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ABSTRACT

In this paper, we present a novel visualization approach for the
analysis of fragmentation of molecules, with a particular focus on
fullerenes. Our approach consists of different components at dif-
ferent levels of detail. Whereas one component is geometric but
invariant to rotations, two other components are based on the topo-
logical structure of the molecules and thus additionally invariant
to deformations. By combining these three components, which
aim at the analysis of simulation ensembles of such molecules, and
complementing them with a space-time representation that enables
detailed interactive inspection of individual simulations, we obtain
a versatile tool for the analysis of the fragmentation of structured,
symmetrical molecules such as fullerenes. We exemplify the utility
of our approach using a tightly coupled simulation approach for the
dynamics of fullerenes.

Index Terms: Computing methodologies—Modeling and
simulation—Simulation types and techniques—Scientific visual-
ization; Human-centered computing—Visualization—Visualization
application domains—Scientific visualization

1 INTRODUCTION

Carbon is an integral part of all known lifeforms. Not only is it a
vital component in building cells for living organisms, but it also
gives rise to a rich variety of potential chemical bindings with excep-
tional properties. Often, carbon is studied in the form of fullerenes,
a category of carbon-based molecules that have seen many uses, in-
cluding semiconductors and superconductors. Among the fullerenes,
C60 (Figure 1a), also known as the buckyball, is of particular interest.
Having sixty atoms, it is large enough to result in a complex system
of coupled atom–atom interactions, and its symmetrical genus-zero
structure makes it an ideal example for studying complex carbon
bond systems, both experimentally and theoretically. To study bonds
of C60 experimentally, techniques such as laser pulse excitation are
commonly employed, which ionize the molecule and may tear it
apart into molecular fragments. While the final products of such
decay processes have already been studied extensively, the dynamics
of these processes remain an active research topic.

Since the experimental setups are, however, costly and time-
consuming, and typically cannot investigate individual molecules,
simulation and visualization aid the investigation of laser–fullerene
interactions with a special focus on its fragmentation. In this work,
we are particularly interested in comparing different simulations
among each other, in order to (i) analyze their average behavior,
(ii) study the influence of initial parameters, and (iii) highlight in-
teresting phenomena of a fragmentation process. To this end, we
introduce novel visualization techniques, encompassing different
levels of detail that range from highly coarse (characteristic curves)
to extremely detailed (fragmentation trees).
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Figure 1: Fragmentation process of a fullerene C60 that is positively
ionized by 44 elementary charges (qmean = 40, see Section 4). (a)
Initial state, not charged, state at (b) t = 125fs, and (c) t = 375fs
of the fragments. The molecule is represented with the ball-and-
stick model together with the fragment tree (colored), our space-time
representation of its dynamics. Atoms (balls) are colored by their
charge qi (in elementary charges). The deviation from the bond rest
length (in Å) is encoded in bonds (sticks) and in the fragment tree,
which is color-coded according to the maximum bond length of the
corresponding molecule fragment.

Our simulations are realized in the molecular dynamics frame-
work LAMMPS [11], which is capable of simulating intermolecular
forces. Each simulation addresses a single molecule, and follows
physical experiments by ionizing individual atoms of the molecule,
with Gaussian probability distribution. Ionization happens indepen-
dently of the position of a given atom, and in turn triggers Coulomb
forces that cause charged atoms to repel each other, possibly break-
ing molecular bonds, and eventually leading to fragmentation.

2 RELATED WORK

Molecular dynamics simulations are a common tool for investigating
fullerenes [9, 16]. Previous work on the analysis of the resulting
data includes an approach based on relative distances, in the con-
text of a low-velocity fullerene fragementation process [4]. This
approach shares similarities with our eccentricity-based approach,
but considers only two molecules, whereas our focus is on multiple
molecules (the molecule fragments).

As for the visualization of chemical processes, Wang et al. [15]
present several approaches that, using machine learning techniques,
build a hierarchy of the most important reactants (which correspond
to the fullerene fragments in our application). Their approach shares
similarities with our fragment tree approach but does not explicitly
address the time-dependency of the fragmentation process. Re-
garding the analysis of the fragmentation distributions, they plot
molecular size with respect to time, whereas we target the visualiza-
tion of fragment holes due to the particular structure of fullerenes.
Ahlstrom et al. [1] present a generic analysis approach that clusters
trajectory snapshots, and employs techniques from network analysis.
Their approach does not take into account symmetries that are inher-
ent to fullerene fragmentation, though. More weakly related works
include visualization of time-varying graphs, where nodes typically
represent distinct objects. In this context, feature-based visualiza-
tion, for example of communities [13] and group structures [14], is
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Figure 2: Overview of the interrelations and levels of detail (curved
arrows pointing to finer level) between our topological (orange) and
geometric (blue) components. The statistical methods agglomerate
results from multiple simulations (framed image stacks) into aggre-
gated views (single image). Their comparison serves as probability
estimation of individual results. Aggregations typically contain clusters
that can be inspected by spatial analysis.

particularly common. In some sense, our visualization technique
is more abstract, though, and focuses on invariant properties of a
graph (such as its number of cycles) because individual atoms are
indistinguishable between simulations.

3 METHOD

Our approach is a composite technique (see Figure 2) for comparing
different simulation runs of structured molecules, such as fullerenes,
to reveal structural differences, and assess to what extent a simula-
tion leads to stable results, i.e., whether sufficiently many runs of
the simulation have been performed to uncover typical fragmenta-
tion behavior. Our approach is motivated by the observation that
breaking molecular bonds in fullerenes, e.g., by laser pulses, causes
manifold structural changes in the molecule that necessitate tailored
visualization techniques. These techniques are closely integrated
with the simulation, i.e., there is a tight cycle between analysis and
simulation. This helps avoid costly postprocessing steps and storing
all generated data.

In the following, we assume that molecules are represented as
undirected graphs Gi = (Vi,Ei), where every atom corresponds to
a vertex v j ∈ Vi, and each bond forms an edge (v j,vk) ∈ Ei. We
denote the initial graph of a simulation by G = (V,E). For a time-
varying simulation with time steps T = {t0, . . . , tm}, time step ti
has an associated graph Gi. We call a connected component of Gi
fragment, because it represents a fragment of the original molecule.
The graphs of a simulation satisfy a nesting relationship, G j ⊆
Gi ⊆ G for 0 ≤ i ≤ j ≤ m and Vi = V for all i, because the set of
nodes remains the same, i.e., no atom is lost, and because, in the
investigated model bonds can only break. Figure 3 illustrates a part
of a fragmentation process and briefly introduces our method.

3.1 Eccentricities
Consider two separate fragmentation processes, each of which caus-
ing a molecule to lose a single atom. Suppose that, after separation,
the atoms of the two processes are traveling in opposite directions.
We want to consider these processes to be identical, which requires a
suitable (rotation-invariant) geometrical similarity measure. Inspired
by the theory of geometrical shape descriptors [17], we calculate
the eccentricity of a set of graphs. More precisely, we represent
every fragment j, i.e., every connected component, of the molecule
graph Gi by its center of mass ci, j . We then obtain the eccentricity

fe(ti, j) :=
1
ki

∑
l 6= j

d(ci, j,ci,l), (1)

5
6

d(ci+1,l ,ci+1,l+2)
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Figure 3: A fullerene fragment j (belonging to graph Gi) with its
atoms (dots) and bonds (black lines) drawn with low saturation. Three
cycles are visible around its center of mass ci, j (circle). A short time
after ti, the bonds marked in red break, resulting in one of the cycles
being broken and subfragments l, l +1, and l +2 being created (each
belonging to Gi+1). Our method derives several quantities, namely the
distances between the centers of mass (dotted lines; Section 3.1), the
number of cycles (Section 3.2), cycle lengths (colored numbers; Sec-
tion 3.3), and the trajectories (dashed lines) that connect fragments
over space and time (Section 3.4).

where d(·, ·) refers to the Euclidean distance, and ki to the number of
connected components of Gi. Calculating the eccentricity for every
fragment and every time step results in a distribution (Figure 4),
which we use to summarize the fragmentation process.

3.2 Characteristic Curves
The approach of Section 3.1 is geometry-based, so we complement
it with a topological approach to analyze the individual graphs Gi.
Topological analysis, focusing on connectivity of the components
in Gi, has the advantage of being robust against various continuous
deformations and even perturbations, while at the same time being
sufficiently expressive to support data analysis. Here, we calculate
the first Betti number β1 [5, p. 130] for each ti ∈ T , i.e.,

β1(ti) := mi−ni + ki, (2)

where mi denotes the number of edges of graph Gi, ni the number of
its vertices, and ki its number of connected components. β1 counts
the cycles, i.e., structural holes, in a given graph. For example, in
Figure 3, we have β1(ti) = 14− 12+ 1 = 3 and β1(ti+1) = 11−
12+ 3 = 2. When the molecule is subjected to, e.g., laser pulses,
bonds are breaking down, resulting in increased fragmentation of the
graph. As the number of fragments increases, however, the number
of cycles necessarily needs to decrease. We obtain the characteristic
curve of a simulation as fc(t) := β1(t). Figure 5 depicts examples
of characteristic curves for varying laser-excitation energies, leading
to different atomic charges q (discussed in more detail below).

Since fc(t) is a piecewise linear function, calculating its mean is
well-defined. This is useful because we are rarely dealing with single
simulations, the stochastic nature of the experiment makes it nec-
essary to work with ensembles of simulations. Given an ensemble
that purports to model an experiment, we use the theory of bootstrap
empirical processes [2] to obtain nonparametric confidence band
estimates. We will use these estimates in Section 4 to determine
whether a given number of simulations is suitable, or whether more
simulations are required to describe the properties of the experiment.

3.3 Fragment Holes
The fragmentation of a complex molecule is a highly dynamical
process with a variety of intermediate states, requiring detailed
inspection of selected cases. Our characteristic curves provide the
number of cycles, which is related to the number of rings in C60.
To study how cycles change and merge over time, we want to take
their size into account. This will also help us describe the structural
stability of the simulation over time.
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Figure 4: Histograms of eccentricities with Gaussian fit (orange),
showing the pairwise distances of fragments at the final time step.
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Figure 5: The behavior of characteristic curves for different excitation
energies depends on whether a fixed charge (no stochastic variation),
or a varying change (following a Gaussian distribution) is used.

As another topologically-motivated approach, we propose using
the number of simple cycles, i.e., closed walks with no repetitions of
edges and vertices (except for the start vertex), of the corresponding
graph Gi at time ti as a structural descriptor of the fragmentation
process. Since enumerating all simple cycles is computationally
unfeasible [7], we calculate a cycle basis [10], a minimal set of
cycles that serves to describe all simple cycles of the graph. Given
such a set of basis cycles {c1, . . . , ck}, every cycle c of the graph can
be written as c = ∑

k
i=1 λici, with λi ∈ {0,1}. In Figure 3, the green

and orange cycle form a potential cycle basis of the highlighted
connected component.

Calculating the length of every basis cycle yields a distribution of
cycle lengths for every time step in the simulation. All quantities in-
volved in these calculations are integers, so we represent a complete
simulation by an L×|T | matrix MH , where L denotes the maximum
length of a cycle (i.e., the number of edges in the graph representing
a molecule), and MH

l,t stores the number of basis cycles with length l
at time step t of the simulation. Each simulation gives rise to a
different MH , so we calculate their mean and normalize over every
column to ensure that we capture the most dominant cycle length
per time step. We visualize the resulting matrix using a heat map. It
describes the structural stability of the simulation over time—large
changes in the overall structure of the matrix coincide with large
changes in the topological structure of the molecule. Figure 6 depicts
an example, which we will subsequently discuss in more detail.

3.4 Fragment Trees
So far, we have seen how to describe the behavior of a fragmentation
process in a summarizing manner from different perspectives. How-
ever, we still need a direct visualization approach for individual time
steps to enable a detailed understanding of selected cases. Above, we
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Figure 6: Simple cycles (fragment holes), averaged over simulations
with varying charge qmean. Only the relevant initial phase is shown.

discussed the nesting relationship of the individual graphs of a sim-
ulation. By keeping track of how the connected components change
during the simulation (i.e., by keeping track of when fragments are
created), we obtain the fragment tree. Figure 3 depicts the main idea
of this representation: every directed edge of the tree represents a
connected component of Gi, and every inner node indicates a split
into multiple subgraphs, providing a space–time representation of
fragmentation, i.e., of fragment trajectories. To this end, we cal-
culate the center of mass for each connected component, i.e., each
fragment, and connect fragments according to the hierarchy defined
by the split events.

Visual Encoding Atoms are colored by their charge to indicate
repulsion due to Coulomb forces (red: strong repulsion, white:
default). Bonds are colored according to the “tensions” induced
by atom–atom distances. A blue–white–red color map is used to
indicate distances shorter than the equilibrium distance (blueish), and
larger than the equilibrium distance (reddish). Red bonds therefore
indicate a potential break. The fragment tree is represented by
tubes. In addition to the topological information, they encode further
information via their radius and color. The tube segment of given
fragment has radius proportional to its bounding sphere. The color
corresponds to the maximum bond length within that fragment. In
space-time representations, it can indicate separation dynamics and
helps reveal temporal oscillations (striped tubes).

Variants Figure 1c depicts an example of a fragment tree. Vari-
ants of the fragment tree for the same time step are also shown in
Figure 7 for comparison. Direct visualization (Figure 7a) shows
the molecule fragments. Since the ball size is constant in physical
space, it conveys depth. Animations could provide further tempo-
ral context, but would complicate perception. One way to provide
temporal information in a stationary manner is to represent multiple
time steps [3, 6] (Figure 7b), here, with a temporal resolution of
5fs. The velocities of individual atoms are indicated by the spacing
between consecutive time steps, and rotations by the “lines” of balls
and “surfaces” of bonds. Nevertheless, this approach tends to suffer
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Figure 7: Comparison of spatio-temporal visualizations at example
of Figure 1c. (a) Direct visualization of fragments, (b) center of mass
trajectories by molecule snapshoting, (c) trajectories for each indi-
vidual atom, and our fragment tree approach (d) without additional
quantities, and with focus on fragments (e) and tree (f).

from visual clutter. To reduce clutter, only trajectories for each atom
could be shown (Figure 7c). They are capable of visualizing paths
and indicating any rotating fragments. Nevertheless, especially for
larger fragments, Figure 7d demonstrates that a plain fragment tree,
used in combination with direct visualization of atoms, can further
reduce clutter. Clutter could also be resolved by a 2D layout of the
graph. Such an approach would, however, lose geometrical infor-
mation, necessitating to introduce another direct view for spatial
inspection. To address possible clutter, we instead propose two
transparency-based modes (Figure 7e and 7f), which focus on the
fragments and the fragment tree, respectively.

4 RESULTS

For demonstration, we overview interrelations and levels of detail
between our approaches in Figure 2. From the coarsest level of
detail to the finest one, we have the following steps: (i) visualization
by means of eccentricities, describing the fragmentation process
with respect to relative positions of the fragments, (ii) computation
of characteristic curves for determining the influence of excitation
energies, (iii) calculation of fragment holes for assessing the
influence of different excitation energies, and (iv) interactive
visualization using fragment trees to enable in-depth analysis of
individual simulations. For some of these stages, we consider two
models for ionization, namely fixed charge (i.e., assuming that
the excitation of a molecule results in an instantaneous ionized
charge q), and varying charge (where the ionization probability is
proportional to a Gaussian distribution, with qmean being the charge
that is ionized on average). In the following, we will comment on
these aspects.

Eccentricities We first consider a geometry-based analysis ap-
proach by eccentricities, analyzing the behavior of simulations for
different parameters. Figure 4 depicts histograms of the eccentricity
values for the last time step (t = 750fs). We first compare the be-
havior of fixed charges versus varying charges. For a fixed charge
with q = 3, we obtain a peak at an eccentricity of around 3Å. This
corresponds to cases where a single atom is multiply charged, result-
ing in broken bonds to its neighbors, but none of these are charged,
resulting in a small repelling force. For an eccentricity of 32Å,
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Figure 8: Characteristic curves, calculated alongside the simulations,
help detecting the variability of an ensemble of simulations. The
95% confidence band becomes tighter with increasing ensemble size,
showing that the mean function is a suitable descriptor.

the bonds between two neighboring atoms, each positively charged,
are broken. The direct neighbors repel each other, resulting in a
larger distance and thus higher eccentricity. In rare cases (eccen-
tricity of 55Å), two neighboring atoms lose all bonds to the rest
of the fullerene. They then repel each other without bond forces.
For qmean = 3 and varying charges, we observe a larger variety of
eccentricity values. This is due to the fact that more charges are pos-
sible within the molecule. Notice that the number of eccentricities
is different from those of the other intensities, since it is unlikely
that an atom is separated from the molecule. When we perform an
overall comparison of fixed charge and varying charge, we observe
that the distribution of eccentricity values appears to be normally
distributed. For fixed charges, however, this is not the case.

Characteristic Curves Since fragmentation experiments are
highly stochastic by design, it is necessary to run numerous simula-
tions (on the order of 103) in order to reasonably capture the average
behavior of the system. The characteristic curves (Section 3.2) sum-
marize the average behavior of the simulation by showing a running
average of the number of cycles in the molecular graph. Since
the curves are calculated alongside with the simulation, the confi-
dence bands around the mean curve can be continuously updated as
more simulations are run. Figure 8 shows the difference in confi-
dence bands for 10 simulations and 100 simulations for qmean = 40.
For these parameters, the confidence band remains stable after ap-
proximately 100 simulations, indicating that a sufficient number of
simulations have been run to study the average behavior.

We may also use this method to study the effects of parameter
changes in simulations. Figure 5 shows a comparison of different ex-
citation energies; higher excitation energies typically result in more
fragments, and domain experts commonly perform simulations and
experiments for different energies in order to cover a large range of
conditions for real-world fragmentation processes. The simulations
turn out to describe different fragmentation processes: with a fixed
charge, simulations fragment almost uniformly (Figure 5a), whereas
with a varying charge (Figure 5b), the difference is more distinct.
Both types of simulations eventually reach the same equilibrium,
though, after which no more fragments are being created. In the
curves, this is indicated by a horizontal line, meaning that the num-
ber of structural holes (simple cycles) does not change anymore. We
thus conclude that the difference in excitation energy is minuscule,
as long as we are only interested in the end result of the fragmenta-
tion process. Understanding the differences in how fragmentation
occurs, requires the fragment holes visualization, however.

Fragment Holes Analysis by means of fragment holes provides
more detailed insights into the fragmentation process for varying
energies. Figure 6 depicts the results for 1000 simulations each,
focusing on the first 100 time steps (corresponding to 250 fs; no
large changes show up afterwards). The dominant feature of every
simulation, regardless of excitation energy, is a set of short cycles
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Figure 9: (a), (b): Fragment hole visualization of two simulations with
equal eccentricity values (approximately 205Å) at the final time step.
(c), (d): Corresponding fragment trees for q= 60 and t = 175fs. Please
refer to Figures 1 and 6 for the color legends.

of length 5. This means that a large part of the molecular structure
remains stable over this part of the simulation. For higher excitation
energies (qmean > 10), cycles with longer lengths (> 10) rapidly
vanish as the simulation progresses; already after approximately
50 time steps (125 fs), activity for higher-length cycles ceases. No-
tice that this is the average behavior of the fragmentation process.
Individual simulations may exhibit deviations from the mean. In
order to fully understand these deviations, we look at individual
simulations at the most detailed level, and study the progression of
the fragmentation process by means of the fragment trees.

Fragment Trees So far, all our methods provide an overview
of the fragmentation process, using various different visual repre-
sentations. We now want to focus on an individual simulation. The
histogram of the eccentricities (Figure 4) for q = 60 exhibits several
pronounced peaks, forming regions in the distribution. To check
whether the dynamics of individual simulations within such a region
are different or not, we use the fragment hole visualization approach
for single time steps and observe structural differences (Figure 9a
and 9b) in two selected samples. We use the fragment tree (Fig-
ure 9) to perform a detailed inspection: one of the samples has a
cycle basis containing a single cycle of length 5, while the other
dataset has an empty cycle basis. The remaining cycle can be easily
identified in the corresponding fragment tree (Figure 9c), while the
other fragment tree (Figure 9d) depicts a more complex branching
in its fragmentation dynamics; we observe that one fragment even
breaks into 9 subfragments, one of those branching once more (red
polygon). By contrast, as shown in Figure 9c, fragmentation mainly
takes place in the beginning.

5 CONCLUSION

In this paper, we presented a novel approach for analyzing molecule
fragmentation, using the fullerene C60 as an example. Our approach
consists of components with varying levels of detail (from coarse
to fine: eccentricities, characteristic curves, fragment holes, and
fragment trees). We exemplified their use to study the influence

of parameters of the underlying simulations, their stability, and the
fragmentation behavior of fullerenes.

There are several potential extensions for future work. First,
evaluating different strategies for assessing dissimilarities of frag-
mentation trees (e.g., using graph Laplacians [8]) may prove useful.
Second, the description of the molecular graphs and their nesting
relationship enables the usage of techniques from computational
topology, such as persistent homology for determining structural
features [12]. One could also improve the fragment holes visual-
ization to enumerate cycles of minimum length. This is likely to
require complex heuristic search strategies, as the general problem
of finding shortest cycles has an exponential complexity.
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