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1. Algorithm Details

In this section, we provide details for our method, that were left out
in the main paper for brevity. An overview of our method can be
found in Algorithm 1.

1.1. Frame of Reference Computation

We use the method by Günther and Theisel [GT20] for computing
a Galilean-invariant frame of reference. The least-squares problem∫

x∈U

‖∇u(x, t)f(x, t)+ut(x, t)‖
2 → min (1)

is solved for f(x, t) in its discretized form on a uniform grid. At grid
node (i, j,k), we sum over the discrete neighborhood

U = {i−10, . . . , i+10}× (2)

{ j−10, . . . , j+10}× (3)

{k−10, . . . ,k+10}, (4)

A = ∑
x∈U

∇u(x, t)⊤∇u(x, t), (5)

b = ∑
x∈U

∇u(x, t)⊤ut(x, t). (6)

Algorithm 1 LCS extraction.

1: for all time steps ti = t1, . . . , tN do

2: Compute Galilean-invariant frame of reference w(x, ti)
3: Extract parallel vectors lines w(x, ti) ‖ ηηη(x, ti)
4: Extract saddle-type critical points in w(x, ti)
5: Discard critical points that are contained in a PV line
6: end for

7: Track PV lines as surfaces over time
8: Generate candidate lines from surface pathlines
9: Track critical points as candidate lines over time

10: Refine all obtained candidate lines toward HTs
11: Determine seeding lengths along the HTs
12: Extract LCS as streak surfaces seeded along the HTs

Nodes outside of the grid are assumed to have zero values in these
equations. Finally, the linear system Af = −b is solved using a
Householder QR decomposition with full pivoting. Like in the orig-
inal work [GT20], the summation is performed over the entire grid
using a three-dimensional summed area table for better computa-
tional performance.

1.2. Hyperbolic Trajectory Refinement

We employ the refinement procedure for distinguished hyper-
bolic trajectories proposed by Branicki and Wiggins [BW09], in
its extended form as proposed for 2D flows by Hofmann and
Sadlo [HS20]. We summarize the algorithm for 3D flows here.

An initial candidate x̃(t) is given as a poly-
line (x0, t0), . . . ,(xN , tN) ∈ R

3 ×R in space-time. Using the
following iterative process, the polyline is refined toward a
hyperbolic trajectory.

Evaluating the Jacobian of the flow along the candidate line,
J0 = ∇u(x0, t0), . . . ,JN = ∇u(xN , tN), we compute the singular
value decomposition

X(t) = B(t)eΣΣΣ(t)
R(t)⊤, (7)

of the fundamental solution matrix X(t), which is the solution of
the initial value problem

d

dt
X(t) = J(t)X(t), X(t0) = I. (8)

To ensure numerical stability, Equation 8 is integrated in its decom-
posed form Equation 7, where the factors ΣΣΣ(t) grow linearly instead
of exponentially, thus avoiding floating point overflow. For this, the
continuous SVD method by Dieci et al. [DE08] is employed. We
use an embedded Runge–Kutta 4/5 scheme with dense output to
obtain the solutions at the discrete time steps t0, . . . , tN . During in-
tegration, we monitor the maximum singular value max(ΣΣΣ(t)). If
this factor execeeds the floating point precision, we split the time
interval at this point in time, and perform the refinement on each
interval separately. For each split, we perform an additional refine-
ment over a time interval containing the splitting point at the center
and avarage the results at overlapping time steps.

From Equation 7, we compute the coordinate transforms T(t)
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and their inverses at the discrete time steps:

T(t) = e
(t−t0)DR(tN)

⊤
R(t)e−ΣΣΣ(t)

B(t)⊤, (9)

T
−1(t) = B(t)eΣΣΣ(t)

R(tN)e
(t0−t)D, (10)

D =
1

tN − t0
ΣΣΣ(tN). (11)

Finally, using w(t) = T(t)(x(t)− x̃(t)), we solve the integral
equations

wi(t) =

{∫ t
t0

edi(t−s)hi(w(s),s)ds, if di < 0,

−
∫ t1

t edi(t−s)hi(w(s),s)ds, otherwise,
(12)

where wi and hi denote the ith component of w and h, and di the
diagonal entries of D, and h is given by

h(w(t), t) =T(t)u
(

T
−1(t)w(t)+ x̃(t), t

)

−T(t)∇u(x̃(t), t)T−1(t)w(t)−T(t) ˙̃x(t).
(13)

The tangent of the candidate line, ˙̃x(t), is evaluated using cen-
tral differences. Equation 12 is solved using a fixed-point iteration,
where the integrals are repeatedly evaluated using the trapezoidal
rule, until the distance between two iterations ‖w( j+1)−w( j)‖
drops below a threshold τ f . From this computation, we obtain an
approximate hyperbolic trajectory as

x̃DHT(t) = x̃(t)+T
−1(t)w(t). (14)

Since the localization of the flow (Equation 8) is fixed, the pro-
cess is iterated until ‖x̃

(i+1)
DHT (t)− x̃

(i)
DHT(t)‖ drops below a thresh-

old τi. Additionally to the approximate DHT x̃DHT(t), we compute
the Lyapunov vectors ξξξk(t) = T−1(t)ek along the refined trajectory,
which is used for streak seeding as discussed in the main paper.

In our experiments, we used τ f = τi = 10−10. The Runge–
Kutta 4/5 integration was performed using a relative tolerance of
10−3 and absolute tolerance of 10−6, with the mean time step
ti+1 − ti as maximum step size ∆max, and ∆max/10 as initial step.

2. Additional Evaluation

2.1. Stability under Perturbation

We analyze the stability of the DHT refinement under perturbation
of initial candidates. The vector field is defined component-wise as
ui(x, t) = dixi + Ai sin(ωit), which has an analytical ground-truth
DHT for all times [ISW02],

xi(t) =−sign(di)Ai(d
2
i +ω2

i )
− 1

2 sin(ωit + arctan(ωi/di)) . (15)

We fix the parameters d1 = 5, d2 =−5, d3 =−4, ω1 = 2, ω2 = 3,
ω3 = 4, A1 = A2 = A3 = 1, and sample the analytical field on a
regular grid with 1014 nodes over the domain [−10,10]3 × [1,3].
The path of the saddle-type critical point in the frame of reference
defined by the feature flow flow is taken as initial candidate line.
Initial candidate (Case A) and ground-truth DHT (Case B) are per-
turbed symmetrically (Case 1) by ∆ = 0.1(t − 2), and asymmetri-
cally (Case 2) by ∆ = 0.1(t−1), identically in all three coordinates.
Figure 1a shows an overview of initial candidates and ground-truth.

Since the refinement relies on integration along the candidate
line, its quality increases with available integration time, i.e., the

point-wise error is minimized at the center of the available time in-
terval (Figure 1b). By considering the repelling (x, red in Figure 1)
and attracting (y and z, green and blue in Figure 1) directions sep-
arately, we see, that the repelling direction is refined closer to the
ground truth toward the beginning of the time interval, while the
attracting directions are refined better toward the end of the time
interval (Figures 1d and 1i–1l). The bends of the refined lines at
the ends of the time interval are caused by zero available integra-
tion time for refinement (t = 1 for y- and z-coordinates, t = 3 for
x-coordinate), thus the coordinates of the refined lines are identi-
cal to the candidate line there. Only in Case 2B (Figure 1l), where
the ground truth was perturbed with zero perturbation at the begin-
ning of the time interval, all three coordinates are refined best at the
beginning of the time interval.

During streak integration, the streak manifolds are attracted to-
ward the corresponding LCS (toward the attracting LCS in forward-
time, and toward the repelling LCS in backward-time). This means,
that the error of the streak manifolds decreases for long integration
times, even when started from an erroneous hyperbolic trajectory.
To demonstrate this, we compute a backward-time streak manifold
seeded at the refined hyperbolic trajectory. The point-wise distance
to the streak manifold seeded with the same offset from the ground-
truth DHT is shown mapped to color (white low to black high) on
the streak manifold at times t1 = 2.5, t2 = 2.0, and t3 = 1.2 in Fig-
ures 1c and 1e–1h. We see, that in all cases, the error of the streak
surface decreases with increasing integration time. The streak sur-
face at time t3 in Case 1A (Figure 1e) exhibits a large error, where
it deviates from the ground-truth, possibly caused by the choice of
seeding offset.

2.2. Half Cylinder Flow

This flow behind a half cylinder was computed for varying
Reynolds numbers using the Gerris flow solver [Pop04] and is
provided by Rojo and Günther [RG20]. The dataset, which was
computed on an adaptive grid, was resampled to a uniform grid
with dimensions 640× 240× 80× 151 on the space-time domain
[−0.5,7.5]× [−1.5,1.5]× [−0.5,0.5]× [0,15]. We use two mem-
bers of the ensemble with Reynold numbers Re= 160 and Re= 320
to analyze the behavior of our method at varying degree of turbu-
lence. Seeding lengths for streak manifolds were determined using
the method described in Section 4.3.2 of the main paper, using an
FTLE percentage of 50%.

At Re = 160, the flow exhibits low turbulence. We employ our
proposed Galilean-invariant frame of reference for varying sizes
of neighborhoods (Equation 4). Direct inversion of the Jacobian
to compute the feature flow field corresponds to an infinitesimally
small neighborhood N = 0. Due to numerical noise, some initial
candidates are missed, which leads to low quality in our extracted
hyperbolic path surfaces (Figures 2a–2c). A too large neighborhood
of radius N = 41 nodes, on the other hand, leads to overly smooth-
ing and thus false negatives (Figures 2g–2i). Our proposed rather
small neighborhood of N = 10 nodes, provides the best results
(Figures 2d–2f). For comparison, VFT in the steady, displacement-
invariant frame of reference [RG20] is not well aligned with LCS
for both neighborhood sizes (the authors propose to use N = 41 in
their work). However, these features provide good initial candidates
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Figure 1: Perturbation of initial candidate (A) and ground-truth DHT (B), symmetrically (1) and asymmetrically (2). Overview shown in

(a), with ground truth DHT (green), candidate line (magenta), and the four different perturbation cases (colors as in (b), zero perturbation

marked by colored sphere). (c),(e)–(h) Streak manifolds (surfaces, colored by error black to white) computed from the refined HT (colored by

error black to white) further compensate errors with increasing advection times. (d),(i)–(l) Plots of the coordinate functions (x red, y green,

z blue) of the initial candidate (thin desaturated), the refinement (solid saturated), and the ground truth (dashed). Note, that the dashed lines

correspond to the green lines, the thin desaturated lines correspond to the single colored lines, and the solid lines correspond to the lines

colored by error in the 3D views (c),(e)–(h).

for our refinement, which leads to a more extendedly extracted
topology (Figures 2j–2l). Note, that this comes at additional com-
putational costs at about 930 min, as well as a rather large mem-
ory requirement of about 360 GB of RAM to store the summed
area table as well as the dataset and its derivatives, compared to
the Galilean-invariant optimization, which took about 150 min and
required about 50 GB of RAM.

At Re = 320, where the flow is more turbulent, all frames of
reference fail to provide suitable initial candidates. We employ the
same methods as in the previous case in Figure 3. Since all frame
of references to not provide long enough initial candidates for our

refinement, the obtained hyperbolic path surfaces have large dis-
tances to the actual LCS intersections. The streak manifolds, how-
ever, are still attracted toward the LCS during integration, and are
thus better aligned with them.
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(a) ours, N = 0, Galilean invariance

(i)

(b)
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(c)

(d) ours, N = 10, Galilean invariance (e) (f)

(g) ours, N = 41, Galilean invariance (h)

(iii)

(i)

(j) ours, N = 41, displacement invariance (k) (l)

(m) VFT in steady frame [RG20], N = 10 (n) (o)

(p) VFT in steady frame [RG20], N = 41 (q) (r)

Figure 2: Half Cylinder Flow with modest turbulence at Re = 160. Black lines in mid and right column represent sections of manifolds

at shown slice in left column. With our proposed Galilean-invariant extraction of candidate lines, direct inversion of the Jacobian, (a)–(c),

suffers from numerical noise, and thus yields worse initial candidates (i) than using a neighborhood of N nodes. A too large neighborhood

with N = 41, (g)–(i), has a too strong smoothing effect (iii). We thus prefer N = 10, (d)–(f). While steady VFT in the displacement-invariant

frame of reference [RG20] is not well aligned with the LCS, (m)–(r), it provides good initial candidates for our method, (j)–(l).



L. Hofmann & F. Sadlo / Local Extraction of 3D Time-Dependent Vector Field Topology: Supplemental Material

(a) ours, N = 0, Galilean invariance (b) (c)

(d) ours, N = 10, Galilean invariance (e) (f)

(g) ours, N = 41, Galilean invariance (h) (i)

(j) ours, N = 41, displacement invariance (k) (l)

(m) VFT in steady frame [RG20], N = 10 (n) (o)

(p) VFT in steady frame [RG20], N = 41 (q) (r)

Figure 3: Half Cylinder Flow with higher turbulence at Re = 320, same methods applied as in Figure 2. Both the Galilean-invariant and

displacement-invariant [RG20] frames of reference fail to extract suitable candidate lines in this turbulent dataset. Our methods with N = 10
again performs best, but also still misses large parts of the LCS. Nevertheless, streak integration is attracted by the respective LCS for long

integration times, thus partially correcting initial errors.


