
higher dimensions, and for analysis in novel application domains.

Our contributions include:
• generalization of the PV operator to arbitrary dimension,
• a generic algorithm for extracting the resulting manifolds, and
• application of our approach to generalized vortex core mani-

folds, bifurcation manifolds, and ridges.

2. Related Work

The parallel vectors operator [PR99] is, together with the fea-
ture flow field [TS03, WTVGP11], one of the most successful
frameworks for feature definition and feature extraction. As de-
scribed in the original work by Peikert and Roth, the opera-
tor lends itself for the formulation, analysis, and extraction of

vortex core lines [DSL90, SH95, RP98], ridge lines and val-
ley lines [EGM∗94, PS08], and separation lines and attachment
lines [Ken98]. Machado et al. [MSE13] used the PV operator to ex-
tract bifurcation lines in 3D steady vector fields, and applied their
method to the space-time domain of 2D flows for extracting hyper-
bolic trajectories [MBES16].

Works that go beyond direct application of the PV operator in-
clude the one by Ju et al. [JCWD14], who derive a parity test
for the number of PV solutions, and, most closely related to our
work, the coplanar vectors operator, defined by Weinkauf and
Theisel [WSTH07] for the extraction of vortex core lines in time-
dependent flow. Similar to their previous work [TSW∗05], which
derives a feature flow field formulation for representing the sur-
faces that a vortex core line sweeps over time, they also oper-
ate in space-time there. In that work, they extend the vortex core
line concept due to Sujudi and Haimes [SH95] to four-dimensional
space-time, i.e., they treat time as additional dimension, resulting
in the requirement of three 4D vector fields being coplanar. This
coplanarity requirement represents, in our generalization, the spe-
cial case for n = 4 dimensions of the domain, and k = 2 dimensions
of the resulting manifold. Notice, however, that due to the special
properties of space-time vector fields, Weinkauf and Theisel did
not need to solve for that manifold in 4D, but instead reformulated
the problem as a parallel vectors problem in 3D, and employed the
PV operator for the extraction of the respective vortex core lines.
Fuchs et al. [FPH∗08] also discussed the extension of PV features
to unsteady flow. Van Gelder and Pang [VGP09] presented an ap-
proach to finding PV lines based on root-finding, which can be ap-
plied to arbitrary dimensions, as well as cases where the dimen-
sion of the vectors does not match that of the domain. Pagot et
al. [POS∗11] extended the PV operator to higher-order data. The
case of vortices with vanishing longitudinal component was treated
by Jung et al. [JHP∗17] by transforming the PV problem into a
ridge extraction problem. An extension of the PV operator to vec-
tor field ensembles was presented by Gerrits et al. [GRT18]. Oster
et al. [ORT18a, ORT18b] extracted PV lines in 3D second-order
tensor fields, where not only the 3D location but also the eigenvec-
tor itself is unknown, leading to a 5D search space. Günther and
Theisel [GT18] computed PV lines in a 6D phase space of inertial
dynamics, using a generalized cross product, which coincides with
the case n = 6, k = 1 in our generalization.

Higher-dimensional scalar fields have been visualized by slic-
ing [vWvL93] and by extracting isosurfaces [WB96, BWC04].
For visualizing the relationship between multivariate data and ge-
ometry, star coordinates [Kan00] and parallel coordinates [Ins85]
have been used. Wegenkittl et al. employed parallel coordinates
for visualizing trajectories in higher-dimensional dynamical sys-
tems [WLG97]. The wedge product has been used for comparing
multiple scalar fields [EHM∗08], and a generalization of Jacobi
sets to arbitrary dimension and number of Morse functions [EH02]
has enabled topological feature extraction and tracking in scalar
fields [BBD∗07]. The notion of a Reeb graph has been extended
to time-varying scalar fields [EHNP04]. Extracting features from
higher-dimensional spaces, Hofmann et al. [HRS18] used an ortho-
graphic 4D camera for visualizing topology and stream manifolds
in steady 4D vector fields, and Wilde et al. [WRT18] extracted re-
circulation surfaces from 4D as well as 5D flow maps.
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3. Fundamentals

We consider an n-dimensional vector field u(x) and a set of k vector
fields w1(x), . . . ,wk(x), all defined on the same domain Ω ⊂ R

n,
with u(x),wi(x) ∈ R

n (note that we often write, e.g., u for u(x)
in our notation, were not ambiguous). For a fixed x ∈ R

n, we call
the vectors u(x),w1(x), . . . ,wk(x) linearly dependent, if there exist
scalars c1, . . . ,ck ∈ R such that

u(x) = c1w1(x)+ · · ·+ ckwk(x) . (1)

Here, we assume that the vectors w1(x), . . . ,wk(x) are linearly in-
dependent and none of the vectors is zero. This notion directly gen-
eralizes that of two vectors being parallel, by which we mean that
there is a c ∈ R, such that u(x) = cw(x). Equation 1 is a set of
n equations with unknowns x ∈ R

n, and c1, . . . ,ck ∈ R, such that
its solutions are k-dimensional manifolds. We define the depen-
dent vectors operator as the operator, that, given nD vector fields
u,w1, . . . ,wk, returns the set D of solution points of Equation 1.

3.1. Wedge Product

Two three-dimensional vectors u,w ∈ R
3 are parallel if and only if

their cross product u×w is the zero vector. The appropriate notion
of such a cross product in arbitrary dimension and for an arbitrary
number of vectors is that of the wedge product, which we introduce
in the following. Just like the norm of the 3D cross product coin-
cides with the area of the parallelogram spanned by the two vec-
tors, the norm of the wedge product u∧w1 ∧ ·· · ∧wk of the k+ 1
vectors u,w1, . . . ,wk ∈ R

n coincides with the (k+1)-dimensional
volume spanned in n-dimensional space. As such, the wedge prod-
uct is zero if and only if the vectors u,w1, . . . ,wk are linearly de-
pendent, i.e., they lie in a linear subspace of dimension lower than
k+1. Note, however, that two non-parallel four-dimensional vec-
tors u,w ∈ R

4 exhibit a full two-dimensional linear subspace of
vectors that are orthogonal to u and w. Therefore, the wedge prod-
uct of n-dimensional vectors will in general no longer be again an
n-dimensional vector.

If the vectors u,w1, . . . ,wk ∈ R
n with k+ 1 < n are linearly in-

dependent, i.e., Equation 1 has no solution, they can be extended
to a set of n linearly independent vectors by “filling in” appropri-
ately chosen vectors from a basis of Rn, such as the standard basis
E := {e1, . . . ,en}. If a choice of m = n− k− 1 vectors ei1 , . . . ,eim

does not extend the vectors to a basis, we have

det(u,w1, . . . ,wk,ei1 , . . . ,eim) = 0 . (2)

The vectors u,w1, . . . ,wk are thus linearly dependent, if and only if
for all choices i1, . . . , im ∈ {1, . . . ,n}, Equation 2 holds. By symme-
try, it suffices to consider the l :=

(

n
k

)

choices 1 ≤ i1 < · · ·< im ≤ n.
While usually the wedge product is defined as an antisymmet-
ric order-m tensor consisting of terms of Equation 2 indexed by
i1, . . . , im, we are only interested in its l degrees of freedom. There-
fore, we choose coordinates in R

l by enumerating the subsets
E1, . . . ,El ⊆ E of the standard basis lexicographically, and define

u∧w1 ∧·· ·∧wk := (det(u,w1, . . . ,wk,Ei))
l
i=1 ∈ R

l (3)

as the wedge product of the vectors u,w1, . . . ,wk, i.e., our wedge
product is an l-dimensional vector. The wedge product is zero
whenever the vectors are linearly dependent, and we will treat this

choice of coordinates as the definition of the wedge product for the
remainder of this paper.

Note, that we deliberately choose this definition, such that it is
consistent with the three-dimensional case, which we aim to gener-
alize. By definition, for two 3D vectors u,w ∈ R

3, we have

u∧w =





det(u,w,e1)
det(u,w,e2)
det(u,w,e3)



= u×w , (4)

i.e., the wedge product of two 3D vectors is identical to their 3D
cross product. It can thus be seen, that the choice of a basis E
is independent of the vector fields u,w1, . . . ,wk. Furthermore, in
the cases k = n − 2, the wedge product maps a set of n − 1 n-
dimensional vectors to an n-dimensional vector, which is orthog-
onal to each of them, thus providing a generalized cross product.
In the cases k = n − 1, the wedge product is scalar-valued, with
u∧w1 ∧·· ·∧wn−1 = det(u,w1, . . . ,wn−1).

Using the notion of the wedge product, the solution set D of the
dependent vectors operator can be written as

D = {x ∈ R
n | u(x)∧w1(x)∧·· ·∧wk(x) = 0} , (5)

keeping in mind, that the vectors w1(x), . . . ,wk(x) are assumed to
be linearly independent. The set D is thus the intersection of l zero-
level sets of scalar functions, each of which are closed, and as such
is closed as well.

3.2. Height Ridge Manifolds

A k-dimensional height ridge of an nD scalar field f is the set of
points, where f has a local maximum in n−k directions. According
to Eberly et al. [EGM∗94], these are the points x, where

y1 ·∇ f = · · ·= yn−k ·∇ f = 0 , (6)

λ1, . . . ,λn−k < 0 , (7)

where y1, . . . ,yn denote the eigenvectors of the Hessian ∇∇ f at x,
with respective real eigenvalues λ1 ≤ ·· · ≤ λn.

In other words, the definition requires that the n − k smallest
eigenvalues are negative, and that the respective second directional
derivatives are negative, i.e., that the directional derivatives of f

along the corresponding eigenvectors are zero. Valleys, the oppo-
site of ridges, are obtained by height ridge extraction from − f .

The condition of Equation 6 is equivalent to requiring, that the
gradient ∇ f lies in the linear subspace spanned by the eigen-
vectors yn−k+1, . . . ,yn. That is, for a fixed x ∈ R

n, there exist
cn−k+1, . . . ,cn ∈ R, such that

∇ f (x) = cn−k+1yn−k+1(x)+ · · ·+ cnyn(x) . (8)

Thus, height ridges can be expressed using the dependent vectors
operator with u = ∇ f and wi = yn−k+i, i = 1, . . . ,k, where the
solution set D is subsequently filtered according to Equation 7.

3.3. Vortex Core Manifolds

By the formulation of Sujudi and Haimes [SH95], a vortex core
line in a 3D vector field is the set of points, where the flow direc-
tion u is governed by the real eigenvector of the Jacobian ∇u, while
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the remaining two eigenvectors are complex-valued. The real and
imaginary parts of the pair of complex-conjugate eigenvectors span
a two-dimensional plane of rotation in 3D space, within which the
reduced flow u−u(x) rotates. The Sujudi–Haimes criterion can be
reformulated using the PV operator by requiring that u is parallel
to the real eigenvector and ∇u has a pair of complex eigenvalues.

A rotation in n-dimensional space is defined by one or more
two-dimensional planes of rotation. Note, that a plane of rotation
in n-space leaves an (n-2)-dimensional subspace invariant, which
happens to be one-dimensional in 3D, and therefore the notion of
a rotation axis is in general not available in higher dimensions. For
n ≥ 4, there exist rotations which simultaneously rotate in more
than one plane of rotation. We call such rotations r-rotations, where
r is the number of simultaneous rotation planes. The case r = 1 is
also called a simple rotation.

Accordingly, an r-vortex core manifold in an n-dimensional vec-
tor field is a (n-2r)-manifold, within which the flow is mainly gov-
erned by its k = n−2r non-rotational directions. Following the 3D
formulation, points that belong to such a manifold are defined by
the flow direction u lying in the linear space spanned by the k real
eigenvectors of ∇u. Thus, r-vortex core manifolds can be reformu-
lated using the DV operator by defining w1, . . . ,wk to be the k real
eigenvectors of ∇u. Regions that do not have exactly k real eigen-
vectors are omitted (filtered).

Since their definition depends on two-dimensional planes of ro-
tation, different kinds of vortex core manifolds exist, depending on
the dimension n of the surrounding space. When n is even, (n/2)-
vortex core manifolds are zero-dimensional and correspond to crit-
ical points of u. Furthermore, vortex core manifolds need to be
of even dimension. Vice versa, if n is odd, all vortex core mani-
folds need to be of odd dimension. For example, in 4-space, there
are zero-dimensional 2-vortex core manifolds, and 2-dimensional
1-vortex core manifolds, but no 1-dimensional vortex core lines.
Vortex core lines exist, e.g., in 5-space as 2-vortex core manifolds.

3.4. Bifurcation Manifolds

For 3D flows, Perry and Chong [PC87] proposed the notion of bi-

furcation lines, which are streamlines that exhibit an attracting and
a repelling two-dimensional manifold of streamlines. Streamlines
on the attracting manifold locally converge toward the bifurcation
line, while streamlines on the repelling manifold converge to the
bifurcation line in reverse time. Bifurcation lines thus locally sepa-
rate the flow. According to Roth [Rot00], bifurcation lines may be
obtained by a modification of the Sujudi–Haimes criterion, where
instead of regions of the flow, that have a complex plane of rotation,
one seeks those regions, that have only real eigenvalues, and their
signs are alternating.

To generalize this notion to arbitrary dimensions, we require, that
the Jacobian ∇u has real eigenvalues λ1 ≤ ·· · ≤ λn. A point x

lies on a bifurcation manifold, if the flow u(x) lies in the (n-2)-
dimensional space spanned by the eigenvectors y2, . . . ,yn−1 be-
longing to the medium eigenvalues and λ1λn < 0. Such a bifurca-
tion manifold then exhibits attracting behavior in direction of the
minor eigenvector y1, and repelling behavior in direction of the
major eigenvector yn. Both eigenvectors define (n-1)-dimensional

manifolds of streamlines, since integration adds one dimension
to the (n-2)-dimensional bifurcation manifold. Similarly to vortex
core manifolds, bifurcation manifolds can be obtained by the DV
operator by rejecting regions of the raw solutions where the Jaco-
bian has complex eigenvalues.

4. Manifold Extraction

We compute the manifolds of linear dependency by triangulating
the regions where u∧w1 ∧·· ·∧wk = 0. In those cases, where such
solution manifolds have codimension one, i.e., in the cases k = n−
1, they could be obtained as contours (remember that the wedge
product is a scalar in such cases), using an n-dimensional variant of
the marching cubes algorithm [BWC04,LC87]. On the other hand,
if k = 1 and n = 3, one could use the parallel vectors extraction
scheme [PR99]. However, in the remaining cases, neither of these
approaches is applicable.

Instead of using a combination of these approaches, we propose
to follow a generic approach that works for any n and k, inspired
by the principles of marching cubes and parallel vectors extraction.
We assume that the vector fields u,w1, . . . ,wk are given on a com-
mon n-dimensional rectilinear grid, with tensor-product multilinear
interpolation. Our algorithm consists of four main steps:
1. compute solution points on (n-k)-faces of the grid (Sec. 4.1),
2. filter solution points (Sec. 4.3),
3. triangulate the solutions in each cell of the grid (Sec. 4.2), and
4. filter resulting k-simplices and connected components (Sec. 4.3).

Except for the computation of connected components, all steps
are local within a cell or a cell face, and can thus be trivially par-
allelized. Also, only the first step needs to traverse all cells, while
the subsequent steps depend on the size of the solution set. In most
applications, the size of the solution set is much smaller than the
number of cells.

The first step, which is the main computational bottleneck, can
be sped up in some cases by rejecting those cell faces, where all
of the nodes do not adhere to a certain criterion. This can always
be employed in the cases of vortex core manifolds and bifurca-
tion manifolds, where a specific number of complex eigenvalues
is required. It can further be applied when extracting ridge mani-
folds, where the cell faces can be filtered by a scalar range in cases,
where only ridges within a certain scalar range are of interest (see
Section 5.3 for an example).

We restrict our algorithm to rectilinear grids, because its exten-
sion to arbitrary dimension is straightforward. In order to adapt the
algorithm to unstructured grids, analytical derivatives of the inter-
polation functions within each cell, as well as the traversal of all
(n-k)-dimensional cell faces would be needed.

4.1. Computation of Solution Points

Since the solution set D is k-dimensional, its intersection with
the (n-k)-faces of the grid, i.e, the (n-k)-dimensional cell faces (1-
dimensional faces being the cell edges), is a set of isolated points.
For example, in 4D space, a 2D manifold intersects a 2D face in at
most a single point (see Fig. 2j–2l). We obtain the solution points
by minimizing ‖u∧w1 ∧ ·· ·∧wk‖ using Gauss–Newton iteration.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2: Triangulation of dependent vectors solution manifolds. Case k = 1 in 2D (a)–(b), 3D (c)–(d), and 4D (e)–(f) results in lines, case

k = 2 in 3D (g)–(i) and 4D (j)–(l) results in surfaces, and case k = 3 in 4D (m)–(p) results in volumes. Points (red dots) on codimension k

faces (blue) are connected to lines (red lines), and further to triangles and tetrahedra (in the cases k = 2 and k = 3, respectively), by inserting

points at the centers of masses (white dots) of the previous steps. The 4D cases are shown in 3D perspective projection. Currently active

faces in each step are marked blue, with lines for 1-faces, quads for 2-faces, transparent cubes for 3-faces, and lines (wireframe) for 4-faces.

In a face’s local coordinates ξξξ := (ξ1, . . . ,ξn−k)
⊤, we choose the

initial guess ξξξ(0) as the center of the cell face, and in each iteration,
we update the local coordinates by ξξξ(i+1) = ξξξ(i)−∆, where

∆ =
(

J
⊤

J
)−1

J
⊤
(

u(ξξξ(i))∧w1(ξξξ
(i))∧·· ·∧wk(ξξξ

(i))
)

, (9)

and where the l × (n− k) matrix J is the Jacobian of Equation 3
in local face coordinates. By applying the product rule of differ-
entiation to the Leibniz formula for determinants, it is obtained by
differentiating each parameter of the determinant separately, and
taking their sum:

Ji j = det

(

∂u

∂ξ j
,w1, . . . ,wk,Ei

)

+ · · ·+det

(

u,w1, . . . ,
∂wk

∂ξ j
,Ei

)

.

Since we employ multilinear interpolation within each cell face, we
obtain these derivatives by analytic differentiation of the interpola-
tion terms. These derivatives are not necessarily continuous across
face boundaries, but are only used to locate solutions within the
derived fields. After a maximum number of N iterations, we reject

any solution, where

‖∆‖> ϑ∆ or
∥

∥

∥
u(ξξξ(N))∧w1(ξξξ

(N))∧·· ·∧wk(ξξξ
(N))

∥

∥

∥
> ϑ∧ ,

or if ξξξ(N) lies outside of the cell face. The threshold ϑ∆ serves
mainly monitoring purposes, i.e., if convergence has not been
achieved with respect to ϑ∧ but ϑ∆ is met, increasing N might im-
prove the result, or the other way round, if ‖ϑ∆‖ is too large, this
can indicate that the result will not sufficiently converge even with
more steps. Using only one initial guess, we may obtain at most one
solution point in each cell face, i.e., too high data variation may lead
to faces containing more than one solution point. We only compute
one solution point per cell face, and leave more elaborate solution
methods for future work.

Eigenvector Fields. If the vector fields w1, . . . ,wk are eigenvec-
tors of a tensor field, such as the Jacobian of a vector field or the
Hessian of a scalar field, they need to be sorted and oriented in or-
der to obtain smoothly varying vector fields. In order to consistently
orient the eigenvector fields within a cell face, we perform principal
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component analysis (PCA) of the vectors, and orient them accord-
ing to the direction of the major component [FP01].

Enumeration of Cell Faces. To be able to traverse and store all
solution points, we need a scheme for enumerating all (n-k)-faces
of the n-dimensional grid. We start with an enumeration of the grid
nodes, which we choose to be in scanline order. For each cell, we
take its “lower left” node (i.e., the cell’s node with lowest coordi-
nate in all dimensions) as a reference. We then identify each cell’s
face that includes this node by the (n-k)-dimensional subspace it is
embedded in, i.e., by the subset of the standard basis that spans that
space. These subspaces correspond to choices of n− k basis vec-
tors, of which there are l =

(

n
k

)

many. In total, the global ID of a
face is thus given by the global scanline ID of the node and the type
t ∈ {1, . . . , l} of the face that shares this node. Notice, how this cor-
responds to the definition of the wedge product, for example, the
types of 2-dimensional faces of a 3D grid conceptually correspond
to the wedge products e1 ∧ e2, e1 ∧ e3, and e2 ∧ e3.

4.2. Triangulation

The extracted solution points are triangulated iteratively. Starting
from the solution points (zero-dimensional simplices) on the (n-k)-
faces, each step connects lower-dimensional simplices, that share
the same cell face of one dimension higher, to simplices of one
dimension higher. Thus, in the i-th step, we obtain i-dimensional
simplices on (n-k+i)-dimensional cell faces. For each (n-k+i)-face,
the center of mass of the solution points belonging to the cell face
is inserted and connected to all vertices of the (i-1)-simplices from
the previous iteration, creating i-simplices. After k steps, the trian-
gulation terminates, resulting in a set of k-simplices defined within
the n-dimensional cells.

Six cases of this generic triangulation approach are illustrated in
Figure 2, which we further discuss in the following:
• k = 1: n = 2 (Fig. 2a,2b), n = 3 (Fig. 2c,2d), n = 4 (Fig. 2e,2f),
• k = 2: n = 3 (Fig. 2g–2i), n = 4 (Fig. 2j–2l), and
• k = 3: n = 4 (Fig. 2m–2p).

For k = 1, it is apparent that the intersection of D with a cell
needs to represent points on the boundary of the cell, and that these
need to be subsequently connected to a line. In 2D, the cell’s bound-
ary consists of 1-faces (Figure 2a). In 3D, it consists of 2-faces
(Figure 2c), and in 4D, it consists of 3-faces (the faces of a 4D cube
are 3D cubes, Figure 2e). Our algorithm detects those points, which
we denote solution points, and connects them into lines, or in other
words, into 1-simplices. We do not connect the points directly, but
compute their center of mass (white points in Figure 2) and con-
nect that point with each solution point, generating a 1-simplex for
each solution point. This allows for more than two solution points
(which are then connected to each other), and can be further applied
to the construction of higher-dimensional simplices.

For k = 2, the intersection between D and a 3D cell has to repre-
sent points on 1-faces of the 3D cell (Figure 2g). However, we iden-
tify on the 2-faces (Figure 2h) of that cell the configuration from
k = 1 in 2D (Figure 2a). We exploit this analogy by treating the
faces of a 3D cube accordingly, i.e., connecting the points into 1-
simplices (Figure 2h). Nevertheless, we are not done yet—to obtain

a k-manifold, we connect each 1-simplex with the center of mass
of all solution points, resulting in a set of 2-simplices (triangles,
Figure 2i). In 4D, the intersection between D and the 4D cell are
points on 2-faces of the 4D cell (Figure 2j). Here, we identify on the
3-faces of that cell the configuration from k = 1 in 3D (Figure 2c).
We exploit this analogy by treating these faces accordingly, i.e.,
connecting the points into 1-simplices (Figure 2k). Again, we are
not done yet—to obtain a k-manifold, we connect each 1-simplex
with the center of mass of all solution points, resulting in a set of
2-simplices (Figure 2l).

For k = 3, the intersection between D and a 4D cell has to repre-
sent points on 1-faces of the 4D cell (Figure 2m). Here, we identify
on the 3-faces of that cell the configuration from k = 2 in 3D (Fig-
ure 2g). We exploit this analogy by treating this face accordingly,
i.e., connecting the points into 1-simplices (Figure 2n) and those to
a set of 2-simplices (Figure 2o). And again, as it was in the case be-
fore, we are not done yet—to obtain a k-manifold, we connect each
2-simplex with the center of mass of all solution points, resulting
in a set of 3-simplices (tetrahedra, Figure 2p).

We observe the following scheme:
• The number of steps in our algorithm depends only on k, i.e.,

it is independent of n. That is, for k = 1 we needed two steps,
for k = 2 we needed three steps, and for k = 3 four steps. This
increase is caused by its recursive nature, and the need for an
additional step to finally establish k-manifolds.

• The extraction of the manifolds can be achieved in a recursive
manner: if k = 1, the solutions points are obtained on the faces of
the cell and connected into 1-simplices. Otherwise, an nD cube
is handled by treating each of its (n-1)-faces independently as an
(n-1)D cube, with a subsequent step to combine the intermediate
result to the higher-dimensional simplices.

4.3. Filtering

Filtering takes place in two stages of our algorithm: Criteria with
a pointwise definition (such as feature strength), are applied at the
solution-point level. Criteria that imply connectivity, i.e., that are
defined on simplex level (such as feature quality and feature size),
are applied after triangulation.

As we have seen in Sections 3.2 and 3.3, applications of the DV
operator typically require application-dependent filtering, such as
requiring the n−k respective eigenvalues of the Hessian being neg-
ative in case of ridge manifolds, or requiring the n− k remaining
eigenvalues of the velocity gradient to be complex in the case of
vortex core manifolds. These filtering criteria are part of the fea-
ture definition, and therefore, typically do not require adjustment
by the user. Nevertheless, it is common practice [PR99] to em-
ploy optional filtering by means of these criteria, denoted feature

strength, as well as by additional measures, such as feature quality,
and feature size.

Feature Strength. As mentioned in Section 3.2, λ1, . . . ,λn−k rep-
resent the second directional derivatives across the ridge manifold.
In other words, the more negative they are, the more the respective
profile corresponds to a peak. On the other hand, if these eigen-
values are too close to zero, ridge extraction will not be robust, as
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they correspond to “too flat” ridges. Thus, we provide the option
of imposing a (nonnegative) threshold ϑr on the eigenvalues of the
Hessian, i.e., we omit manifold regions where

−λn−k ≤ ϑr . (10)

Setting ϑr = 0 results in the unconstrained solution (Equation 7).

In case of vortex core manifolds, we follow the same idea, but
now filter with respect to the weakest imaginary part, since imag-
inary parts relate to rotational strength. Let λ1, . . . ,λk be the real
eigenvalues, we thus omit, with the (nonnegative) threshold ϑv,
manifold regions where

min
i=k+1,...,n

|Im(λi)| ≤ ϑv . (11)

Again, setting ϑv = 0 results in the unconstrained solution.

Bifurcation manifolds are defined by their locally separating be-
havior, which requires both the minor eigenvalue λ1 and the major
eigenvalue λn to be large at the same time. They also need to be of
opposite sign, such that we omit regions, where

−λ1λn ≤ ϑs , (12)

and thus exhibit weak separating behavior, or are not bifurcation
manifolds at all. Setting the nonnegative threshold ϑs = 0 results in
the unconstrained solution, since this only forces the signs of the
eigenvalues to be alternating.

Feature Quality. Both ridge manifolds and vortex manifolds are,
in case of perfect solutions, tangent to u [PR99]. That is, the man-
ifolds are at the same time integral manifolds of u, e.g., streamsur-
faces in nD in case of 2-manifolds. However, local extraction meth-
ods, such as our dependent vectors operator, or the PV operator,
cannot enforce such global constraints. Peikert and Roth [PR99],
for the 3D case, therefore quantify feature quality by the angle be-
tween the tangent of the feature line and u.

In our general case, we measure the angle between the n-
dimensional vector u and the k-dimensional feature tangent space
using the generalized angle between linear subspaces defined by
Gunawan et al. [GNSB05]. For the feature tangent T = 〈t1, . . . , tk〉,
the angle θ between T and u is given by

cos2 θ = ‖πT (u)‖
2/‖u‖2 , (13)

i.e., the ratio of the lengths of the projection πT (u) of u onto T , and
u itself. Gunawan et al. have shown, that this definition reduces to
the usual angles between two vectors if k = 1, and between a vector
and a hyperplane if k = n− 1. For the remaining cases, this is the
largest angle between u and all possible vectors in T .

For each vertex in the k-dimensional triangulation obtained by
our algorithm, we compute its tangent space by PCA of the relative
positions of the neighborhood of adjacent vertices in the triangula-
tion. The radius of this neighborhood determines the smoothness of
the tangent space across the manifold. The first k components ob-
tained by the PCA are an approximation of the tangent space, and
are used to compute the angle to u.

Feature Size. Typically applied last in the filtering stage, one
might want to suppress erroneous, small manifolds, that are caused,

e.g., by (numerical) noise. To that end, we compute the connected
components of the simplicial complex using depth-first search. For
each connected component, we sum over the volume of each sim-
plex. The volume µ(S) of a k-simplex S = {v0, . . . ,vk} is given by
the Cayley-Menger determinant. It is obtained by computing the
squared distances of its vertices, di j = ‖vi −v j‖

2, and finally

µ(S)2 =
(−1)k+1

2k(k!)2
det











0 1 . . . 1
1 d00 . . . d0k

...
...

...
1 dk0 . . . dkk











. (14)

Components, whose volume is below the nonnegative threshold ϑµ,
are discarded. Here, ϑµ = 0 provides the unconstrained result.

5. Results

We apply the DV operator to several datasets and for several appli-
cations. First, we consider a set of synthetic vortical fields, in order
to build intuition to the generalized notion of n-dimensional vor-
tices, and second, we extract features from the 4D phase space of a
double pendulum. Finally, we apply our algorithm for several fea-
tures in 3D time-dependent flow simulations, where time is treated
as fourth dimension, such that streamlines in these 4D space-time
vector fields correspond to pathlines. All involved streamlines were
computed using fourth-order Runge–Kutta integration. When ap-
plying the DV operator, all datasets use N = 10 as the maximum
number of Gauss–Newton iterations, with tolerances ϑ∆ = ϑ∧ =
10−11. The cases of the DV operator, from our experiments, are
listed in Table 1. The complexity of the datasets, together with per-
formance measurements, are summarized in Table 2.

5.1. n-Dimensional Vortex Core Models

We exemplify the notion of n-dimensional vortex core manifolds by
considering synthetic fields, which model n-dimensional vortices
based on rigid body rotations. The velocity field is given by

u(x) =∇φφφ(x)
(

W(φφφ−1(x))ννν(φφφ−1(x))
)

, (15)

where φφφ transforms physical coordinates x = (x1, . . . ,xn)
⊤ into

computational coordinates ξξξ= (ξ1, . . . ,ξn)
⊤, ννν(ξξξ) describes a rigid

Table 1: Applied cases (k derived vector fields of dimension n) of

the DV operator and extracted features of the datasets in Section 5.

Dataset n k Feature

1-Vortex Core (3D) 3 1 Vortex Core Line
1-Vortex Core (4D) 4 2 Vortex Core Surface
1-Vortex Core (5D) 5 3 Vortex Core Volume
2-Vortex Core (5D) 5 1 2-Vortex Core Line
Double Pendulum 4 2 Vortex Core Surface
Double Pendulum 4 2 Bifurcation Surface
Double Gyre 4 2 Valley Surface
Vortex Street 4 2 Vortex Core Surface
Convective Flow 4 1 Valley Line
Convective Flow 4 2 Vortex Core Surface
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body rotation, and W interpolates between the identity and a matrix
which transforms the rotation into a hyperbolic vector field.

The linear rigid body rotation is given by the linear field

ννν(ξξξ) = (−ω1ξ2,ω1ξ1, . . . ,−ωrξ2r,ωrξ2r−1,ν1ξn−k, . . . ,νkξn)
⊤ ,

with 2r+ k = n, consisting of r planes of rotation with respective
angular velocities ω1, . . . ,ωr in the first 2r components, and k non-
rotating components with linear coefficients ν1, . . . ,νk. The trans-
formation W(ξξξ) interpolates between the identity function, and a
function that swaps the components that belong to rotations (and
thus transforming the rotation to a hyperbolic field), according to a
window function w(ξξξ), i.e.,

W(ξξξ) = w(ξξξ)ξξξ+(1−w(ξξξ))(ξ2,ξ1, . . . ,ξ2r,ξ2r−1,ξn−k, . . . ,ξn)
⊤ ,

with

w(ξξξ) = σ

(∣

∣

∣

∣

ξn−k

R1

∣

∣

∣

∣

p

+ · · ·+

∣

∣

∣

∣

ξn

Rk

∣

∣

∣

∣

p

−1

)

, σ(x) =
1

1+ e−qx
,

which, for p,q →∞, takes the value one on the k-dimensional hy-
percube R

n−k × [−R1,R1]× ·· · × [−Rk,Rk] ⊂ R
n, and zero else-

where. Choosing sufficiently large p,q > 1, makes the function
vary smoothly, while having a sharp gradient at the boundaries
of the hypercube, i.e., the resulting vector field u smoothly transi-
tions between a linear saddle field and a linear rigid body rotation,
such that we expect to find a k-dimensional r-vortex core manifold
within the hypercube described by w(ξξξ).

We employ the coordinate transform φφφ(x) = x+cos(x3)e1 for the
1-vortex core cases and φφφ(x) = x+ cos(x5)e1 for the 2-vortex core
case. This causes the vortex core manifolds to bend along a sinu-
soidal path in x1-direction. Further choosing r = 1, i.e., one plane of
rotation, we obtain a 1-vortex core manifold, which is a line in 3D,
a surface in 4D, and a volume in 5D (Figures 1a–1c). The surface
and the volume can be understood as manifolds of vortex core lines,
as reflected by the 5D streamlines in the figure. In 5D space, there
exist 2-vortex core lines, which exhibit two planes of rotation (Fig-
ure 1d). In this case, we seed two streamlines, offset in direction
of each of the two complex eigenplanes, respectively (green and
orange), and further a streamline, that is properly contained in the
4-dimensional space spanned by the two complex eigenplanes. The
resulting streamline (magenta) shows a 2-rotation. For the compu-
tation of the vortex core manifolds, we sampled all cases on 10n

regular grids, which is sufficient due to their nearly linear nature.

Fig. 4b

II

Fig. 4a

I

Fig. 4c

θ1

θ2

pθ1

θ1

pθ1

pθ1

pθ2

θ2

pθ1

θ1

θ2

Figure 3: Phase space of a double pendulum (Figure 4h) with bi-

furcation manifolds (red) and vortex core manifolds (blue). Shown

in 3D orthographic projections (axes: θ1 red, θ2 green, pθ1
blue,

pθ2
yellow). The marked areas are further discussed in Figure 4.

The higher-dimensional examples are shown in a 3D orthographic
projection, as indicated by the 4D and 5D orientation axes (x1: red,
x2: green, x3: blue, x4: yellow, x5: magenta).

5.2. Double Pendulum

We consider a double pendulum in the 2D plane, with lengths
l1 = 10m, l2 = 1m and masses m1 = 0.1kg, m2 = 1kg. As gravita-
tional force, we choose g = 9.81ms−2. The phase space (Figure 3)
of this double pendulum is four-dimensional, and we describe it by
the two angles θ1, attached to l1, θ2 attached to l2 (see Figure 4h),
and their angular momenta pθ1

, pθ1
, i.e., the dynamical system is

given by a 4D vector field u(θ1,θ2, pθ1
, pθ2

) = (θ̇1, θ̇2, ṗθ1
, ṗθ2

)⊤.
We sample the vector field on a 1504 uniform grid on the domain

Table 2: Details and computational cost of the datasets. Listed are the sizes of the regular grids, the number of processed cell faces, and the

number of initial solution points. Timings for computing the derivatives on (all) grid nodes (Deriv.), the dependent vectors operator (DV),

filtering (F), triangulation (T), and total computation times (Σ). The timings of the triangulation step include the removal of unused vertices.

Dataset Grid Size Cell Faces Solutions Deriv. (s) DV (s) F (s) T (s) ΣΣΣ (s)

5D 1-Vortex (Figure 1c) 10×10×10×10×10 400 992 8761 < 1 2 < 1 < 1 2
Double Pendulum (vortex) 150×150×150×150 2 316 092 543 444 810 433 6 293 1 19 6 746
Double Pendulum (bifurcation) 150×150×150×150 255 913 981 131 082 433 4 608 1 6 5 037
Double Gyre 1000×500×150×50 488 933 295 6 316 775 21 703 5 105 3 52 26 863
Vortex Street 41×241×41×16 8 742 615 3 064 189 5 47 1 1 54
Convective Flow (valley) 120×60×120×200 287 687 572 52 139 737 495 1 1 1 234
Convective Flow (vortex) 60×30×60×200 58 646 914 385 800 12 124 < 1 < 1 136
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Figure 4: 4D phase space of a double pendulum (h), with bifurcation manifolds (red), and vortex core manifolds (blue) (see Figure 3).

The trajectories of the pendulum in Euclidean coordinates are shown for selected seeds, offset in direction of the major eigenvector on

a bifurcation manifold (I) (a),(d), and offset within the complex eigenplane on a vortex core manifold (II) (b),(e). Trajectories not near a

bifurcation or vortex core manifold ((c),(f), magenta and yellow) exhibit behavior different than near one (a),(b). A trajectory near one of

the curved vortex core manifolds ((c), green) diverges from it, while its second arm (θ2) performs full rotations (g). The colored streamlines

started from the circled seeds in (a)–(c) correspond to the motion of the pendulum in Euclidean space, shown in the same color (d)–(g).

Temporal positions of the pendulum are indicated by saturation (older are less saturated), and the paths of the second mass by dashed lines.

[−π,π]× [−π,π]× [−1,1]× [−1,1], and extract two-dimensional
vortex core manifolds and bifurcation manifolds. Since both fea-
tures ideally represent manifolds of streamlines, we filter them by
discarding results that have an angle to u larger than 45◦. While
the phase space is 2π-periodic in the first two dimensions, the sec-
ond two, representing angular momentum, are not periodic. Our ex-
periments showed, that extending the phase space beyond absolute
value one for each momentum, continuously extents the obtained
manifolds. An overview of the extracted structures can be found
in Figure 3, where we show the 4D structures in orthographic pro-
jection onto the axes (θ1,θ2, pθ1

). We show bifurcation manifolds
in red, and vortex core manifolds in blue. On the bifurcation sur-
faces we choose points, and seed streamlines offset in direction
of the major eigenvector (Figure 3, red lines). These streamlines
show diverging behavior in vicinity of the bifurcation manifolds,
thus verifying the features. We also compute streamlines offset in
the complex eigenplane along vortex core manifolds, which exhibit
swirling motion (Figure 3, blue lines).

Furthermore, we visualize the motion of the pendulum, that cor-
responds to a streamline in the phase space, in the plane (e.g., Fig-
ure 4d). Two streamlines seeded on opposite sides of the bifurca-
tion surfaces in Figure 4a (green and orange lines) correspond to

motions of the pendulum, where the second arm tilts in opposite
directions (Figure 4d). Similarly, we choose one seed on the vortex
core manifold in Figure 4b (green) and one offset within the com-
plex eigenplane (orange). The motion corresponding to the offset
streamline closely follows the corresponding one on the vortex core
streamline, but alternates between its opposite sides (Figure 4e). Fi-
nally, we investigate streamlines seeded neither in the vicinity of a
vortex core surface nor a bifurcation surface (Figure 4c, magenta
and yellow). They exhibit none of the above behaviors (Figure 4f).
The center of the phase space shows vortex core surfaces with high
curvature, which exhibit large angles to the underlying vector field,
i.e., streamlines started on them immediately diverge. The second
arm of the pendulum corresponding to a streamline started near one
of them (Figure 4c, green) performs full rotations (Figure 4g).

5.3. Recirculation Surfaces

Recirculation surfaces are surfaces in the (n+2)-dimensional space,
consisting of the spatial location x of dimension n together with ini-
tial time t and advection time τ. They are characterized by the prop-
erty, that a trajectory started at x at time t flows back to its original
position after advection time τ. Recirculation surfaces have been
recently proposed for flow visualization by Wilde et al. [WRT18].
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0

10

Figure 5: Recirculation surface of the 2D double gyre in space-

time view (x red, y green, time blue axis). The fourth coordinate

of the surface, advection time, is shown in shades of blue. Points

on this surface in 4D correspond to parameters (x, t,τ) of a path-

line. Randomly chosen points on this manifold, together with their

pathlines in their starting time slices, are shown in different colors.

As an alternative to the authors’ approach, we may extract recircu-
lation surfaces as valley surfaces in the scalar field

s(x, t,τ) = ‖φφφτ
t (x)−x‖/τ , (16)

where φφφτ
t (x) denotes the flow map, which maps an initial position x

to the endpoint of the trajectory started at time t after advection
time τ. While ideally, s would be exactly zero on a recirculation
surface, numerically this is infeasible, since s is nonnegative. Valley
surfaces in the scalar field s thus allow us to approximate the true
recirculation surface, where we filter out those valleys that have a
scalar value above a certain threshold.

We demonstrate this approach using the synthetic 2D time-
dependent Double Gyre field due to Shadden et al. [SLM05]. The
scalar field s is sampled on a regular grid of size 1000 × 500 ×
150×50 in the domain [0,2]× [0,1]× [0,5]× [0,10]. Its computa-
tion took 187 minutes with our prototype in CUDA on a Nvidia Ti-
tan Xp. The DV operator took 7.5 hours in parallel on two 14-Core
Xeon Gold 6132, where 80% of the time was spent approximating
the gradients using least-squares with a 3-ring neighborhood. When
computing the DV operator, we only considered those cells, where
s < 0.01, and we filtered the resulting solutions by s < 0.006. We
verified the results by computing pathlines with parameters (x, t,τ)
at randomly chosen points on the manifold. Figure 5 shows the
projection of the solution manifold on the space-time domain (x, t)
together with pathlines, that are projected onto the time-slices cor-
responding to their respective starting times.

Since the computation of the valley surfaces relies on the Hes-
sian matrix, and thus an approximation of the gradient of the flow
map, our resulting surfaces exhibit holes due to aliasing in the com-
puted flow map, especially at locations of high curvature. Wilde et
al. [WRT18] on the other hand avoid computations of gradients of
the flow map, and employ local refinement of the grid, but their
approach is computationally more expensive.

0.60

0.62

(a)

0.60

0.62

(b)

0.60

0.62

(c)

Figure 6: Vortex core surfaces in the space-time domain of a flow

behind an obstacle in the time range 0.60 s to 0.62 s. Projection into

the spatial domain (x red, y green, z blue axis), with time colored in

shades of blue. Swirling particle cores [WSTH07] are extracted in

each time slice and tracked (a) within our framework. Vortex core

surfaces extracted by the DV operator in the 4D space-time domain

results in noisy raw solutions (b), which requires stronger filters (c).

5.4. Von Kármán Vortex Street

Now, we demonstrate the DV operator on the time interval of
[0.6,0.62] s in the spatial domain of [0,10]× [0,60]× [0,1] m3 of a
computational fluid dynamics (CFD) simulation of a von Kármán
vortex street. The vortex street forms behind an obstacle and con-
sists of vortices that move with the flow over time. The Galilean-
invariant method by Weinkauf et al. [WSTH07] is able to extract
these independently of the frame of reference chosen. Conceptu-
ally, the authors extract vortex core surfaces in the 4D space-time
domain, which our definition (Section 3.3) generalizes. However,
since the time component is constant one, the authors recast the
4D coplanar vectors problem (DV operator with n = 4, k = 2) as
a 3D parallel vectors problem and tracked solution lines over time.
We recreate this approach within our framework, by extending the
two 3D vector fields ũ = v+(∇v)−1vt , w̃1 = (∇v)ũ, where v de-
notes the time-dependent vector field from the CFD simulation, to
4D vector fields via u = (ũ,0)⊤,w1 = (w̃1,0)

⊤ in each time slice.
Adding a third, constant vector field w2 = (0,0,0,1)⊤, the DV op-
erator extracts surfaces, which connect the solution lines of ũ ‖ w̃1

within each time slice to those in adjacent time slices.

We compare the approach by Weinkauf et al. (Figure 6a) to di-
rect solutions in 4D with the DV operator (Figure 6c). The raw
features of both approaches exhibit noise close to the obstacle and
near the boundaries of the domain. These correspond to weakly-
rotating vortices and false positives due to numerical noise, which
we filtered by requiring feature strength ϑv > 106. Since the DV op-
erator not only searches for solutions in space at fixed time slices,
but also in time direction, our solutions exhibit more noise (raw
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Figure 7: Tracking of critical points by means of valley lines of

velocity magnitude in the 4D space-time domain of the Convective

Flow. Critical points extracted in each time step ((a), spheres) are

tracked in the time interval [50,55]s (saturation) by valley lines

((b), tubes). Vortex core manifolds are shown for context (surfaces).

solutions shown in Figure 6b). This requires to additionally filter
the solutions with angle filter of 5◦, which, however, leads to false
negatives near the top of the domain boundary and close to the
obstacle. This is also partially caused by our simple but generic tri-
angulation approach, which is sensitive to numerical noise. A more
sophisticated triangulation algorithm could produce more accurate
solutions, and less false positives when filtering.

5.5. Convective Flow

Our last example is again a time-dependent CFD simulation, but
this time of a thermally driven convective flow. The dataset has
a spatial resolution of 60 × 30 × 60. Valley lines of the (spatial)
velocity magnitude field in space-time include, among other struc-
tures, the motion of critical points of the instantaneous (spatial)
field. Because the resolution of the DV operator depends on the
grid, and because the original resolution caused the solution lines
to be fragmented, we resampled the grid, using trilinear interpola-
tion, in the spatial domain to a resolution of 120× 60× 120, and
consider the time interval [50,55] s, which results in a 4D grid of
size 120×60×120×200. Since only the valleys close to zero cor-
respond to critical points, we omit features belonging to a scalar
value above 0.003. We further impose an angle threshold of 45◦ to
account for false positives, which occur near the boundary. To put
the extracted features into context, we furthermore extract vortex
core surfaces (see Section 5.4 for a detailed discussion) in the same
time interval on the original grid of size 60×30×60×200, where
we require feature strength ϑv > 5, and angles below 5◦.

We verify the solution lines (Figure 7b) by extracting critical
points in selected time steps by recursive subdivision of each 3D
cell. The results show, that extracting critical points as valley lines
in the space-time magnitude field misses those, that only exist for a
short timespan or move farther than one cell within one time step.
As the DV operator favors temporal coherence, as it treats space
and time equally, critical points that are temporally unstable are
missed by the extraction. Figure 7a shows, that some critical points
were not tracked by our method, due to filtering false negatives
and a lack of temporal coherence. As such, other methods such
as (stable) feature flow fields [TS03, WTVGP11] would be suited

better for tracking critical points. We have included this example to
demonstrate the wide applicability of our method.

6. Discussion and Limitations

Our work focuses on developing a generic algorithm, which ex-
tracts locations of dependency of a set of k vector fields of di-
mension n. Recent work has also focused on generalizations of the
parallel vectors operator. Oster et al. [ORT18a, ORT18b] have pre-
sented an operator, which extracts parallel vectors locations from
tensor fields. The algorithm not only searches for the 3D location,
but also the eigenvector itself, adding two degrees of freedom to the
search space. While this is a 5D feature extraction method, it does
not extract locations in a 5D vector field, where two 5D vectors
are parallel (case n = 5, k = 1 of the DV operator). On the other
hand, Günther and Theisel [GT18] extracted locations in a 6D vec-
tor field, where two 6D vectors are parallel. This case corresponds
to n = 6, k = 1 of the DV operator, and their formulation of a 6D
cross product coincides with the notion of the wedge product used
in our generalization.

While we believe, that our generic algorithm enables the visu-
alization of higher-dimensional vector and scalar fields, there are
some limitations that come with its generality. Firstly, our very
simple triangulation algorithm is sensitive to noise, and thus of-
ten produces non-manifold meshes. This is especially a problem
for computing feature angles for filtering. An algorithm tailored
specifically to, say, surfaces, could yield more accurate solutions.
Secondly, the explicit computation of eigenvectors becomes less
numerically stable with increasing dimension of the involved ma-
trices, due to the iterative methods that are employed. Furthermore,
the curse of dimensionality limits our approach in several ways.
As dimension of the domain increases, exponentially more sam-
ple points are needed. Even though our algorithms scale linearly
with the problem size, especially in 5D and beyond the computa-
tions quickly become infeasible, thus limiting us to low sampling
rates. For example, the total computation time for the 105 dataset
shown in Figure 1c is 2 s. With a resolution of 1505, computation
would take approximately 1 518 750 s (421 h), since computation
time scales linearly with the number of cells. Secondly, memory
access is a limiting factor in our implementation. In order to col-
lect the node data of a single k-dimensional cell face, 2k data points
need to be accessed. Within a uniform grid, which is stored in scan-
line order, this involves accessing memory k times in a non-linear
fashion, thus causing cache misses.

7. Conclusion

In this work, we generalized the parallel vectors operator due to
Peikert and Roth to arbitrary dimension. The parallelism property
generalized to linear dependency of sets of vector fields, and we
classified the types of solution manifolds, and presented a generic
algorithm for their extraction. We discussed, and demonstrated, the
application of the dependent vectors operator to the extraction of
vortex core manifolds, bifurcation manifolds, and ridge manifolds
in higher dimensions, and exemplified our technique using syn-
thetic fields, dynamical systems, as well as fields from computa-
tional fluid dynamics. As future work, we plan to investigate further
applications of our concept for feature definition and extraction.
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