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Fig. 1: Screenshot of Gaia Sky with Saturn and some of its moons, the Milky Way Star Clusters catalog indicated by yellowish
spherical meshes, semi-transparent isosurfaces of OB star densities, and stars from Gaia showing parts of the Milky Way galaxy.

Abstract—In this paper, we present Gaia Sky, a free and open-source multiplatform 3D Universe system, developed since 2014
in the Data Processing and Analysis Consortium framework of ESA’s Gaia mission. Gaia’s data release 2 represents the largest
catalog of the stars of our Galaxy, comprising 1.3 billion star positions, with parallaxes, proper motions, magnitudes, and colors. In
this mission, Gaia Sky is the central tool for off-the-shelf visualization of these data, and for aiding production of outreach material.
With its capabilities to effectively handle these data, to enable seamless navigation along the high dynamic range of distances, and at
the same time to provide advanced visualization techniques including relativistic aberration and gravitational wave effects, currently
no actively maintained cross-platform, modern, and open alternative exists.

Index Terms—Astronomy visualization, 3D Universe software, star catalog rendering, Gaia mission.

1 INTRODUCTION

These are exciting times for astronomy and astrometry research. The
Gaia satellite, launched back in December 2013, has been measuring
since July 2014 the star positions and proper motions of roughly one
percent of the stellar content of our Milky Way, a spiral galaxy popu-
lated with 100–300 billion stars. It has two fields of view, separated
by an angle of 106.5◦, which are projected on the same focal plane by
a complex system of mirrors. With 106 CCD sensors and about a bil-
lion pixels, it is the largest camera to ever be flown into space. DPAC,
the Data Processing and Analysis Consortium, is the multinational en-
deavor with institutions from more than 20 countries responsible for
data processing and construction of the final Gaia catalog. However,
the release of this catalog is rolled out in an incremental fashion. The
Gaia Data Release 1 (GDR1), published in September 2016, contains
a catalog of over 1.1 billion 2D star positions. Additionally, more
than two million parallaxes and proper motions (angular velocities of
stars in the sky, as observed from Gaia) could be derived using cross-
matching techniques with earlier catalogs, such as Tycho-2 [11] and
Hipparcos [25], enabling this part of the star map to raise into the third
dimension, as well as 250,000 radial velocities by cross-matching with
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RAVE [16] data. The second data release, GDR2, was released April
25, 2018. Based on more than 22 months of data collection, it rep-
resents the largest leap the Gaia catalog will ever make. It contains
the positions, parallaxes, proper motions, magnitudes, and colors of
more than 1.3 billion stars. Additionally, it offers more than 7 million
radial velocities, half a million variable stars, and about 14 thousand
asteroid orbits. It can be considered the first real Gaia dataset, and it is
enabling astronomers to study the history, composition, and structure
of our galaxy in great detail.

The appeal of such a mission goes well beyond astronomy, and in
order to spark an interest in the laymen, clear and simple messages and
catching media material are usually required. In this paper, we present
a free and open-source software package created with the main objec-
tive of delivering the Gaia catalog to related research areas and the
general public, and enabling anyone to gain insight into not only the
mission and its catalog, but also supporting astrometric, astronomic,
and cosmological research.

The contributions of this paper include:

• A new magnitude–space level-of-detail octree structure,
• a floating camera approach to address single-precision floating-

point number accuracy issues,
• integrated visualization of relativistic effects, and
• the representation of proper motions of stars.

2 RELATED WORK

The works that are most closely related to Gaia Sky are comprised
by open-source, freely available 3D universe software packages that
run on laptops and desktop computers. In this category, we find Open
Space (Section 2.1), Celestia (Section 2.2), and Space Engine (Sec-
tion 2.3). Section 2.4 covers less closely related software. The com-
pared systems do not have a strong academic record to compare to, so
in all cases, our comparisons were conducted from a user’s point of
view. A detailed performance evaluation of these systems with respect
to Gaia Sky is provided in Section 5.
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Fig. 2: (a) Objects from the MWSC (Milky Way Star Clusters) cata-
log indicated by spherical meshes. (b) Semi-transparent isosurfaces of
dust (green), HII regions (red), and hot OB stars (blue-purple) [12].

2.1 Open Space

Open Space [4] is an open-source interactive data visualization frame-
work designed to visualize the entire Universe. We have evaluated
its latest available public version, 0.11.1, which is a beta release.
The package is only available for Windows in executable form, even
though it can be built for macOS and Linux. On the other hand, Gaia
Sky is out of beta since version 1.0.0 and provides off-the-shelf builds
for Linux (rpm, deb, aur, sh), macOS (dmg), and Windows (32 and
64-bit exe installers).

The default dataset is downloaded automatically at startup of Open
Space and contains a lot of data of the Solar System and its space mis-
sions. It implements virtual texturing to provide high resolution views
of planetary surfaces, and it also makes use of height maps. Even
though Gaia Sky can accommodate this kind of data, by default only
the planets, a selection of moons, some minor planets, 14,000 aster-
oids, and the Oort cloud are provided. Also, Gaia Sky does not imple-
ment terrain level-of-detail or use height maps, as its focus is on the
exploration of the Gaia star catalog.

Open Space uses a scene graph for its internal model, like Gaia
Sky. Open Space, however, makes use of the more complex Dynamic
Scene Graph [2] approach to be able to represent a high dynamic range
of distances. Gaia Sky, on the other hand, uses the floating camera
approach (Section 3.2) to avoid floating-point precision issues.

2.2 Celestia

Celestia has been around for many years, even though its development
was stopped from 2011 to 2017. The current build is version 1.6.1
on Windows and macOS, and 1.5.1 on Linux. It still uses Hipparcos
as the main catalog (120 K stars), and it is mainly focused on the So-
lar System, including virtual texturing for handling on-demand high-
resolution textures of planetary surfaces and SPICE kernels for Solar
System objects. Gaia Sky, in contrast, can handle much larger catalogs,
but does not implement virtual texturing. Celestia has built over the
years a vibrant and active community, producing different data packs.

2.3 Space Engine

Space Engine is proprietary closed-source software and Windows-
only. It borrows heavily from the gaming industry, making use of
impressive graphics, particle effects, and procedurally generated envi-
ronments and worlds. As a star catalog, it uses Hipparcos. It contains
only 130 K real objects, counting stars and other object types. Gaia
Sky’s focus, on the other hand, is not so much on graphics but on the
efficient representation of the star catalog.

2.4 Other Related Work

Other related work falls mainly in two categories. The first comprises
proprietary 3D Universe software packages, which often run on plane-
taria, while the second category addresses Gaia-related scientific visu-
alization packages and frameworks.

(a) (b)

Fig. 3: (a) Gaia trajectory from Earth to its site of operation, the
Lagrangian point L2, and its Lissajous orbit. The scales are adapted
such that both parts can be shown together. (b) Octree structure of
Gaia Sky’s 90% parallax relative error catalog.

In the realm of 3D Universe software, Uniview [14], Digistar [7],
and Mitaka [1] are the main players in planetaria software worldwide,
and offer advanced, visually appealing simulations. StarStrider [8]
offers a 3D star chart and includes relativistic effects.

In the Gaia visualization domain, the Gaia Archive Visualization
Service [21] offers a web-based interactive visual exploration tool, that
features direct access to the Gaia catalog in a visual collaborative en-
vironment based on 2D and 3D linked views. Topcat [31] is a desktop
tool for operations on astronomical catalogs and tables. It offers 2D
and 3D plotting and is focused on astronomy use cases. Since version
4.2-1, it supports GBIN files, the native Gaia data format. Vaex [5],
although not Gaia-specific, was also developed within DPAC, and is
a visualization and exploration tool for big tabular data with its own
volume rendering package. Gaia Sky focuses on a direct spatial repre-
sentation of the catalog, but all these tools can be used in conjunction
with Gaia Sky via SAMP [30], a messaging protocol that enables as-
tronomy software tools to interoperate and communicate, to provide
additional functionality such as filtering and clustering.

3 GAIA SKY

Our framework, named Gaia Sky [27] (Figure 1), is an open-source en-
deavor developed since 2014 in the framework of the Data Processing
and Analysis Consortium of ESA’s Gaia cornerstone astronomy mis-
sion. Gaia aims at creating a six-dimensional map of more than one
billion stars with positions and velocities. In this context, the main
mission of Gaia Sky is to deliver an off-the-shelf visualization of the
Gaia catalog, and to aid in the production of outreach material. How-
ever, it has a wide range of other applications, from scientific to purely
recreational. For instance, it was used within DPAC to help visualize
and understand the stray light path, an optical issue with the spacecraft
construction arisen in its first months of operation.

Gaia Sky contains a full simulation of our Solar System, with all its
planets, dwarf planets, the main moons, and thousands of asteroids and
asteroid orbits. In its current version, it allows for the exploration of
Gaia DR2. We offer different datasets based on DR2 data, selected
according to different parallax relative error criteria. They contain
from 5 million stars to more than 600 million. Other included data
are star clusters, extragalactic sources, and derived structures, like iso-
density surfaces for hot star types, dust, and HII regions (see Figure 2).
Beyond that, Gaia Sky also enables the visualization of Gaia’s trajec-
tory from Earth to its site of operation, 1.5·106 km behind the Earth
away from the Sun, where it follows a Lissajous orbit around the La-
grangian point L2 (see Figure 3a), and the octree structure, the Gaia
data is stored in (Figure 3b).

The main strength of Gaia Sky, however, is that it can handle cat-
alogs in the hundreds of millions of stars. The main challenges, that
led to novel design solutions in Gaia Sky, include the efficient han-
dling of these data to enable interactive exploration, and managing the
very large range of scales with sufficient numerical precision. Gaia
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Fig. 4: View of all the stars in the first eight levels of the octree of the catalog with a parallax relative error up to 90% (601 million stars).
Captions provide octree depth / number of stars in respective level.

Sky also features, besides a large number of exploration tools, a script-
ing interface, which can be accessed by directly running the scripts, or
via a REST API, a variety of stereoscopic modes, a panorama (360◦)
mode, a planetarium output mode, and a VR spinoff. Additionally, a
camera recorder utility enables the recording and later playback of the
full camera state at a user-defined frame rate.

Before we provide a detailed description of the system (Section 4),
we describe our data representation technique (Section 3.1), our ap-
proach to ensure sufficient numerical precision (Section 3.2), and, our
most recent addition, relativistic effects (Section 3.3). Some perfor-
mance hints are given in Section 5.

3.1 Data Representation and Access

One of the central challenges in the conception and development of
Gaia Sky was the effective handling of the large star catalog. Com-
pared to other star catalogs, GDR2 is large in several regards. First,
it is large in the number of stars. GDR2 contains 1.33 billion stars
with, however, varying quality of the line-of-sight distance (denoted
parallax relative error). Here, we use a subset of 601 million stars
for which the parallax relative error is smaller than 90.0%. This is
orders of magnitude larger than previous 3D star catalogs. We offer
a selection of DR2-based star catalogs on our website. The largest of
them, which contains 1.33 billion stars and is still in beta, uses the ge-
ometrical Bayesian distance determination method by Bailer-Jones et
al. [3]. Second, GDR2 is large in terms of spatial scales. Our Milky
Way galaxy spans about 1021 m in its diameter, but on the other hand,
the dimensions of the Gaia spacecraft are only a few meters. Third, it
is large in the range of star brightnesses. In contrast to most previous
catalogs, GDR2 includes astrometric data, spanning roughly 18 orders
of magnitude in brightness [9]. These different high dynamic ranges
are intertwined, and an effective navigation needs to take this infor-
mation into account and exploit it. A tailored level-of-detail (LOD)
structure with streaming capabilities is therefore comprising a central
part of Gaia Sky’s core system.

In many applications, LOD is accomplished by an octree, whose
higher levels contain coarser approximations of the scene components,
usually called impostors, while lower levels contain more detailed ver-
sions. During navigation, these octrees are traversed, and distance-
based culling is employed to decide on the visibility of each of the
octants of the octree. The idea underlying these approaches is to omit
detail that the observer cannot perceive, i.e., to omit detail that would
appear too small, because it is too far away compared to its size.

In Gaia Sky, however, we follow a different approach, because there
are substantial differences between typical scenes and GDR2. First,
stars are, by nature, discrete. That is, although they are huge objects,
they are clearly confined and, given the incredible distances between
them, they have to be considered points on galactic scales. Therefore,
using smoothed and coarsened representations as impostors for sets of
stars would not be an optimal choice, as the impostors would need to
remain consistent from all viewing directions. Additionally, stars in
Gaia Sky can move during the simulation due to their proper motions,
and their shading parameters can be manipulated in real-time, making
it even harder to use impostors. At the same time, the visibility of stars
is not determined by their distance alone—it is the combination of their
absolute brightness (which is defined for a fixed distance of 10 parsec)
together with their distance to the observer (and possibly extinction)
that is responsible if a star can be perceived or not. These considera-

tions motivate our main contribution regarding star catalog representa-
tion in Gaia Sky: magnitude–space level-of-detail (MS-LOD).

We exploit the correlation between distance, absolute star bright-
ness, and apparent star brightness by constructing an octree that con-
tains the stars sorted by absolute magnitude in a descending manner.
That is, the root level contains the brightest stars, and lower levels pro-
gressively contain fainter and fainter stars. Additionally, the mapping
of magnitudes to octree levels is bijective, so that each level contains a
well-defined range of absolute magnitudes, and a given absolute mag-
nitude can only be assigned to one level. Figure 4 shows an example
for the stars in the first eight levels of the octree, from depth zero, the
root (a), to level seven (h). Due to the non-uniform distribution of stars
and the limited number of stars in each octant, some irregularities can
be seen because the stars of a level are inspected in an isolated man-
ner here. From (a) to (d), the number of stars in each level is nearly
the same, but the brightness of the stars decreases, as does the overall
brightness of the resulting image. From (f) to (h), the brightness of the
stars still decreases, but the number of octants as well as the number
of stars increases. That is in particular the case because there are many
more faint stars in the Universe than bright ones. Hence, because of
the additive blending, the overall image brightness strongly increases
from (a) to (h).

Octree construction. For the construction of the MS-LOD octree
structure, the whole catalog needs to be loaded into memory, where the
stars are sorted by absolute magnitude from brightest to faintest. The
starting point is the Cartesian axis-aligned bounding box that contains
all the stars, and that serves as the root of the octree. The recursive
subdivision of the octree is controlled by the parameter Nσ which is
the maximum number of stars in an octant.

In practice, we start with level n = 0 and fill the root node with the
Nσ brightest stars. If there are more stars than Nσ , we subdivide the
root into its 8 octants. Then, in the next level, we take stars from the
top of the (brightest) list and assign them to the corresponding level
octant, determined by the position of the star, until an octant reaches
Nσ stars. Next, we proceed one level deeper and start over. This pro-
cedure is carried out recursively until no star is left. Thus, a small
Nσ leads to larger octrees with more octants, whereas a larger value
leads to smaller, more compact octrees which are faster to process but
have more stars in each node. Nevertheless, this has only an effect
on performance and not on visual appearance. Note that this octree
construction method provides a mapping between absolute magnitude
and depth level, which adapts automatically to the absolute magnitude
distribution of the input catalog. This partitioning in magnitude space
between depths guarantees that brighter stars will always be visible
from farther away than fainter stars.

Octree traversal. For rendering, the octree is traversed and the
visibility of each octant is determined using a user-defined view an-
gle Θ, which is compared to the solid angle θi of each octant i with
respect to the position of the camera. Hence, Θ represents a draw dis-
tance measure by defining a threshold below which the octants are not
visible, and above which they become visible. Octant i is visible if
θi ≥ Θ and it intersects the camera’s view frustum.

When an octant is visible, its stars are sent to the rendering system,
and its children octants, if any, are processed the same way. If an oc-
tant is not visible, its stars are not rendered and its children octants are
not processed. Without any further modifications, however, this would
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Fig. 5: (a) Direct octree traversal based on the view angle Θ alone
yields pop-ins of octants. (b) LOD smoothing to fade-in the octants.

yield pop-ins of octants, as shown in Figure 5 and in the accompanying
video. Therefore, we employ a LOD smoothing mechanism to fade-in
octants (and its stars) into view. This is accomplished by a linear map-
ping of the solid angle θi to [0,1], with θi = Θ mapping to zero, and
θi =Θ+r mapping to one, where r is an offset to be used as a masking
value for the star shader. Usually, the star shading (Sect. 4.4.4) auto-
matically renders distant, faint stars invisible, but this entirely depends
on Θ. Thus, large values for Θ make pop-ins more probable and the
smoothing more useful.

3.2 Floating Camera

Gaia Sky contains a scene which represents vast distance ranges, from
centimeters to gigaparsecs, far beyond what can be represented using
32-bit floating-point arithmetic. To avoid such issues, we follow a
new approach which is somewhat complementary to previous ones
like, e.g., the dynamic scene graph proposed by Axelsson et al. [2]
or the logarithmic landmarks introduced by Li et al. [17].

The idea is to keep the camera at the origin of the global coordinate
system at all times, and offsetting the whole scene graph so that the
current camera is always located at position (0 0 0) . In practice, we add
a new node at the top of the scene graph (Figure 10) with a translation
by the inverse of the camera position vector, which is updated every
frame. In detail, we split the standard vertex transformation pipeline
from object space to the camera’s clip space into two parts:

pclip = Mproj ·Mview ·Mmodel ·pobj = Mproj ·Mmv ·pobj. (1)

The crucial step is the transformation defined by the model-view ma-
trix Mmv between object coordinates, pobj, and camera coordinates.
For that, we use the arbitrary-precision floating-point operations from
the java.math package on the CPU to handle every transformation
within the scene graph. The resulting model-view matrix is then up-
loaded to the GPU, where we can still use single float precision shaders
to convert from local camera coordinates to clip coordinates pclip, and
finally determine screen coordinates.

Figure 6 shows the Gaia telescope model which is located in the
Lagrangian point L2, about 1.5 million kilometers behind the Earth
away from the Sun, while the camera is only 275.04 m away from the
telescope. Hence, the model matrix Mmodel consists of a translation
vector for Gaia with a length of 1.5·1011 m (distance Sun–Earth) plus
1.5·109 m, while the view matrix Mview consists of a translation vec-
tor of a similar length. Using global coordinates and standard 32-bit
floating-point shaders, this yields jittering of the vertices due to the
lack of floating point precision, and finally leads to incorrect per-pixel
lighting (Figure 6a). Note that in Figure 6a, we even had to artificially
reduce the distance to Gaia down to 1200 km because rendering broke
down completely for larger distances. With our method (Figure 6b)
based on the arbitrary-precision model-view matrix calculation on the
CPU, there is no jittering problem because distances of a few centime-
ters compared to the relative distance between camera and the tele-
scope can be handled by single float precision.

(a) (b)

Fig. 6: (a) Straightforward vertex transformation using 32-bit floating
point precision leads to jitter. The resulting misaligned structures of
the model lead to wrong per-pixel lighting. (b) Our floating camera
approach does not exhibit these issues.

The floating camera approach provides a simple and effective way
to handle a high dynamic range of distances without precision issues.
It achieves this by just adding a translation to the transformation matri-
ces. In comparison, the Dynamic Scene Graph requires the camera to
be moved around in the scene graph, and its position to be taken into
account when computing the transformations applied to all nodes.

3.3 Relativistic Effects

Gaia Sky implements a couple of relativistic effects, namely relativis-
tic aberration and the apparent visual distortion due to gravitational
waves. Both effects are implemented in an integrated way, which min-
imizes the general overhead to zero when the effects are turned off.

Relativistic Aberration. The relativistic aberration of light is a
special-relativity effect that arises when an observer moves at a veloc-
ity v close to the speed of light c. In that case, the rays of light from
each source that reach the observer are tilted towards the observer’s
direction of motion, which yields an apparent reduction of the effec-
tive angle ϑ between the velocity direction and the light source to the
apparent angle ϑ ′ according to the aberration formula

cosϑ ′ =
cosϑ +β

1+β cosϑ
, β =

v

c
. (2)

This has a strong apparent minification effect in the direction of motion
and a strong magnification effect in the opposite direction. As a result,
it is even possible that objects, which are actually behind the observer,
appear to be in front of her.

Figure 7 shows Gaia Sky in relativistic spacecraft mode. While the
spacecraft keeps its position relative to the camera, the velocity is in-
creased from zero to nearly the absolute speed limit c. The relativistic
aberration is non-linear, which means that even for high velocities, the
effect is rather small, and only for velocities near the speed of light,
the tilting toward the direction of motion increases dramatically. In
that case, even objects which are actually behind the spacecraft, like
the Sun in Figure 7d, appear in front of the observer. The increas-
ing brightness of the stars is due to the additive blending of the star
shading. Although this does not show the correct behavior, it is quite
similar to the searchlight effect, which causes an increasing brightness
in the direction of motion and a strong decreasing brightness in the
opposite direction. The searchlight effect, as well as the relativistic
Doppler shift, are, however, not implemented yet. A detailed discus-
sion of the relativistic effects is out of the scope of this work, and we
refer the reader to, e.g., Müller et al. [22].

Gravitational Waves. Gravitational waves are a general relativis-
tic effect, which produces a disturbance in the curvature of spacetime,
generated by accelerated masses. These waves propagate outward
from their source at the speed of light. Gaia Sky implements the visual
effects that an observer would perceive in such an event, based on the
model by Klioner [15]. There are a few parameters (4 amplitudes/po-
larization and the wave frequency) which can be adjusted according
to the source. The current model used in Gaia Sky has a few caveats.
First, it is only valid for slowly moving observers, with velocities much
smaller than the speed of light. Second, the usual amplitude (strain) of
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Fig. 7: Gaia Sky in relativistic spacecraft mode, with increasing velocity. Even with half the speed of light, v = 0.5 c, the relativistic aberration
is rather weak. The closer the spacecraft approaches the absolute speed limit c, the stronger the aberration becomes.

(a) (b) (c)

Fig. 8: Apparent distortion due to a gravitational wave on the view of
Mars and its moon Phobos.

the gravitational wave is very small, but can be artificially exaggerated
for visualization purposes. And third, such sources of gravitational
waves of the model—supermassive binary black holes in the centers
of galaxies—are typically short-living (few thousands of years), so ad-
justing the parameters according to the simulation time might be in
order. Figure 8 shows the influence of the apparent distortion due to a
gravitational wave on the view of Mars and its moon Phobos.

4 SYSTEM

This section provides a bird’s eye view of the system parts, which are
not novel, but nevertheless essential to the system as a whole. Gaia
Sky is implemented using Java and OpenGL. The OpenGL bindings
are provided by the Lightweight Java Game Library [20], and an addi-
tional framework layer, libGDX [18], is used for its caching, batching,
and loading utilities. The choice of Java as a main platform is due to
the abstraction provided by the JVM, which makes it easy to port to
and maintain several platforms, one of the main requirements of the
project. Furthermore, the language of choice of DPAC for the data
processing of the Gaia data is Java, and there exists a vast code base
with interdependent libraries and utilities, to compute, for example,
the attitude quaternions of the satellite, which would need to be all
translated to another language otherwise. Additionally, the default use
of the just-in-time compiler, which gives the compiler access to run-
time information not available to native languages, plus the avoidance
of garbage collection as much as possible by using object pools and
custom collections, helps minimizing the impact of using such a plat-
form for a real-time graphics application where high frame rates are
needed. Performance hot-spot functions, such as matrix operations,
are implemented in plain C and called using the Java Native Interface.

4.1 Main Loop

At its highest level, the system implements a very simple update–
render loop, in charge of updating the model objects and rendering
them each frame. The loop also computes the amount of time elapsed
since the last iteration, and passes it on to the update and render stages.

4.2 Structure

Gaia Sky is structured into modules, each with a defined set of respon-
sibilities. Only five main modules compose the backbone of Gaia Sky,
as seen in Figure 9: the user interface module, the event manager, the
object model, the rendering system, and the scripting engine. Below,
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Fig. 9: Gaia Sky component structure. The interactions captured by
the UI are processed and the relevant events are posted to the event
manager, which broadcasts them to the relevant parties. The object
model is updated continuously, and its entities are added to the render
lists, which are used by the rendering system to display the scene.

we give a brief overview of the individual modules, and provide de-
tailed descriptions in the subsequent sections.

User interface. This module is in charge of managing all inter-
actions with the user. Among its responsibilities are generating and
rendering the graphical user interfaces, as well as listening and pro-
cessing the user’s input events through the input listeners. The user
interface is skinnable and supports HiDPI themes. The communica-
tion of the user interface module with other modules is accomplished
by means of the event manager.

Event manager. This component is a generic registry, where
event producers and consumers are connected via a centralized hub.
Any entity can publish and subscribe to events of interest. The event
manager reacts to events synchronously and sequentially. Actions can
be specified to be processed after the current loop cycle has finished,
ensuring thread safety and consistent state of the object model.

Object model. The object model contains and manages all the
scene objects, and is in charge of updating their state during every
iteration of the main loop.

Rendering system. This module is in charge of rendering the
scene. Objects are routed from the object model to the rendering sys-
tem using a number of render lists. These lists are used by the renderer
objects, producing different kinds of visuals for each element.

Scripting engine. Finally, the scripting engine is a component
that allows for the execution of Python scripts using an API to access
and modify the internal state of Gaia Sky with ease and precision.
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Fig. 10: Part of the scene graph used in Gaia Sky, with floating camera
at the root. The global reference system is centered around the “Sun”.

4.3 Object Model

The object model holds all the objects in the scene. These objects
are organized into a scene graph (Figure 10), a tree-like data struc-
ture in which geometrical transformations are inherited from parent
to children. All objects in the object model are categorized into com-
ponent types, which organize the objects according to their typology.
Available component types are stars, planets, moons, satellites, aster-
oids, clusters, labels, grids, orbits, atmospheres [24], constellations,
constellation boundaries, galaxies, topological information, locations,
arbitrary meshes, titles, and others. These component types are mainly
used to implement the switch-on/off behavior, to prevent all data being
displayed at once, and thus cluttering the viewport.

4.3.1 Data Loaders

Gaia Sky handles many different kinds of data, and their loading mech-
anisms can vary substantially. In a broad sense, the types can be orga-
nized into two large groups: particle data and non-particle data.

Particle data. Stars, galaxies, and essentially all data which are
point-based, and come from astronomical catalogs, are particle data.
They usually have a single node representing them in the scene graph.
The different catalog formats are supported through the STIL Java li-
brary [31], including VOTable [23], FITS, ASCII, CSV, and GBIN.
The STIL loader relies on Unified Content Descriptors (UCD) [6] de-
fined by the International Virtual Observatory Association (IVOA) to
assign units and semantics to each data column. Gaia Sky also uses an
own binary format that is very compact and can be memory-mapped
very easily for increased performance. As an example, Figure 11
shows the catalog descriptor file for the GDR2 particle dataset.

Non-particle data. Any non point-based data, such as planets,
orbits, constellations, locations, satellites, grids, and others, have their
own object in the data model, and their own node in the scene graph.
These data are usually loaded from JSON files, using a specific set
of loaders that match attributes by name via reflection. Each of the
files defines a few one-to-many relationships which specify what files
are to be loaded by which data loaders. The default loader (JSON-
Loader) is in charge of fetching the data in several JSON files, such
as meshes.json, planets.json, or locations.json. Figure 12
shows, as an example, a snippet of planets.json, which defines the
planet Earth.

4.3.2 Levels of Detail

Once the octree is constructed, Gaia Sky loads its structural metadata
and traverses it at each frame, selecting the “visible” nodes and send-
ing them to the relevant renderer.

"description" : "Gaia DR2 catalog (12.5% relative error). About 94 M stars",

"data" : [

{

"loader" : SunLoader,

"files" : []

},

{

"loader" : OctreeGroupLoader,

"files" : [ "data/gdr2/particles/", "data/gdr2/metadata.bin" ]

}]

Fig. 11: Example descriptor of the GDR2 catalog. It contains a Sun
loader, which loads the Sun, and an octree loader, which contains the
level-of-detail metadata file, and the folder where the actual catalog is.

"name" : Earth,

"wikiname" : Earth,

"color" : [.13, .26, .89, 1.0],

"size" : 6371.1,

"ct" : Planets,

"absmag" : -2.78, "appmag" : -3.1, "parent" : Sol, "impl" : Planet,

"coordinates" : { "impl" : EarthVSOP87,

"orbitname" : Earth orbit },

"rotation" : { "period" : 23.93447117,

"axialtilt" : -23.4392911,

"inclination" : 0.0,

"meridianangle" : 180.0 },

"model" : {

"type" : sphere,

"params" : { "quality" : 180, "diameter" : 1.0, "flip" : false },

"texture" : { "base" : earth-day*.jpg,

"specular" : earth-specular*.jpg,

"normal" : earth-normal*.jpg,

"night" : earth-night*.jpg }

},

"atmosphere" : {

"size" : 6450.0,

"wavelengths" : [0.650, 0.570, 0.475],

"m_Kr" : 0.0025,

"m_Km" : 0.001,

"params" : { "quality" : 180, "diameter" : 2.0, "flip" : true }

}

Fig. 12: JSON definition of the Earth object within the
planets.json file. Images with an asterisk are given in different res-
olutions according to the quality defined in the configuration settings.
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Fig. 13: Streaming catalog loader. Adding objects to the load queue
causes the system to send an interruption to the daemon thread, which
then unloads the objects in the unload queue and loads the objects in
the load queue. Finally, metadata like constellations are updated.

If the catalog is large and does not fit into memory, as is the case of
most GDR2-based catalogs, Gaia Sky implements a streaming loader
solution, depicted in Figure 13. This loader relies on the octree data
pages (octants) to be distributed in different files. The loader defines
two queues, a load queue, which is a priority queue weighted by the
inverse of the depth of the octant in the tree—lower-depth octants con-
taining brighter stars are loaded first—and an unload queue, which
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Fig. 14: Detailed view of the rendering system. The incoming render
lists are routed through the scene graph renderers and to the actual
renderer objects, which communicate directly with the graphics API.

contains all loaded octants sorted by access date—octants that have
not been visited for the longest time are in the head. In this case, each
time an octant is visited, the culling algorithm is run to determine its
visibility. If it is visible, we query its state (not loaded, loaded, queued,
or loading). If the octant is not yet loaded, it is added to the load prior-
ity queue. If it is loaded, its state in the unload queue is updated (it is
removed and added to the head). Depending on I/O bandwidth and la-
tency of the file system, the streaming loader may cause pop-ins if the
loading of a data page is slower than the camera. The actual loading
and unloading of data is handled by a background daemon thread.

4.4 Rendering System

The rendering system, depicted in Figure 14, is in charge of render-
ing the scene to the active render targets. Possible render targets are
the display, image files, or the VR API. The main rendering pipeline
consists of four main stages executed in a sequential manner: the pre-
passes, the scene rendering, and the post-processing stage. They are
described in the following.

4.4.1 Pre-Pass Stage

The first stage is the pre-pass stage. In this stage, the scene is rendered
to FBOs using different techniques, to be used in later stages.

Shadow map pass. The shadow map pass gathers the relevant
model objects, positions the camera at a certain distance in the direc-
tion of the light source, and renders a depth map. This will later be
used by the models to compute the shadows. Gaia Sky implements an
adaptive shadow mapping solution instead of a global one because the
depth map resolutions needed for such a sparse scene, where there are
huge distances between the objects, which are themselves very small,
are simply not feasible with current hardware.

Occlusion pass. The occlusion pass renders close-up stars and
models using a solid black color into a single low-resolution FBO.
This is later used in the light glow post-processing effect, which es-
timates the number of visible fragments of each star and overlays a
light glow effect, which spills over the rest of the geometry.

4.4.2 Scene Rendering Stage

The next stage is the actual scene rendering. After the update phase,
the render lists are prepared to be used by the relevant scene graph
renderer (SGR) object, once the pre-passes have been rendered. The
responsibility of the SGR objects is to prepare the render environ-
ment (viewport, post-processing FBOs, etc.), call each render system

(a) (b)

Fig. 15: The panorama scene graph renderer (a) generates images,
which can be encoded into 360◦-videos, whereas the output of the
planetarium mode (b) is dedicated to fulldome planetarium shows.

(a) (b)

(c) (d)

Fig. 16: Bloom ((a) and (b)) and motion blur ((c) and (d)) are carried
out in the post-processing pass.

with the relevant render list, and run the post-processing stage. Since
the rendering and the post-processing may need to happen more than
once—for instance, the stereoscopic mode renders the scene twice—
these two stages are handled by the SGR objects.

Gaia Sky has four SGR objects. The normal SGR, the 360◦

panorama SGR (Figure 15a), the Gaia FOV SGR, which projects both
fields of view of Gaia on a single viewport, and the stereoscopic SGR.
Additionally, the VR spinoff adds an OpenVR SGR.

The render systems are in charge of handling and rendering a ren-
der list each, corresponding to a render group. The render systems
are constructed and managed automatically, and the routing of the cor-
rect render list to the relevant render system is also done in a manner
transparent to the rest of the program. Each render system, then, cor-
responds to a render group.

4.4.3 Post-Processing Stage

The final stage, which is actually handled by the SGR objects, is the
post-processing stage, where a series of filters is defined and runs on
the result of the rendering stage. Filters can be easily linked and com-
posited by the use of ping-pong buffers. The lens flare, anti-aliasing
(FXAA [19] and NFAA [29]), light glow, motion blur (Figure 16d),
and bloom effects (Figure 16b) are all run as post-processing filters.
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(a) σ = 0.25 (b) σ = 0.5 (c) σ = 0.75 (d) σ = 1.0

Fig. 17: View toward the center of the Milky Way rendered with user-
defined, increasing star pseudo-size σ . The larger σ the larger the stars
appear, but due to the blending, the central region becomes overdense.

4.4.4 Shaders

Gaia Sky features a wide variety of shaders, which are in charge of
producing the final picture. The models are rendered using per-pixel
lighting. Lines can be rendered either as primitives or using polyline
quadstrips. In order to render stars as realistically as possible, we de-
termine their visual appearance and RGB color using their measured
apparent magnitude and photometric intensities in the two Gaia photo-
metric bands. To achieve a realistic and physically based star render-
ing, we first compute the absolute magnitude, which is the brightness
of a star at a distance of 10 parsecs, using the apparent magnitude.
Then, we correct it using the extinction value found in the catalog, if
present, or we apply a simple analytic galactic dust model otherwise.
Finally, we convert the absolute magnitude to a flux, from which we
can compute a pseudo size. This pseudo size is used for rendering
purposes only. The size is passed into the star shader and used in con-
junction with the star brightness, the star size, and the star minimum
opacity settings to determine its representation in pixels, see Figure 17.
If the star is close enough, it is shaded using a textured billboard. The
star colors are computed from the effective temperature value in the
catalog, if present, or using the conversion from BP-RP (blue minus
red photometric intensity values) to effective temperature as discussed
by Jordi et al. [13]. Finally, we convert the effective temperature to
RGB using an algorithm based on best fits by Helland [10].

4.4.5 Stars and Proper Motions Rendering

Star catalogs are represented by a single object in the octree. This
means that the floating camera approach is not applied to every sin-
gle star at each frame. Instead, stars are sent to the GPU as VBOs
of float attributes. A configurable set of background threads continu-
ously index and update the stars, so that close-by stars are always well
indexed and quickly accessible. Accuracy problems would become ap-
parent only when the camera gets close to a particular star. Thus, for
the few stars which are close to the camera, Gaia Sky switches to a
billboard-based rendering and applies the floating camera transforma-
tion, eliminating the need to transform all stars at every frame.

Proper motions are instantaneous angular velocities of stars in the
sky. Tangential velocity vectors can be calculated when combining
proper motions with parallaxes. Additionally, when radial velocities
are also available, 3D velocity vectors can be obtained. Gaia Sky fea-
tures support for both tangential velocities and full 3D vectors. The
representation of proper motions in Gaia Sky is done via a straight-
line integration in the vertex stage of the star shader, given the instan-
taneous proper motion vector and the simulation time. This enables
real-time star movement when the time speed is set sufficiently high.
Since the represented star velocities are only a first-order approxima-
tion to the real motion, we limit the explorable time range, allowing us
to use a static octree structure.

4.4.6 Relativistic Effects Rendering

Both relativistic aberration and gravitational waves act at vertex level
in Gaia Sky. The relativistic effects manager is in charge of updating
the parameters and matrices needed for the relativistic effects. It is
updated every frame with the camera and the current time. During
the rendering stage, the shader programs are chosen depending on the
active relativistic effects, the respective uniform values are set (veloc-
ity direction vector and speed for the relativistic aberration and trans-

from gaia.cu9.ari.gaiaorbit.script import EventScriptingInterface

gs = EventScriptingInterface.instance()

gs.disableInput()

gs.cameraStop()

gs.setRotationCameraSpeed(20)

gs.setTurningCameraSpeed(20)

gs.setCameraSpeed(20)

gs.goToObject("Sol", 20.0, 4.5)

gs.setHeadlineMessage("This is the Sun, our star")

gs.sleep(4)

gs.clearAllMessages()

gs.goToObject("Earth", 20.0, 6.5)

gs.setHeadlineMessage("This is the Earth, our home")

gs.enableInput()

Fig. 18: Simple Gaia Sky script. First, the environment is prepared,
and the values for certain camera properties are set. Then, we move
the camera to the Sun and to the Earth, printing some messages on-
screen. The API is fully documented in the official Gaia Sky docu-
mentation [28].

formation matrix, wave frequency, wave parameters, and time for the
gravitational waves) and the draw call is issued normally. The shader
programs include functions to apply the relativistic transformations to
the positions of vertices according to the current state, passed via the
uniform values. In the vertex shader, the uniform values are gathered
and passed on to these functions, which compute a new position for
each vertex. This is done for every vertex rendered by Gaia Sky that
needs to be affected by the relativistic effects.

4.5 Time Control

There are two principal time frames in Gaia Sky. The real wall clock
time t and the simulation time frame τ are linked using a warp speed
factor, which applies to t and indicates how fast the simulation time
passes with respect to the wall clock time. The warp speed factor is
user-controlled and enables time-lapse effects. While t is used to up-
date all the entities that need a direct connection to the real time, such
as the integration of the forces acting on a spacecraft, τ is used to up-
date all properties of entities that need a temporal reference frame such
as the proper motions of stars or the planets’ positions and orientations.

4.6 Scripting Engine

The scripting engine enables the execution of user scripts to manage
and control the internal state of Gaia Sky. The script manager handles
the high-level asynchronous execution of scripts and defines a maxi-
mum number of concurrent scripts by a cap in the thread pool size.
Each new script runs in a separate thread and it is interpreted alongside
the main thread of Gaia Sky by the interpreter. The scripting interface
is of paramount importance for the production of outreach material
and the creation of stories. Figure 18 shows an example for a camera
motion between the Sun and the Earth with some text overlays.

4.7 Camera Recording and Playback

Gaia Sky offers a native method for recording and playing camera files
in order to aid in the production of audiovisual material. Camera files
contain a series of values defining the time and the camera state at each
frame. Each row in a camera file contains the current τ , as well as the
camera’s position, direction, and up vector. Camera files can be played
back directly from the UI or using the scripting API.

4.8 Camera Modes

There are four main camera modes in Gaia Sky, which affect camera
behavior and capabilities in various ways.

The focus mode makes the camera automatically track a focus ob-
ject. The camera normally points at the object, even though the view
direction can be changed, remaining relative to the focus’ position. It
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is possible to lock the position to the focus, so that the relative posi-
tion of the camera with respect to the focus is maintained, and also its
orientation so that the camera rotates with the object. The free mode al-
lows for free roaming in the scene. For maximum movement freedom,
a game controller with two analog joysticks can be used. The velocity
scaling depends on the distance to either the closest model object, or
to the origin of the reference system. The Gaia FOV mode projects
both fields of view of Gaia on the screen and overlays the CCD con-
figuration in focal plane. This allows the user to see what the current
simulation of the Gaia satellite sees. The spacecraft mode, shown in
Figure 7, puts the user in command of a spacecraft with a realistic en-
gine model with thrust, a power multiplier, and an optional drag. The
mode brings up the spacecraft GUI, which contains visual elements
to control the spacecraft parameters, as well as an attitude indicator
widget with the positions of the current velocity and anti-velocity vec-
tors. Finally, there are two camera behaviors available. The cinematic
camera behavior implements camera movement using the steering be-
havior principles laid out by Raynolds [26], which yields very smooth
camera movements suitable for creating videos and camera paths. The
non-cinematic camera behavior is a much more responsive implemen-
tation, more suited for interactive use.

4.9 Video Modes

There are five video output modes implemented in Gaia Sky, each
mode corresponding to a different scene graph renderer, as discussed
in Section 4.4.

The normal mode (the default) produces the output to screen as a
single scene. The planetarium mode, shown in Figure 15b, is cou-
pled with the frame output system to produce image sequences in az-
imuthal equidistant projection which can be encoded into fulldome
videos. The stereoscopic mode renders the scene twice, where either
parallel view, cross-eye, anaglyphic red-cyan, 3DTV, or VR profile can
be selected. The eye separation is a function of the distance to the fo-
cus object or can be set to a fixed value. The VR mode is implemented
in the VR spinoff branch of Gaia Sky, and makes use of the OpenVR
API, which is responsible for the necessary image transformations for
the supported headsets. Finally, in the panorama mode (Figure 15a),
the whole scene around the camera is pre-rendered six times with
90◦×90◦ field-of-view into a cubemap to create 360◦-videos.

4.10 SAMP Integration

Gaia Sky also provides a basic integration with the Simple Applica-
tion Messaging Protocol (SAMP) [30], which enables interoperability
of astronomical software by sharing data and providing linked views.
On startup, Gaia Sky looks for a preexisting SAMP hub. If found,
a connection is attempted. If not found, Gaia Sky attempts further
lookups at regular intervals of ten seconds. The only format supported
by Gaia Sky through SAMP is VOTable, through the STIL data loader.
The implemented features are VOTable loading, row highlighting, se-
lection broadcast, and point at sky coordinate. Since Gaia Sky only
represents 3D data, some assumptions are made upon receiving tables
from other programs via SAMP. If Gaia Sky does not find enough in-
formation in the table metadata to reconstruct positions, the table is
discarded. SAMP enables complex use cases like loading a table into
Topcat from VO, creating histograms and plots, and sending the table
to Gaia Sky for closer inspection in a galactic context (even VR), while
providing inter-application linked views.

5 PERFORMANCE

Gaia Sky targets common everyday systems such as laptops and desk-
top computers. The minimum system requirements are rather forgiv-
ing, due to the possibility to set low settings for graphics quality. A
system with an Intel Core i3 CPU, Intel HD 4000 or NVIDIA GeForce
8400 GS with 1 GB of VRAM, 4 GB RAM, and at least 1 GB of free
disc space should suffice. The frame rate of Gaia Sky depends largely
on the used graphics card, the graphics settings, and the type of ob-
jects that are enabled. For instance, certain graphics quality settings
will fetch higher resolution textures and use higher sample counts for
some effects, which will lead to lower frame rates on most systems.

In the LOD approach, the draw distance has obviously a huge impact
on the frame rate, as it determines the amount of data that needs to be
fetched in the background, as well as the number of stars on screen. In
general, the application runs at very high frame rates on gaming-grade
GPUs such as NVIDIA’s GTX lines. The GTX 1070, for example, is
able to pull between 150 and 200 fps with 5 million stars on screen.
Low-power integrated Intel GPUs, such as the UHD 620, common in
ultrabooks, run at between 30 and 60 fps, depending on what elements
are enabled and/or visible. It is, however, difficult to assess the perfor-
mance in a general manner, due to the sheer number of options given
to the user in terms of visuals and quality settings.

The different SGRs have an obvious impact on the performance. Ev-
ery loop cycle, the object model is updated only once, but depending
on the SGR in use, it may be rendered more than once. The stereo-
scopic SGR renders the scene twice with different cameras, as does
the VR SGR. The panorama SGR renders the scene six times and then
processes the equirectangular projection.

The GDR2 raw dataset contains around 1.7 billion sources and
weights 700 GB. In the preparation step, which is done only once,
the octree is generated. Using the 90.0% parallax relative error, yield-
ing a catalog of roughly 600 million stars, and a subdivision threshold
Nσ = 100,000, a system with 2 TB of RAM (only 500 GB of memory
were allocated to the generation process) takes about six hours, 2.8%
of which are spent reading the catalog into memory, 2.7% are spent
actually processing and generating the octree, and the rest for writing
the results. In the case of the geometric Bayesian distances catalog, the
resulting dataset contains 1.33 billion stars. The generation of this oc-
tree took about 14.5 hours, of which 5.8 hours were spent loading the
data, 7.7 hours generating the octree, and the rest writing the results.

5.1 Performance Comparison

We have evaluated the performance of other similar systems yielding
the following results. All evaluations were carried out using the same
system, with an i7-7700, an NVIDIA GTX 1070, and 16 GB of RAM.

Open Space. The default star catalog in Open Space contains
hundreds of thousands of stars. The frame rate we experienced was
around 30–40 fps when inside the Solar System, and around 150 fps
when navigating the stars. The frame rate in Open Space is inversely
dependent on the speed of time, reaching 1 fps when time speed is
200 days/second. Gaia Sky can handle many more stars at higher
frame rates, and a dependency on the time scale does not exist.

Celestia. Using the default settings, Celestia runs at a stable
60 fps. This includes, however, a limiting magnitude of 7.0 mag,
which contains only 14 K stars. When the limiting magnitude is in-
creased to the maximum setting (only 12.0 mag), the frame rate de-
creased to 40–50 fps. This may pose problems regarding scalability
to larger star catalogs. Gaia Sky is able and ready to handle catalogs
orders of magnitudes larger, without frame rate issues.

Space Engine. The performance of Space Engine is difficult to
compare to that of Gaia Sky due to the heavy usage of graphical effects
in the former. Most of the time, Space Engine runs at 60 fps. However,
Gaia Sky can handle many more objects at high frame rates.

6 CONCLUSION

We presented a system for visualizing the star catalog acquired by the
Gaia mission, with a special focus on its Data Release 2 (GDR2), com-
prising 1.3 billion stars. Due to its large size, this is the first star
catalog that requires effective handling of such data. The fact that
GDR2 includes brightness information and, in particular, high pre-
cision three-dimensional positional data, motivated our approach of
magnitude–space level-of-detail, a data access mechanism specially
tailored for the requirements of interactive stellar visualization. To
handle the large range of scales numerically, we presented a respec-
tive CPU/GPU approach for camera computations, partially based on
arbitrary-precision floating point calculation. We also presented our
recent additions to the system, including relativistic aberration, and
simulation of the visual effects of gravitational waves.
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