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Abstract

In this paper, we show how the equivalence property leads to the novel concept of equivalent regions in mappings from R
n to

R
n. We present a technique for obtaining these regions both in the domain and the codomain of such a mapping, and determine

their correspondence. This enables effective investigation of variation equivalence within mappings, and between mappings in

terms of comparative visualization. We implement our approach for n = 2, and demonstrate its utility using different examples.

CCS Concepts

• Human-centered computing → Visualization techniques; • Applied computing → Mathematics and statistics;

1. Introduction

One of the most basic problems in data analysis is to find a given
value in a dataset. If the value is a scalar and the dataset a scalar
field, the result are contours. That is, except for the values of local
extrema, there are manifolds consisting of infinitely many points
exhibiting such a value. This, on the other hand, means that in
general, such analysis requires exploration by means of, e.g., in-
teractive isocontour visualization. If, in contrast, the given value is
a vector of dimension n, and the dataset is an n-variate (n-vector)
field in n-dimensional space, the loci exhibiting that value are, in
general, isolated points. This can be explained by regarding the n-
variate field as a set of n scalar fields in n-dimensional space, and
the given vector as the intersection of respective isocontours. If the
contours intersect at more than one location, the respective points
have the same vector value, i.e., are equivalent, and we denote their
count as the multiplicity of the mapping for this given vector value.

The properties central to this paper are this equivalence and mul-
tiplicity in nD n-variate mappings, or in other words, nD vector
fields. For simplicity, we denote these fields as vector fields where
advantageous, although the main application of this work are 2D bi-
variate mappings, such as temperature and pressure defined on a 2D
domain, i.e., n = 2. Our approach exploits the “dual” representation
of such mappings, where position is interpreted as vector value, and
vector value as position. This dual representation is closely related
to continuous scatterplots [BW08]. We complement the discontinu-
ities in continuous scatterplots due to Lehmann and Theisel [LT10]
with additional curves of discontinuity, which enables us to confine
the regions of uniform multiplicity both in the codomain and the
domain. The resulting equivalence relation between these regions
finally establishes our equivalent regions, whose utility for inves-
tigating equivalence within and across such mappings we demon-
strate with different examples.

The contributions of this paper include:
• the concept of equivalent regions in nD n-variate mappings,
• extraction of equivalent regions, both in domain and codomain,
• interactive exploration based on the mapping between these, and
• application of equivalent regions for comparative visualization.

2. Related Work

This paper was inspired by the observations that led to the devel-
opment of continuous scatterplots [BW08] and continuous paral-
lel coordinates [HW09]. The authors of both publications analyze
mappings of the form x : Rn → R

m, with n 6= m typically, in a con-
tinuous manner instead of a discrete one by taking into account
the structure of the domain. In particular, continuous scatterplots
focus on a precise description of density variations arising from
x, i.e., from the mapping. Lehmann and Theisel [LT10], targeting
n = m = 2 and n = 2,m = 3, were the first to describe how the map-
ping induces variations in continuity. Their work is thus a precursor
to our paper; we extend their concepts in terms of the implications
of equivalence within mappings, which permits us to describe more
phenomena that arise within this context (see Section 4 and in par-
ticular Section 4.7 for a more detailed discussion of differences).

Recently, the study of multi-field datasets, i.e., mappings in
which m ≥ 2, has been improved by the introduction of Reeb
spaces [EHP08], a concept analogous to Reeb graphs [PSBM07]
that are commonly used in the analysis of scalar fields. This led to
the development of joint contour nets [DCK∗12, CD13, CD14], a
technique that quantizes all contours of a bivariate function indi-
vidually, thereby permitting an analysis of simultaneous changes in
both variables. An extension of this work was introduced by Carr
et al. [CGT∗15] in the form of fiber surfaces, which also focus on
bivariate functions, i.e., m = 2, with a specific restriction to n = 3.
These surfaces permit segmenting the range of the mapping into
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regions of similar behavior, which is somewhat similar to the re-
gions of equivalence that we extract for the case n = m. However,
the authors note that the extraction of fiber surfaces requires using
the marching cubes [LC87] algorithm and does not always result
in an exact solution, whereas our method is guaranteed to result in
geometrically exact regions. While the missing exactness of fiber
surfaces was solved in a followup paper by Tierny et al. [TC17],
their use case (n = 3, m = 2) is still different from ours.

3. Motivation

Let us start with a simple 1D example to motivate our approach and
build intuition of its applicability and interpretation. It consists of a
1D scalar-valued function, i.e., mapping a scalar in the domain Ω
to a scalar in the codomain Ψ. Figure 1a illustrates the graph of
such a function, in traditional domain-based representation, while
Figure 1b illustrates it in the codomain. In Figure 1a, we identify
what we later define to be boundary points B1 and B2, and silhou-
ette points S1 and S2. Whereas the value of the boundary point B2

is unique, and therefore does not provide projections on the graph,
the value of the boundary point B1 appears three times in the data,
leading to two projected boundary points B1

1 and B2
1 . Similarly, the

value of the silhouette point S2 is unique, but the value of S1 ap-
pears twice, leading to one projected silhouette point S1.

Figure 1b illustrates the “folded domain manifold”, i.e., that the
function attains the intervals α, β, and γ in the codomain one, two,
or three times (circled numbers). These values represent what we
later define to be the multiplicity field in the codomain. Mapping
these values to the domain leads to respective intervals a, b, c, and
d in the domain (Figure 1a), with multiplicity indicated by circled
numbers. Notice that in the domain, region b exhibits a symme-
try point (S2) and thus “folds on itself”, leading to multiplicity 2.
Region a also exhibits a symmetry point (S1), but at the same time
“folds” on region c, leading to overall multiplicity 3. Finally, region
d has multiplicity 1, i.e., it exhibits values that are unique.

From the mapping, we can determine correspondences. In our
example, α corresponds to d, β corresponds to a and c, and γ corre-
sponds to b. As a consequence, we will define the regions a and c to
be equivalent, because they exhibit the same values, in a continuous
manner. Equivalent regions provide the overall structure of equiv-
alence in n-variate nD fields. In vector field topology [HH89], for
example, separatrices split the domain into regions of qualitatively
similar flow behavior. That is, instead of having to examine all pos-
sible streamlines within a vector field, it is, for many purposes, suf-
ficient to investigate a single streamline for each of these regions,
since all streamlines within such a region are similar. In our case,
the equivalent regions provide the structure of equivalence. That is,
if we are interested in a certain location in the domain, and this lo-
cation is contained in a region with multiplicity µ, we know that
there are µ points in total that exhibit that respective value. And the
equivalent regions show the locations where these values are. At
the same time, we know that if we move around in an equivalent
region without leaving it, the number of points with identical value
will not change, which strongly supports (interactive) analysis. For
example, if we move around in region b, we know that there will
be always one additional point having the same value and that this
point will be on the opposite side of the symmetry point S2. Cross-
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Figure 1: Simple 1D example. (a) Function in domain Ω repre-

sentation, with boundary points B1 and B2, silhouette points S1

and S2, projected boundaries B1
1 and B2

1 , projected silhouette S1,

multiplicities (circled), and equivalent regions (letters). (b) Corre-

sponding representation in codomain Ψ, illustrating “folding”.

ing the projected boundaries B1
1 or B2

1 will, instead, e.g., cause an
additional point with identical value originate at a distinct location.
For example, crossing B2

1 from b to c will involve a point entering
a at B1. We would like to refer the reader to the video in the sup-
plemental material for further demonstrations of these properties.

Let us now assume that Figure 1a represents data from the stock
market, i.e., the abscissa represents time, and the ordinate repre-
sents value. If we are interested in values that are attained often, we
look for equivalent regions with high multiplicity. The equivalent
regions in the domain then represent the time intervals at which
these values occur. We can also find rare configurations by investi-
gating regions with low multiplicity. One difficulty with equivalent
regions, however, is that they are exact, and that large data with high
variation will lead to many small equivalent regions (assume in our
example, that the graph from Figure 1a is much longer with random
variation). The reason for this is that each additional local mini-
mum or maximum causes an additional “fold” and thus increases
the multiplicity of at least one equivalent region and generates at
least one new region. However, if one is interested in the fine-scale
structure of such data, one has to take the many small regions into
account, similar to vector field topology which exhibits extremely
complex topological skeletons for, e.g., turbulent flow. Neverthe-
less, inspired by persistence concepts, a straightforward approach
to obtain an overview with our technique, is to smooth the data,
e.g., using Gaussian smoothing, to get rid of small “bumps”, i.e.,
local minima and maxima that have low persistence. We exemplify
the utility of such smoothing for large-scale analysis in Section 6.3,
where we analyze climatic equivalent regions, i.e., climate zones.

4. Equivalence in nD n-variate Fields

The subject of our work are continuous n-dimensional mappings
u(x), which assign to each position x ∈ Ω ⊂ R

n a vector value u ∈
Ψ ⊂ R

n, with Ω being the domain, and Ψ being the codomain, i.e.,
mappings u : Ω → Ψ. Figure 2a shows an example of such a map.

4.1. Inverse Mapping and Multiplicity

From u(x), we can derive its inverse mapping x : Ψ → Ω, which we
denote x(u). Notice that, in general, this mapping maps a point in
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Figure 2: Mapping u(x) (R2 → R
2) in domain (left column)

and codomain (right column). (a) Field in domain representa-

tion. Space by arrow position, value by arrow orientation/length.

(b) Field in codomain representation, showing only value, due

to varying cardinality of preimage. Mapping u(x) maps domain

manifold (c) to codomain, i.e., distorts and “folds” it (d), lead-

ing to varying number of “layers”, i.e., multiplicities µ(u) (f). As

previously shown [LT10], silhouette curves (green) and boundary

curves (red) ((d) and (e)) separate regions of uniform µ(u).

Ψ to a set of points in Ω, i.e.,

x(u) := {x | u(x) = u} . (1)

Figure 2b shows the codomain of the field from Figure 2a. Notice
that in such basic visualizations in the codomain, our arrows dis-
play u instead of x, because for visualizing x, one would need to
draw a set of arrows at each point u in Ψ.

This leads us to the multiplicity µ(u), i.e., the cardinality of x(u):

µ(u) := |{x | u(x) = u}| . (2)

Since u(x) maps each point in Ω to exactly one point in Ψ, and
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Figure 3: Mapping from Figure 2, same color-coding. (a) Multi-

plicity µ mapped to domain (from Figure 2f). Silhouette curves S
and boundary curves B (Figure 2e) do not separate regions of uni-

form µ(x). (b) “Projection” of S (blue) and B (orange) on manifold

“layers” (see also (d)). (c) Projected S and B from (b) separate re-

gions of uniform µ(x) in domain. (f) Uniform regions extracted in

codomain from S and B (Figure 2f), and uniform regions extracted

in domain from projected S, projected B, and B (e). Equivalent

region correspondence by colors ((e) and (f)).

since Ω is an n-manifold (Figure 2c), one can interpret this mapping
as a “deformation”. That is, in Ψ, this manifold is distorted, and at
values u with µ(u) > 1, it is folded, leading to µ “layers” of the
manifold (see Figure 2d and 2f).

4.2. Silhouette Curves and Boundary Curves

As has been shown by Lehmann and Theisel [LT10], the resulting
regions with uniform µ(u) in the codomain (Figure 2f) are sepa-
rated by silhouette curves S and boundary curves B (please notice
that Lehmann and Theisel denote our silhouette curves as critical
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curves). While the boundary curves are simply the boundary of Ω,

BΩ := ∂Ω , (3)

silhouette curves S separate “front-facing” manifold regions from
“back-facing” ones in the codomain (Figure 2d). If the mapping is
given on a simplicial complex, silhouettes separate simplices with
opposite handedness in Ψ. Generally, in the continuous case, and
in grids with nonlinear interpolation, silhouette curves represent the
zero-level contours of the Jacobian determinant [LT10]:

SΨ := {u | det∇u(x) = 0} . (4)

Whereas Lehmann and Theisel focused on continuous scatter-
plots, and thus on the codomain, we focus on the mapping between
Ω and Ψ in terms of equivalence. Thus, whereas they were looking
at SΨ and BΨ, i.e., silhouette curves and boundary curves in the
codomain (Figure 2f), our first step is to include SΩ and BΩ, i.e.,
silhouette curves and boundary curves in the domain (Figure 2e):

SΩ := {x | det∇u(x) = 0} (5)

and

BΨ := {u | ∃x ∈ BΩ : u = u(x)} . (6)

As a basis for the mapping between Ω and Ψ, we also obtain the
multiplicity µ(x) in the domain:

µ(x) := |{ξξξ | u(ξξξ) = u(x)}| . (7)

The color-coded values in Figure 3a show an example of multiplic-
ity µ(x) in the domain. Interestingly, it can be seen that SΩ and BΩ

(green and red in Figure 3a) do not separate regions of uniform µ(x)
in the domain. Thus, we first need to derive respective curves that
accomplish this. (Nevertheless, we will see later, that SΩ provide
information about symmetries in equivalence.)

4.3. Projected Silhouettes and Projected Boundaries

Since the domain manifold is folded in Ψ (Figure 2d), we can
“project” SΨ and BΨ on the manifold in the codomain, i.e., on all
other “layers”, providing projected silhouettes SΩ in the domain:

SΩ := {x | u(x) ∈ SΨ} \ SΩ (8)

(blue in Figure 3c), and projected silhouettes SΨ in the codomain:

SΨ :=
{

u | ∃x ∈ SΩ : u = u(x)
}

(9)

(blue in Figure 3b and 3d). Notice that “outlining” silhouettes are
not contained in the projection (cf. Figures 2d and 3b). Correspond-
ingly, we obtain projected boundaries BΩ in the domain:

BΩ := {x | u(x) ∈ BΨ} \ BΩ , (10)

(orange in Figure 3c), and projected boundaries BΨ in codomain:

BΨ := {u | ∃x ∈ BΩ : u = u(x)} (11)

(orange in Figure 3b and 3d).

We already see in Figure 3c, that the union of SΩ and BΩ does
the job of separating regions of uniform µ(x) in the domain. That
is, we achieved the counterpart to Lehmann and Theisel’s approach,
i.e., we extended it from the codomain to the domain.

The explanation why the union of SΩ and BΩ is the required set
of curves to delineate regions with uniform µ(x) in the domain is
as follows (we assume nondegenerate configurations, i.e., SΨ and
BΨ must not be (partially) congruent):
1. SΩ are contours (Equation 4), and thus closed curves (possibly

including BΩ). Assuming that u(x) is continuous and nondegen-
erate, it maps these curves to closed curves in the codomain.

2. As can be understood from Figure 2d, SΩ do not separate regions
of different multiplicity µ(x) in the domain because neighboring
points that are on either side of SΩ (Figure 2e) are located on the
same side of the respective SΨ in the codomain, and therefore
have the same multiplicity.

3. Removing (intersecting) closed curves (SΩ in Equation 8) from
(intersecting) closed curves results in closed curves (since this
cannot generate endpoints).

4. Therefore, and since silhouette curves and boundary curves sep-
arate different multiplicities in the codomain, the projections SΩ

and BΩ have to separate regions of uniform µ(x) in the domain.

4.4. Equivalent Regions

The last steps to obtain the equivalent regions are to extract the
regions of uniform µ in the domain as well as in the codomain, and
to establish correspondence between them.

Since we now know that these regions are delineated by GΩ :=
SΩ ∪BΩ ∪BΩ in the domain, and by GΨ := SΨ ∪ BΨ in the
codomain, the extraction problem reduces to finding all smallest
closed loops in GΩ and in GΨ. To this end, one can trace the re-
sulting graphs G·, taking always the “leftmost” branch, labeling
the visited edges (each inner edge being visited twice), and obtain
the regions from these loops. This results in a respective set of re-
gions RΩ in the domain, and a set of regions RΨ in the codomain.
Finally, correspondence cΩ→Ψ between a region rΩ ∈RΩ and the
respective region rΨ ∈RΨ can be established by:

cΩ→Ψ(rΩ) := {rΨ | ∃x ∈ rΩ : u(x) ∈ rΨ} . (12)

As discussed, |cΩ→Ψ(rΩ)|= 1, i.e., for each rΩ there is exactly one
corresponding rΨ. Conversely, the correspondence cΨ→Ω between
a region rΨ ∈RΨ and region(s) rΩ ∈RΩ is obtained by

cΨ→Ω(rΨ) := {rΩ | ∃x ∈ rΩ : u(x) ∈ rΨ} , (13)

and in this case, |cΨ→Ω(rΨ)|= µ(u) with u ∈ rΨ. Figure 3e and 3f
shows an example of this mapping, correspondences by colors.

4.5. Equivalent Variation and Symmetry

So far, we obtained in the codomain regions rΨ with uniform mul-
tiplicity, as well as in the domain respective regions rΩ, and estab-
lished their correspondence in terms of cΩ→Ψ and cΨ→Ω. Let us
now examine the interpretation of these regions and their interre-
lation. Figure 4a shows RΩ in the domain, and Figure 4b shows
RΨ in the codomain, both with color-coded correspondences and
respective arrow glyphs. Let us start with the green upper region in
Figure 4a (and lower in 4b), denoted with (i). We marked the cor-
respondence between the domain and the codomain for the points
(1)–(5) of this region. We observe, that each of the points (2)–(4)
is present two times in the domain, whereas it is present only once
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Figure 4: Mapping from Figure 2. ((a) and (b)) Same as Figure 3e and 3f, but with arrow glyphs and point correspondences (1)–(10).

((d) and (e)) Equivalent regions (ii) from (a) and (b). (c) Equivalent regions that exhibit symmetry lines (green curves).

in the codomain, i.e., the respective pairs are mapped to the same
point in Ψ, or in other words, they exhibit the same vector value.
This is consistent with the obtained µ(u) = 2 for this region. On
the other hand, its points (1) and (5) are present only once both in
the domain and the codomain. We conclude that region (i) folds on
itself when mapped from Ω to Ψ (see also Figure 8c), and that there
is a curve from (1) to (5) along which the region folds. As we will
detail below, we call such curves symmetry lines, and they repre-
sent the silhouettes SΩ in the domain (green curves in Figure 4c).

Since region (i), denoted here as rΩ(i), folds on itself, it consists
of two parts, one on either side of the symmetry line. Since each of
these parts is by definition connected, and since both map continu-
ously (due to u(x)) to the connected region rΨ(i) in the codomain,
these two parts exhibit equivalent variation of value. That is, there
is a continuous bijective spatial transformation in Ω that transforms
one part to the other, such that their vector values match (notice
that, for representing equivalence, the vector directions and magni-
tudes are not affected, i.e., not rotated, by this deformation).

Although we do not exploit these transformations explicitly in
our current approach, they can be formulated for equivalent regions
without symmetry as follows (in case of symmetry, one would need
to treat the parts separated by symmetry lines as distinct regions in
this consideration). Let ci

Ψ→Ω(rΨ) be the i-th correspondence from
cΨ→Ω(rΨ). Then,

φφφi
rΩ
(x) :=

{

ξξξ | ∃ξξξ ∈ c
i
Ψ→Ω (cΩ→Ψ(rΩ)) : u(ξξξ) = u(x)

}

(14)

transforms points x ∈ rΩ from rΩ to the i-th equivalent region.

Besides folding of a single region, multiplicity can also be gen-

erated by distinct regions in Ω that map on each other in Ψ. What
we often observed are combinations thereof, i.e., regions that fold,
and additional regions that map on the folded regions. The regions
(ii)1 and (ii)2 in Figure 4a (green in Figure 4d and 4e) are an exam-
ple for such a case. Both map to region (ii) in the codomain (Fig-
ure 4b), however, (ii)2 folds along a symmetry line (green curve in
Figure 4c) that goes from (6) to (10), i.e., each of the pairs (7)–
(9) maps to a single point in Ψ. But at the same time, region (ii)1

maps to region (ii) in Ψ too, without folding. Notice that there are
eight regions in Ω that map to region (ii) in Ψ, with a resulting
multiplicity of 10, i.e., two symmetry lines are involved here.

In general (including regions that do not exhibit a symmetry
line), there is always a continuous bijective transformation that de-
forms one equivalent region into another inside the domain, such
that their multivariate values match. In other words, equivalent re-

gions exhibit equivalent variation of multivariate value with respect
to such a transformation. Put another way, each point in the do-
main is contained in one equivalent region, and there are µ−1 ad-
ditional points contained in the equivalent regions that exhibit the
same value. Thus, equivalent regions cover the same multivariate
values, and they exhibit the same multivariate variation under the
abovementioned continuous transformation. Thus, they provide a
concise representation of equivalence, which otherwise would need
to be explored interactively in a tedious process (see also the video).

Concerning the role of SΩ as symmetry lines, remember that SΩ

are zero-level isolines of the Jacobian determinant, and thus depict
those loci where ∇u(x) has at least one zero eigenvalue. This, on
the other hand, means that there is an (eigenvector) direction in
which the vector field u(x) does not vary. In traditional reflection
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Figure 5: Comparative visualization of mapping from Figure 2 ((a)

and (c)), and a similar field ((b) and (d)). ((a) and (b)) LIC [CL93],

with higher magnitudes by brighter colors (see (c) and (d) for flow

orientation). Equivalent regions in domain ((c) and (d)), and in the

common codomain (f), obtained from merged representation (e).

symmetry, the directional derivative of the mapping, in direction
perpendicular to the symmetry line, is zero. In our case, the map-
ping is, in general, not angle-preserving, thus the zero directional
derivative is generally not in direction perpendicular to SΩ. But ex-
cept for that, SΩ act as lines of reflection symmetry under u(x).

4.6. Comparative Visualization

Our approach lends itself also for comparative visualization of sets
of mappings. To that end, one obtains, from each mapping ui(x),
the silhouette curves S i

Ψ in the codomain, and merges them to the
set S∪

Ψ (Figure 5e, green), as well as the boundary curves Bi
Ψ in the

codomain, and merges those to B∪
Ψ (Figure 5e, red).

For ui(x), the projected silhouettes S
i
Ω in the domain are:

S
i
Ω :=

{

x | u
i(x) ∈ S∪

Ψ

}

\ S i
Ω (15)
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Figure 6: Same as Figure 5, but with more different field ((b) and

(d)). Comparison of (f) with Figure 5f, and (c) and (d) with Fig-

ure 5c and 5d shows more white regions, i.e., less equivalence.

(Equation 8), where S i
Ω are the silhouettes of ui(x), in the domain.

Accordingly, the projected boundaries B
i
Ω are in the domain:

B
i
Ω :=

{

x | u
i(x) ∈ B∪

Ψ

}

\ Bi
Ω (16)

(Equation 10), with the boundaries Bi
Ω of ui(x), in the domain.

In the codomain, the equivalent regions are obtained according
to Section 4.4, but extracting the loops from GΨ := S∪

Ψ ∪B∪
Ψ. In

the domain, they are obtained by extracting the loops from GΩ :=
S

i
Ω ∪B

i
Ω ∪Bi

Ω. The correspondences (Equation 12) that map from
the domain of mapping i to the codomain are:

cΩi→Ψ(rΩi) :=
{

rΨ | ∃x ∈ rΩi : u
i(x) ∈ rΨ

}

, (17)

(also here, |cΩi→Ψ(rΩi)|= 1). The correspondences (Equation 13)
mapping from the codomain to the domain of mapping i are:

cΨ→Ωi(rΨ) :=
{

rΩi | ∃x ∈ rΩi : u
i(x) ∈ rΨ

}

, (18)
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and here too, |cΨ→Ωi(rΨ)|= µ(u) with u ∈ rΨ. The final step con-
sists in removing those equivalent regions that are not present in all
mappings (white regions in Figure 5c, 5d, and 5f).

In Figure 5, we compare two similar datasets, whereas Figure 6
shows the comparison of two vector fields that are more differ-
ent. One can see that our approach directly transfers to the analysis
of sets of mappings, i.e., the resulting equivalent regions represent
value variation that is present in all vector fields. To effectively ana-
lyze these interrelations, we propose interactive techniques in Sec-
tion 5.4, which are also demonstrated in the accompanying video.

Finally, we would like to draw the attention to the utility of the
equivalent region representation in the codomain. As one can see,
there is less white area in Figure 5f than in Figure 6f. That is, there
is more equivalence in Figure 5f than in Figure 6f.

4.7. Discussion

Our approach is applicable to mappings of any dimension, with
Ω ⊂ R

n, Ψ ⊂ R
m, and n = m. In that sense, it complements that

of Lehmann and Theisel [LT10], which addresses n = m = 2 and
n = 3,m = 2. Similarly, it complements the works by Carr et
al. [CGT∗15] and Tierny and Carr [TC17], as outlined in Section 2.

For n = m = 2, Lehmann and Theisel obtain SΨ and BΨ in geo-
metric representation, but do not extract the regions RΨ of uniform
multiplicity therefrom. They obtain the multiplicity field by “ray-
casting” of the “folded manifold”. To enable extraction of the uni-
form multiplicity regions both in the codomain and the domain (and
therefrom the equivalent regions), however, a geometric represen-
tation of RΨ is mandatory, since the boundaries of uniform multi-
plicity regions in Ψ tend to be complex and involve thin regions. A
pixel-based connected component labeling of the raycast multiplic-
ity field could therefore not provide the correct result. However, as
detailed below, obtaining a geometric representation of RΨ is com-
putationally costly.

To make an exact extraction feasible, we restrict our implemen-
tation to mappings given on simplicial complexes that are path-
connected, because a simplex remains a simplex under arbitrary de-
formation of its vertices, and thus barycentric interpolation of vec-
tor value in Ω carries over to barycentric interpolation of position in
Ψ (Section 5). We also obtain RΩ in geometric representation, al-
though the cost of its computation increases even faster with dataset
size and data complexity. We therefore provide a shader-based al-
ternative for visualization of RΩ, which we use when computation
times become too long. The advantage of the fully geometric ap-
proach is, however, that it is exact and that one can provide the
results in geometry format, which is highly useful for investigating
small and complex equivalent regions.

5. Algorithm

As just mentioned, we assume the data grid of the mapping(s) u(x)
to be a simplicial complex (which, in case of comparative visual-
ization, can differ among the fields), interpolated with barycentric
interpolation, and that no two nodes of the grid(s) exhibit identical
n-variate value. In practice, this is usually ensured by perturbation
or simulation of simplicity [EM90]. As a consequence, a simplex

u1

u2

(a)
x1

x2

(b)
x1

x2

(c)

Figure 7: Mapping from Figure 2. (a) Smallest closed loops ex-

tracted from silhouettes and boundaries in codomain split at inter-

sections, and each loop triangulated, provides regions in codomain

(Figure 3f). (b) Projected silhouettes, projected boundaries, and

edges of original grid, in domain. (c) Triangulation of (b) and com-

puting correspondences provides regions in domain (Figure 3e).

∆Ω in Ω maps to a simplex ∆Ψ in Ψ, remains by nature convex,
and can only change handedness. Another benefit of requiring sim-
plicial grids is that SΩ and BΩ consist of faces (i.e., edges in case
of triangular grids, and triangles in case of tetrahedral grids) of the
original grid (Figure 2e), and thus SΩ and SΨ, as well as BΩ and
BΨ, are piecewise linear. Higher-order interpolation functions, in
contrast, would induce complex isocontour geometry, which would
be hard to represent and work with.

5.1. Silhouettes and Boundaries

The first stage of our algorithm traverses all faces of the simplicial
complex and determines if they are part of a silhouette or boundary.
If the face is adjacent to only one simplex, it is part of a boundary.
If, on the other hand, the two simplices adjacent to the face have
different sign of the Jacobian determinant det∇u(x) (which is con-
stant per simplex), the simplices are opposite-handed and thus the
face represents part of a silhouette. The silhouette faces and bound-
ary faces are mapped to the codomain by looking up the vector val-
ues at their vertices, providing SΨ and BΨ. Subsequently, they are
intersected with each other, i.e., they are split at intersections. As
detailed in Section 4.3, the resulting set is closed. Figure 2d shows
an example for our n = 2 implementation.

5.2. Equivalent Regions in Codomain

Next, the regions of uniform multiplicity µ(u) are obtained by ex-
tracting the smallest closed manifolds from SΨ ∪BΨ (Section 4.4),
and each of these regions is triangulated and given a unique ID.
Figure 7a shows an example of the resulting mesh for our n = 2
implementation, and Figure 3f the color-coded equivalent regions.

5.3. Equivalent Regions in Domain

To obtain the regions with uniform multiplicity in the domain, we
need the projected silhouettes and projected boundaries. To this
end, we first (conceptually) transform the data grid to the codomain
(Figure 2d). That is, we transform the simplices ∆Ω from the do-
main to simplices ∆Ψ in the codomain. We employ dual representa-
tion, i.e., the “positions” of the vertices of ∆Ψ are the original vector
values u, and the “values” at the vertices of ∆Ψ are the original po-
sitions x. We then traverse all silhouette faces and boundary faces,
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(a) (b) (c)

Figure 8: Interaction techniques. Domain (left) and codomain (right). (a) Point-based exploration, including isolines. (b) Region-based

exploration. (c) Mapping between domain and codomain by animation, revealing folding etc. (see accompanying video).

as determined in Section 5.1, and split each of them with all ∆Ψ,
i.e., if such a face intersects a ∆Ψ, we determine the part of the face
that is located inside the simplex. We then obtain the vertex posi-
tions of this face part by interpolating the “position values” within
∆Ψ, which gives their position in the domain, and thus results in the
projected silhouettes and projected boundaries in the domain.

To support consistent interpolation, we throw these projected sil-
houette parts and boundary parts together with the vertices and
edges of the original data grid (Figure 7b), and perform constrained
triangulation [Kor] (Figure 7c). We then populate the resulting tri-
angulation with the mapping u(x), i.e., we copy the node values and
interpolate u for the new vertices. Since barycentric interpolation is
linear, the resulting field is, up to floating-point accuracy, identical
to the original one. Subsequently, we traverse each of the simplices
of the triangulation, interpolate u at their center, and look up the
ID from the mesh in the codomain (Section 5.2 and Figure 7a),
resulting in the equivalent regions, as shown in Figure 3e.

5.4. Interaction Techniques

There are several difficulties with static representation of equiv-
alence in mappings. As can be seen, e.g., from Figure 4, color-
coding of a rather large number of equivalences is difficult due
to color perception limitations. Second, even if the colors could
be clearly distinguished and the regions large enough, one needs
to search the correspondences visually, e.g., between Figure 4a
and 4b. Drawing (bundled) edges to represent the correspondences
would, due to their large number, also lead to perception issues.
Furthermore, for a complete picture, one needs, at the same time,
have the multiplicity information present (this is why we are show-
ing color-codings of multiplicity together with the equivalent re-
gion representations in this paper). And last but not least, one also
needs to observe the mapping, which we achieve in the static rep-
resentations by superposition with arrow glyphs.

Certainly, the amount of information is too large for an effective
static representation. This is why we present here some approaches
for interactive exploration. We refer the reader to the video that
accompanies this paper for a demonstration.

Point-based exploration. The most basic techniques to explore
equivalence in mappings are (i) to move the mouse in the do-
main and interactively show the corresponding moving point in the
codomain, or (ii) move the mouse in the codomain and show the
equivalent moving point(s) in the domain. It is particularly useful
to provide SΨ and BΨ in the codomain for context in the latter

mode, since crossing SΨ causes “bifurcations” of the points in the
domain, i.e., they annihilate or originate in pairs, while crossing BΨ

makes single points appear or disappear. Optionally, if the mouse
is at position u =: (u1, . . . ,un)

⊤ in the codomain, displaying the n

isocontours {x | u(x)i = ui} in the domain provides context about
the influence of SΨ and BΨ, and the relation between the com-
ponents of the mapping. Notice that such isolines represent axis-
aligned straight lines in the codomain. Figure 8a exemplifies the
point-based exploration.

Region-based exploration. Interactive point-based exploration of
course cannot provide the full picture of equivalence. Thus, the
straightforward extension is to do interactive region-based explo-
ration. Again, the user can move the mouse (i) in the domain
and observe which equivalent region is interactively highlighted
in the codomain, or (ii) move the mouse in the codomain and ob-
serve which equivalent region(s) are highlighted in the domain. Op-
tionally, straight lines connecting the center of the region in the
codomain with the center(s) of the equivalent region(s) in the do-
main can be shown, to support identification of small regions. Fig-
ure 8b exemplifies this approach. Notice that this mode is very use-
ful during comparative visualization, in which case the lines point
to the domains of all mappings under consideration.

Transformation of regions. Given that correspondence in terms
of regions has been reasoned out, the user might want to under-
stand the detailed mapping of regions, in terms of deformation and
folding. For such questions, the user can click a region in the do-
main or the codomain, which starts an animation that transforms
the region(s) respectively. Clicking in the codomain makes the re-
gion(s) move from the codomain to the domain (or domains in case
of comparative visualization), and clicking in the domain makes the
respective region(s) transform form the domain to the codomain.
Optionally, both views are centered at the region(s) under consid-
eration. See Figure 8c for an example. The animation is achieved
by linear interpolation (where the interpolation parameter is “ani-
mation time”) between position x and value u of each vertex of the
underlying mesh.

6. Results

We demonstrate the utility and interpretation of our approach us-
ing two cases from computational fluid dynamics (Sections 6.1 and
6.2), and a bivariate field from climatology (Section 6.3). Perfor-
mance details are given in Table 1, and discussed in Section 6.4.
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6.1. Convective Flow

The 2D vector field that we used in the previous sections repre-
sents an axis-aligned cross section from a 3D computational fluid
dynamics (CFD) simulation of airflow in a closed container, driven
by heat-induced convection, with no-slip boundary conditions. A
common research question in such configurations is the variation
of the airflow subject to the distance from a wall, which is often
examined based on cross-sectioning with varying distance from the
boundary, followed by projection of the resulting vectors onto the
section, resulting in 2D vector fields.

Figures 2a and 5a provide an overview of the vector field, Fig-
ure 2b of its codomain, Figure 4a shows the equivalent regions in
the domain and Figure 4b in the codomain, and the respective mul-
tiplicities are provided in Figures 3c and 3d. If we look at the de-
formed domain manifold in the codomain (Figure 2d), we can see
that the CFD solver did not perfectly meet the no-slip boundary
conditions, i.e., one can see that the red boundary curve spreads
around the zero velocity point in Ψ (see, e.g., Figure 8a (right) for
the location of the origin of the codomain). The deformed domain
manifolds (Figure 2d) also find a use for judging the discretization
of vector fields: large cells in the codomain represent high relative
variation, i.e., large gradients compared to the grid resolution in
the domain, which might represent aliasing. This is consistent with
strong velocity variation in the red region (iii) in Figure 4a and 4b.

Having a look at the multiplicity field in the domain (Figure 3c),
we identify four prominent regions with low multiplicity, marked
(i), (iii), (iv), and (v) in Figure 4a and 4b. From Figure 4b, we see
that all these regions are located at the boundary of the codomain
of the vector field, and from Figure 2f we see that those regions are
all confined by a silhouette curve there, which means they all have
to exhibit multiplicity two due to symmetry. The fact that they are
located at the boundary of the codomain also tells us that they are
among the fastest regions, since radius in the codomain represents
velocity magnitude. In this case, the prominent unique (low multi-
plicity) regions identified by our approach represent coherent flow
regions with high velocity.

To investigate the variation of the projected 2D field with respect
to distance from the boundary in the underlying 3D flow, we em-
ploy comparative visualization of this slice with another slice that is
close (Figure 5), and with a slice that is farther away (Figure 6). In
Figure 5, one can see that many equivalent regions in the left part of
the domain are spatially consistent in both fields, indicating strong
similarity, i.e., in terms of value and position. This conforms to the
visual inspection of Figure 5a and 5b, which shows that velocity
direction differs in particular in the right lower part of the domain.
The large white region in Figure 5d tells us, on the other hand, that
although vector field direction is very similar in both fields in this
region, the magnitude differs, leading to velocities in the second
field that are not present in the first one. In the codomain, there are
more white regions in Figure 6f than in Figure 5f, indicating less
equivalence in the more distance slice pair, and inspection of Fig-
ure 6c and 6d shows that there are only few equivalent regions that
are located at similar positions, indicating less positional equiva-
lence. Nevertheless, in both Figure 6c and 6d, we observe, e.g., two
large regions ((i) and (ii)), depicting equivalence between these two
fields with respect to rather slow top-right flow (see arrow glyphs).
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Figure 9: Kármán flow around obstacle (white disc). Vortic-

ity ω(x) (a) and pressure p(x) (b) in domain. Multiplicity in do-

main (c) and codomain (f). Equivalent regions in domain (d) and

codomain (g). Selected regions in domain (e) and codomain (h).

6.2. Kármán Flow

Let us now investigate the interplay between vorticity ω(x) :=
∇× u(x) and pressure p(x) in a time step of a 2D CFD simula-
tion exhibiting vortex shedding (notice that in 2D flow fields, vor-
ticity is a scalar field). As we can see from Figure 9a and 9b, there
is some correlation between vorticity and pressure within vortices.
In this case, low multiplicity regions (Figure 9c) reveal the vor-
tices in terms of uniqueness. Furthermore, the equivalent regions
(Figure 9d) are comparably large within the vortices. To assess the
similarity of the vortices, we investigate their equivalent regions
(Figure 9e). Since this would be usually accomplished by interac-
tive exploration, we provide here the regions selected during our
interactive exploration.

Interestingly, the leftmost green equivalent regions (i) are sym-
metric, whereas the remaining regions are rather antisymmetric due
to the oscillating vortex shedding dynamics. The equivalent regions
reveal that vortices (7) and (9) are most similar in terms of bivariate
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Figure 10: Case from Figure 9, but smoothed with σ = 6. Vortic-

ity (a), pressure (b), multiplicity (c), and equivalent regions (d) in

domain. Multiplicity (e) and equivalent regions (f) in codomain.

variation, i.e., their dark blue, red, and yellow regions are equiva-
lent. Similarly, vortices (7) and (5) share the yellow and medium
blue regions, and vortices (5) and (3) the green one. We identify
decreasing similarity (smaller and less equivalent regions in the
domain) of adjacent vortices, as we approach the obstacle. In the
lower row of the vortices, we identify vortex (10) and (8) sharing
the dark and light green regions, vortices (8) and (6) sharing the
brown, dark green, and red regions, and vortices (6) and (4) sharing
the green, purple, and dark brown regions. Vortex (2) is different,
it shares the green and blue regions with the area behind the obsta-
cle, and this area, in turn, shares the light blue and light green areas
(ii) and (iii) in front of the obstacle. Also vortex (1) is different—it
has a unique region, i.e., all of its bivariate values are unique in the
dataset. Finally, the large blue region in vortex (10) does not have
an equivalent in the other vortices, as well.

Identifying all these equivalences manually in the codomain,
without the help of equivalent regions, would be very tedious,
since the regions are thin and hard to determine. Our example also
demonstrates the utility of equivalent regions as “building blocks
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Figure 11: Investigation of robustness by application to time se-

ries of case from Figure 10. (c) Same as Figure 10d, together with

preceding time step (b), and time step (a) preceding that step.

for multivariate brushing”, in addition to their power of identify-
ing equivalence. That is, traditional interactive exploration without
the help of equivalent regions would require much more efforts to
provide an overview of the characteristics of this example.

As discussed in Section 3 and apparent in Figure 9d, datasets
with high bivariate variation tend to produce many small equivalent
regions. Although these regions are essential for small-scale anal-
ysis of equivalence, they do not provide a clear overview in such
cases. To obtain a representation with respect to large-scale equiva-
lence, we motivated in Section 3 smoothing of the bivariate field
prior to equivalence visualization. Thus, we employed Gaussian
smoothing with σ = 6 to the Kármán dataset (Figure 10), i.e., inde-
pendently to both the vorticity and pressure field. Since the original
data was given on a triangular mesh, we resampled it on a uniform
grid for smoothing, assigning zero in the obstacle region.

We observe two main effects of this smoothing. On the one hand,
the multiplicity field (Figure 10c) has overall lower values (al-
though the maximum stays 39), on the other hand, in the domain,
the equivalent regions become larger, in particular in the regions
between the vortices (Figure 10d). In the codomain, both the mul-
tiplicity field (Figure 10e) and the equivalent regions (Figure 10f)
take on a more regular structure, also in time. Interestingly, in the
smoothed data, the vortices are identified as more compact regions,
but because the properties have been “merged”, there is less equiv-
alence between adjacent vortices. On the other hand, the areas be-
tween the vortices exhibit stable large-scale equivalent structure,
alternating vertically, consistent with vortex shedding dynamics.

Finally, to investigate the robustness of our approach, we applied
it to subsequent time steps of the Kármán simulation smoothed with
σ = 6 (Figure 11). After the equivalent regions have been extracted,
we color-coded the region IDs of the first time step in this series,
and determined the color-coding of the IDs of the subsequent time
steps by spatial similarity, to make the results better comparable.
One can see that our approach is quite robust in space and time.
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Figure 12: Climate Zones example based on averaged temperature and precipitation from 1979 until 2015, with Gaussian smoothing with

σ = 4 ((a)–(c) and (g)–(i)), and with σ = 14 ((d)–(f) and (j)–(l)). Temperature τ(x) ((a), (d)), precipitation ρ(x) ((b), (e)), multiplicity in

domain ((c), (f)), equivalent regions in domain ((g), (j)), multiplicity in codomain ((h), (k)), and equivalent regions in codomain ((i), (l)).

6.3. Climate

We now demonstrate the utility of our concept for climate analy-
sis. A common approach in climate research is to classify different
climate types, with the classification system due to Köppen and
Geiger [Gei54] being often employed. This classification system
is quite complex, taking into account precipitation and tempera-
ture patterns, such as monthly-averaged temperature and precipi-
tation, yearly-averaged temperature, seasonal precipitation, coldest
month, etc. The result of this classification is shown in Figure 13d.

We computed a 37-year average temperature and average precip-
itation based on MERRA’s [RSG∗11] monthly-averaged data from
January 1979 to December 2015. To avoid “over-segmentation”,
we applied Gaussian smoothing to the resulting fields with σ = 4

(Figures 12a and 12b), and σ = 14 (Figures 12d and 12e). Whereas
σ = 4 provides very many small regions (Figure 12g), which re-
veal fine-scale equivalence of climate across the globe, the version
with σ = 14 gives a more large-scale picture (Figure 12j and 13b).
Typically, one would start an investigation using our approach with
such a large-scale representation to understand global trends, fol-
lowed by detailed analysis with the fine-scale representation. Here,
we exemplify the investigation at the large scale, i.e., σ = 14.

To demonstrate the effectiveness of our approach, we measured
the total area of all regions in the domain that correspond to a cer-
tain region ID, i.e., that represent equivalent regions. We then sorted
the region IDs with respect to that total area and selected the 25
largest, providing the subset shown in Figure 13a, shown with 25
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Figure 13: Case from Figure 12. To show the effectiveness of our approach, we selected the 25 equivalent region IDs with largest area in the

domain (a). (b) same as Figure 12j, for comparison. (c) Assignment of the color codes from Köppen and Geiger’s classification (d) [VPFM]

to our regions from (b) reveals strong correlation between equivalent regions and the regions defined by that complex classification system.

different colors. This leads to several observations. Region (iii) cap-
tures the deserts in Asia, including Karakum, Taklamakan, Gobi,
and Ordos. This region has multiplicity one and corresponds well
to the respective skin-colored area in Köppen and Geiger’s clas-
sification in Figure 13d. Central Sahara (region (iv)) is also cap-
tured by a single unique region, extending to the Arabian desert,
and corresponding to a large part of the red region in Köppen and
Geiger’s classification. Another large and unique region (v) cap-
tures the region south of the Sahara, corresponding well to Köp-
pen and Geiger’s classification. The arid region (vi) in the center
of Australia also fits the classification well, however, this region is
not unique in our result, it corresponds to the arid region in south
Africa. Region (vii), on the other hand, corresponds to humid sub-
tropical climate according to Köppen and Geiger’s classification,
and links south east Australia with south east Africa, central east
Brazil, the south of the United States, south west Europe, and north
India, all conforming to Köppen and Geiger’s classification. Re-
gions (i) and (ii), on the other hand, correspond to the climate in
Scandinavia, the border between the United States and Canada, and
the region north west from Japan. Finally, region (viii) is the only
region among the selected ones that links the antarctic region south
of South America with south Greenland. Despite the overall ten-
dency toward north–south symmetry, we were surprised that the
northern and southern polar regions do not exhibit mutual equiva-
lence. This might relate to the different ocean–land proportions.

As a final step, we assigned (in analogy to Figure 11) the spa-
tially best-matching colors from Köppen and Geiger’s classification

(Figure 13d) to all of our equivalent regions with σ = 14, resulting
in Figure 13c, indicating the consistency between our result and this
classification system. It has to be noted, however, that one cannot
expect that our results are identical, because Köppen and Geiger’s
classification rules are complex and involve various temperature
and precipitation data, whereas we have only used a single long-
term averaged temperature and precipitation field. Nevertheless,
we think that our experimental results demonstrate a promising di-
rection of research, advocating the application of our approach in
climate research—in particular, since our result is parameter-free,
whereas Köppen and Geiger’s classification system consists of a
complex set of rules with many parameters and data fields.

Table 1: Dataset sizes, and timings (computations in codomain

Ψ / domain Ω), measured on an Intel Core i5-6300HQ

CPU (2.30 GHz). Timings are only given for the CPU-based im-

plementation. The shader alternative, which replaces the computa-

tions in Ω, takes 0.51 s for refresh for the Kármán dataset.

Dataset Cells Vertices Proc. Time (Ψ / Ω)

Convective Flow 6 272 3 249 1.79 s / 36.75 s
Kármán 34 422 17 552 144 s / 25 310 s
Kármán (σ = 6) 20 000 10 251 23 s / 1 864 s
Climate (σ = 4) 24 120 12 285 203.6 s / 24 574 s
Climate (σ = 14) 24 120 12 285 24.7 s / 1 188 s
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6.4. Performance

Table 1 provides the runtimes of our CPU-based implementation.
Calculations in the domain Ω are dominated by the intersection op-
erations of the projected silhouettes and projected boundaries (Sec-
tion 5.3), which we solve naively at the moment. The acceleration
of this procedure is, however, nontrivial, as the edges to intersect
typically span large parts of Ω. Our alternative shader-based ap-
proach (Section 4.7) results in significant speedups (over 500000
times on the Kármán dataset), taking 0.51 s for a refresh at a reso-
lution of 1920×1080 pixels. Notice that such a refresh takes place
only when the user zooms or pans, all other interactions take place
at very high frame rates (see the accompanying video).

7. Conclusion

We presented the novel concept of equivalence in nD n-variate
mappings, and derived therefrom the concept of equivalent regions
in such mappings. We identified the critical lines by Lehmann and
Theisel [LT10] as those lines separating regions of uniform multi-
plicity in the codomain, and extracted those regions geometrically.
Correspondingly, we introduced the concept of projected silhou-
ettes and projected boundaries in the domain, and have shown that
those separate regions of uniform multiplicity in the domain. We
extracted the respective regions also geometrically in the domain,
and established correspondence between the regions in the domain
and those in the codomain, providing our equivalent regions. We
then extended our approach for comparative visualization, and pre-
sented a set of interactive visualization techniques for the explo-
ration of equivalence. To reduce computation times in case of large
and complex data, we proposed an alternative shader-based visu-
alization of the regions in the domain. Despite the substantial ac-
celeration provided by this, our approach is still computationally
costly, and future work should investigate further approaches for
acceleration. Also, although our concept is applicable to arbitrary
dimension n, advanced acceleration strategies become essential al-
ready for n = 3, which we would like to address as future work.
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