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Fig. 1. Bivariate Square dataset. Original geometry (upper row), geometry subdivided along A–D (middle row), and along B–C (bot-
tom row). Swapped values of C and D in columns four, five, eight, and nine. First column: geometry; second and fourth column:
traditional (without uncertainty) continuous scatterplots [3]; third and fifth column: uncertain continuous scatterplots using our sam-
pling-based approach; column six and eight: traditional (without uncertainty) continuous parallel coordinates [19]; columns seven and
nine: our uncertain continuous parallel coordinates. All continuous scatterplots in this paper are color-coded by accumulated density
(yellow (low) to red (high)), and all continuous parallel coordinates color-coded by accumulated density (yellow (low) to blue (high)).

Abstract—In this paper, we introduce uncertainty to continuous scatterplots and continuous parallel coordinates. We derive respec-
tive models, validate them with sampling-based brute-force schemes, and present acceleration strategies for their computation. At
the same time, we show that our approach lends itself as well for introducing uncertainty into the definition of fibers in bivariate data.
Finally, we demonstrate the properties and the utility of our approach using specifically designed synthetic cases and simulated data.

Index Terms—Multivariate data, uncertainty visualization, uncertain continuous scatterplots, uncertain continuous parallel coordi-
nates, uncertain fibers.

1 INTRODUCTION

There is hardly any problem in research and engineering that does not
include multivariate data. In some of these cases, the data are given
in scattered representation, i.e., as a collection of samples without con-
tinuity or a domain. In such cases, statistical analysis is a primary
approach for obtaining insights, among which scatterplots, which map
bivariate data to the coordinates of the plane, are very simple but of-
ten very useful. Since scatterplots of more than two attributes would
become volumetric and thus hard to present and investigate, parallel
coordinates, which map each attribute to a distinct parallel axis, have
become a primary technique for visualizing multivariate data with at-
tribute count higher than two.

For a long time, scatterplots and parallel coordinates have also been
employed for multivariate samples from continuous data, such as fields
defined on a continuous domain. This, however, is susceptible to
sampling-induced artifacts, and would require very high sampling den-
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sity to reveal the true data distribution. This is where continuous scat-
terplots (CSP) and continuous parallel coordinates (CPC) play their
strengths, by efficiently providing the respective representations that
would be obtained if the sample count would reach infinity.

With the advent of modern measurement and simulation techniques,
as well as increased requirements on reliability and interpretability in
data analysis, uncertainty has become an important component and an
active field of research in visualization. Continuous scatterplots, con-
tinuous parallel coordinates, as well as fibers (the generalization of
isocontours to multivariate data) have, however, not yet been extended
to cope with uncertain data. It is the focus of this work to contribute the
extension of these three visualization concepts to uncertain multivari-
ate data, and thus to pave the way for a more reliable and integrative
data analysis.

The main contributions of this work are:

• extension of continuous scatterplots to uncertain data,
• two algorithms for their accelerated computation, whereof
• one without restrictions on the type of input grid,
• extension of continuous parallel coordinates to uncertain data,
• extension of fibers to uncertain data.

2 RELATED WORK

Due to their rather straightforward nature and very wide use, it is hard
to determine who introduced scatterplots. Parallel coordinates, in con-
trast, have been introduced comparably recently by Inselberg [20] in
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1985. Continuous scatterplots [3] were introduced by Bachthaler and
Weiskopf in 2008, followed by two approaches for their accelerated
computation [2, 4]. The extension of parallel coordinates to continu-
ous domains was accomplished by Heinrich and Weiskopf [19] with
their continuous parallel coordinates concept. Based on that, Lehmann
and Theisel focused on features in continuous scatterplots and contin-
uous parallel coordinates [25, 26], and Zheng et al. [42] investigated
equivalence in bivariate 2D fields. Heinrich et al. [18] investigated
the progressive splatting of these plots. None of these works included
uncertainty of the multivariate data, as we do.

Once acquired with a reasonable model, it is quite simple to add
uncertainty as an additional “channel” to existing data representations,
and many application domains see strong needs and challenges in the
visualization of uncertain continuous data [27]. Extending existing vi-
sualization methods for uncertain data, however, is far beyond straight-
forward application [6], similar to the problem of visualizing ensem-
bles. Otto et al. [28, 29] presented vector field topology for 2D and
3D uncertain vector fields. Pfaffelmoser et al. visualized the variabil-
ity of isosurfaces and gradients, and global correlation structures in
uncertain scalar fields [32–34]. Pöthkow et al., on the other hand, pre-
sented several works on feature extraction from uncertain scalar and
vector fields [31, 35–37]. For ensembles, Ferstl et al. presented works
for analyzing the spatial variability of isocontours in ensemble scalar
fields and of streamlines in ensemble flow fields [15, 16]. Favelier et
al. and Günther et al., on the other hand, focused on the variability of
critical points in ensembles [13, 17]. However, all these works focus
on visualizing uncertainty in the spatial domain, whereas our work fo-
cuses on its visualization in the data domain in terms of continuous
scatterplots and continuous parallel coordinates. Feng et al. presented
approaches for adding uncertainty to plots [14], however, based on
non-continuous scatterplots and non-continuous parallel coordinates,
not their continuous counterparts, and not closely related to ours.

Finally, there are several previous works on the visualization of iso-
contours in uncertain scalar fields [33,35,37]. On the other hand, Carr
and colleagues presented fiber surfaces [8,24,39] for generalizing iso-
surfaces to bivariate data, however without uncertainty. Our work can
be seen at the interface between these works.

3 MATHEMATICAL MODEL

3.1 Model Without Uncertainty

For introduction and self-contained presentation, we first summarize
the mathematical models of the previous works on continuous scatter-
plots [3] and continuous parallel coordinates [19]. Both plot types re-
quire the input data to be a continuous mapping τττ : Rn→R

m from the
n-dimensional spatial domain Ω to the m-dimensional data domain Ψ.

Bachthaler and Weiskopf [3] formulate the construction of contin-
uous scatterplots as finding a density function κ defined in the data
domain:

κ : Rm→ R , ξξξ 7−→ κ(ξξξ ) , with ξξξ ∈Ψ . (1)

Under the assumptions that a mass density s is given in the spatial
domain,

s : Rn→ R , x 7−→ s(x) , with x ∈Ω (2)

(which is typically uniform, i.e., s(x) ≡ 1), that the mapping τττ does
not change the number of sample points, and that the sample points
have mass, Bachthaler and Weiskopf derive the mathematical model
of continuous scatterplots by mass conservation.

The mass M of a volume D ⊂ Ω in the spatial domain is thus M =
∫

D s(x)dnx. Defining ∆ := τττ(D), i.e., the respective volume in the data
domain, mass conservation implies

∫

∆=τττ(D)
κ(ξξξ )dmξξξ =

∫

D
s(x)dnx = M . (3)

For the case m = n, where the transformation theorem for integrals can
be applied, this leads to

κ (τττ(x)) =
s(x)

|det(∇τττ)(x)|
, (4)
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Fig. 2. Independent 2D parallel coordinates domain (shaded, spanned
by η1 and η2) (a), and an example for a bivariate normal distribution (b).

with ∇τττ being the n×n Jacobian matrix.
In the case of m < n, for which det(∇τττ) does not exist and the

transformation theorem for integrals does not apply, Bachthaler and
Weiskopf adapt Equation 4 accordingly. Since the preimage of a point
ξξξ in the data domain is a fiber τττ−1(ξξξ ) in the spatial domain with di-
mensionality (n−m), the density κ(ξξξ ) at ξξξ can be computed by inte-
grating the density over that fiber, i.e.,

κ(ξξξ ) =
∫

τττ−1(ξξξ )

s(x)

|Vol(∇τττ)(x)|
d(n−m)x , (5)

where |Vol(∇τττ)(x)| is the volume spanned by the partial deriva-
tives of τττ , which are restricted to parameter variations in the normal
space τττ−1

normal(x)
[3, Section 3.3].

The construction of continuous parallel coordinates is derived
from the mapping between the 2D data domain and the 2D paral-
lel coordinates domain [19]. Each consecutive pair of axes ξi and
ξi+1 of a parallel coordinates plot spans an independent 2D paral-
lel coordinates system (shaded area in Figure 2a) in a Cartesian co-
ordinate system with axes η1 and η2. Due to the point–line du-
ality in parallel coordinates [20–22], a point ξξξ = (ξi,ξi+1)

⊤ in the
2D data subdomain Ψi (with (ξi,ξi+1)

⊤ ∈Ψi) equals a line seg-
ment L

ξξξ
ηηη : η2 = (ξi+1−ξi)η1 +ξi in the independent 2D parallel co-

ordinates domain, which can be formulated as

η2 = n ·ξξξ , (6)

using n := (1−η1,η1)
⊤. This implies that the mapping between a

point ηηη = (η1,η2)
⊤ in the independent 2D parallel coordinates do-

main and the corresponding line L
ηηη
ξξξ

in the 2D data domain depends on
η1 only. Let now ϕ : R2→ R,ηηη 7−→ ϕ(ηηη) be the density at a point ηηη
in parallel coordinates [19]. Based on mass conservation, the mass of
an interval Θ of η2 computes

∫

Θ
ϕ(ηηη)dη2 =

∫

∆i

κ(ξξξ )d2ξξξ = M , (7)

with ∆i ⊂ Ψi. Using that, Heinrich and Weiskopf express the density
ϕ(ηηη) at a point ηηη in the 2D parallel coordinates domain as

ϕ(ηηη) =
∫

L
ηηη
ξξξ

1

‖n‖
κ
(

L
ηηη
ξξξ
(t)
)

dt , (8)

with L
ηηη
ξξξ
(t) being the arc-length (t) parametrized line L

ηηη
ξξξ

[19].

3.2 Model With Uncertainty

If uncertainty is introduced to the input data, then a point in the spa-
tial domain always links to a point with an uncertain position in the
data domain, or, in other words, a distribution. Obviously, the above
models introduced by Weiskopf and colleagues need to be adapted ac-
cordingly.

For modeling the uncertainty, we use the basic idea by Otto et
al. [28, 29], who represent 2D (3D) uncertain vector fields as 4D (6D)
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scalar fields. The first two (three) dimensions of this scalar field repre-
sent the original domain, whereas the second two (three) dimensions
represent the value. The scalar entry at the respective 4D (6D) coor-
dinate stores the probability for the vector field values to be within a
respective bin. We simply extend their representation to uncertain n-
dimensional m-variate fields τ̃ττ : Rn → R

m. That is, τ̃ττ transforms to a
scalar field P(x;ξξξ ) ≥ 0 defined on a (n+m)-dimensional domain Γ,
with

∫

Rm P(x;ξξξ )dmξξξ = 1, for all x ∈ Ω. Notice, that P(x;ξξξ )dmξξξ rep-
resents the probability that, at the space location x, the field τ̃ττ has some
value within the range [ξ1,ξ1 + dξ1]×·· ·× [ξm,ξm + dξm].

Using this formulation, the density s(x) at a certain position x in the
spatial domain is

s(x) =
∫

Rm
P(x;ξξξ )dmξξξ = 1 . (9)

To construct continuous scatterplots of our uncertain input data, τ̃ττ(D)
is not a fixed volume ∆ in the data domain anymore, but a distribution
with infinite range. Furthermore, the scatterplot has to reflect the entire
dataset. Thus, plugging Equation 9 into Equation 3 and substituting D
with Ω gives

∫

Rm
κ(ξξξ )dmξξξ =

∫

Ω

∫

Rm
P(x;ξξξ )dmξξξ dnx . (10)

Swapping the order of integration on the right-hand side leads to

∫

Rm
κ(ξξξ )dmξξξ =

∫

Rm

∫

Ω
P(x;ξξξ )dnxdmξξξ , (11)

which, by identifying the integrand, simplifies to

κ(ξξξ ) =
∫

Ω
P(x;ξξξ )dnx . (12)

From that, we construct the continuous parallel coordinates with un-
certainty (UCPC) by substituting Equation 12 into Equation 7:

ϕ(ηηη) =
dM

dη2
=

d

dη2

∫

Ψi

∫

Ω
P(x;ξξξ )dnxd2ξξξ . (13)

Notice that, in this equation, both ξξξ and ηηη are two-dimensional.

4 IMPLEMENTATION

4.1 Continuous Scatterplots With Uncertainty

So far, we have provided a generic mathematical model for computing
continuous scatterplots with uncertainty for arbitrary dimensionality n
of the spatial domain and dimensionality m of the data domain. How-
ever, in our implementation, we only focus on the common cases of
n = m = 2 and n = 3, m = 2.

In our implementation, we assume that the uncertainty of the bivari-
ate input field is given by a bivariate normal distribution, as illustrated
in Figure 2b. Thus, in the spatial domain, at every position x, there is
a bivariate normal distribution with probability density function

P(ξ1,ξ2) =
1

2πσ1σ2

√

1−ρ2
e−g/(2(1−ρ2)) , (14)

where

g =
(ξ1−µ1)

2

σ2
1

−
2ρ(ξ1−µ1)(ξ2−µ2)

σ1σ2
+

(ξ2−µ2)
2

σ2
2

, (15)

with (µ1,µ2)
⊤ being the mean, (σ1,σ2)

⊤ the standard deviation,

ρ = cor(ξ1,ξ2) =
V12

σ1σ2
, |ρ |< 1 , (16)

being the correlation of ξ1 and ξ2, and V12 the covariance of ξ1 and
ξ2 [23, 41]. We assume that the spatial domain is given in discretized
form, as a grid consisting of triangles or rectangles in 2D, or tetrahedra

or hexahedra in 3D, that the data (µ1, µ2, σ1, σ2) are given in node-
based representation, and that ρ is constant.

According to Bursal [7], since the mean (µ1,µ2)
⊤ has the same unit

as the standard deviation (σ1,σ2)
⊤, it is advantageous particularly for

physical quantities to interpolate mean and standard deviation, instead
of interpolating mean and variance. Schlegel et al. [38], on the other
hand, state that if the standard deviation would be interpolated linearly,
variance would not necessarily need to be interpolated quadratically.
This is because the covariance ρ influences the effect of the interpola-
tion of variance. However, according to Bursal, in some cases, e.g., in
a Wiener process, the variance at a certain point in time is better inter-
polated linearly. Thus, in the applications of our concept provided in
this paper, we interpolate the standard deviation, not the variance.

Further, the probability P̂ of a bivariate normal distribution over a
rectangular region ϒ computes

P̂ϒ(ξ1,ξ2) =
∫∫

ϒ

P(ξ1,ξ2)dξ1 dξ2 . (17)

4.1.1 Acceleration

Equation 17 can be simplified according to Didonato et al. [11], using
a linear transformation with

w =

ξ1−µ1

σ1
−ρ ξ2−µ2

σ2
√

1−ρ2
, and z =

ξ2−µ2

σ2
. (18)

Equation 17 can then be rewritten to

P̂ϒ(ξ1,ξ2) = F̂Π(w,z) =
∫∫

Π

F(w,z)dzdw

=
∫∫

Π

1

2π
e−

1
2 (w2+z2) dzdw .

(19)

F(w,z) represents a probability density function of a bivariate normal
distribution with: ρ = 0, σ1 = 1, σ2 = 1, µ1 = 0, and µ2 = 0.

This means, if we select an infinitesimal rectangular range [ξ1,ξ1 +
dξ1]× [ξ2,ξ2+ dξ2] at (ξ1,ξ2)

⊤, based on Equation 19, the probability
of the bivariate normal distribution over this range computes

P(ξ1,ξ2)dξ1 dξ2 = F(w,z)dzdw . (20)

Based on Equation 17, the probability P̂ϒ(ξ1,ξ2) in a certain (not
uncertain) rectangular region ϒ : [minϒξ1,maxϒξ1]× [minϒξ2,maxϒξ2],
with minAb := min

A
b, and maxAb := max

A
b, can be computed as

P̂ϒ(ξ1,ξ2) =
∫∫

ϒ

P(ξ1,ξ2)dξ1 dξ2

=
∫ maxϒξ2

minϒξ2

∫ maxϒξ1

minϒξ1

P(ξ1,ξ2)dξ1 dξ2 .

(21)

If ρ = 0, the rectangular region ϒ corresponds to the rectangular region
Π : [wmin,wmax]× [zmin,zmax], computed from Equation 18. Based on
Equation 19, the probability F̂Π(w,z) of region Π can be computed by

P̂ϒ(ξ1,ξ2) = F̂Π(w,z) =
∫ wmax

wmin

∫ zmax

zmin

F(w,z)dzdw

=
∫ wmax

wmin

∫ zmax

zmin

1

2π
e
−(w2+z2)

2 dzdw .

(22)

However, if ρ 6= 0, the corresponding region Π to compute F̂Π(w,z)
will be a parallelogram. But if Π is small enough, one can still com-
pute the probability F̂Π(w,z) by approximating this region Π as rect-
angular, which still enables the application of Equation 22. Based on
this approximation, we finally derive Equation 17 to

P̂ϒ(ξ1,ξ2)≈
∫ wmin

−∞

∫ zmin

−∞
F(w,z)dzdw+

∫ wmax

−∞

∫ zmax

−∞
F(w,z)dzdw

−
∫ wmin

−∞

∫ zmax

−∞
F(w,z)dzdw−

∫ wmax

−∞

∫ zmin

−∞
F(w,z)dzdw ,

(23)
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Algorithm 1 UCSP: Sampling-based approach

Require: uncertain bivariate data τ̃ττ , defined on data grid G
1: procedure UCSP SAMPLING(τ̃ττ)
2: for all pixel ϒ ∈Ψ do
3: M(ϒ) = 0
4: ϒ.range = [minϒξ1,maxϒξ1]× [minϒξ2,maxϒξ2]
5: for all (2D or 3D) sampling pixel/voxel sc ∈Ω do
6: for all cell c ∈ G do
7: if sc.random ∈ c then
8: interpolate µ1,µ2, σ1,σ2 at sc.random
9: [wmin,wmax]× [zmin,zmax]← ϒ.range

10: P̂ϒ(ξ1,ξ2)←
∫ wmax

wmin

∫ zmax
zmin

F(w,z)dzdw

11: M(ϒ) = M(ϒ)+ P̂ϒ(ξ1,ξ2) ·λ (sc)
12: mark sc in Ω : sc.P̂← P̂ϒ(ξ1,ξ2)
13: break
14: end if
15: end for
16: end for
17: update UCSP by marking ϒ : κ(ϒ)←M(ϒ)/λ (ϒ)
18: end for
19: end procedure

which can be computed based on Donnelly’s algorithm [12,30], which
obtains the lower-left tail values of the bivariate normal distribution.
Equation 23 enables accelerated computation of P̂ϒ(ξ1,ξ2). For fur-
ther acceleration, values that exceed three standard deviations away
from the mean can be omitted.

Next, let us present two approaches (Sections 4.1.2 and 4.1.3) for
computing continuous scatterplots with uncertainty.

4.1.2 Sampling-Based Approach

Our first approach is based on massive sampling, why we also denote
it the brute-force approach. Due to its simplicity, we also used it for
providing a ground-truth for our more complex, but also more efficient
approach described in Section 4.1.3. Based on Equation 12, the mass
of a pixel (or cell) ϒ of a 2D uncertain continuous scatterplot (UCSP)
can be formulated as

M(ϒ) =
∫∫

ϒ

κ(ξξξ )dξ1 dξ2 =
∫∫

ϒ

∫

Ω
P(x;ξξξ )dnxdξ1 dξ2

=
∫

Ω

∫∫

ϒ

P(x;ξξξ )dξ1 dξ2 dnx

=
∫

Ω
P̂ϒ(x;ξ1,ξ2)dnx ,

(24)

where P̂ϒ(x;ξ1,ξ2) is the probability that values at x lie within
[minϒξ1,maxϒξ1]× [minϒξ2,maxϒξ2]. Then, the density of cell ϒ is

κ(ϒ) =
M(ϒ)

λ (ϒ)
, (25)

with λ (ϒ) being the area of cell ϒ. In this approach, many samples x
are required to obtain the uncertain continuous scatterplot at sufficient
accuracy. On the other hand, in our approach, the input grid can be
non-simplicial, whereas the previous approaches by Bachthaler and
Weiskopf to compute continuous scatterplots without uncertainty al-
lowed only simplicial grids [3], or allowed for non-simplicial grids by
employing subdivision in the data domain [4], which, however, would
make it hard to include uncertainty. The sampling-based approach is
detailed in Algorithm 1, with sc.random giving a random point within
sampling cell sc, and λ (sc) measuring the area/volume of sc.

Since every pixel ϒ can be computed independently, this algorithm
lends itself well for parallelization. To avoid systematic error, we em-
ploy a random sampling strategy, i.e., we use Monte Carlo integration
for computing the density κ(ϒ). Rectilinear input grids substantially

accelerate finding the grid cell c of the input grid that contains a re-
spective random position in the spatial domain, and also accelerate
interpolation of means and standard deviations. A further way to ac-
celerate the approach is to omit those random samples x, that lie in
data grid cells c whose pixel ϒ is outside the enlarged bounding box of
τττ(c), defined by three times the largest standard deviation of all nodes
of c in the data domain Ψ. However, since a high sampling density
in the spatial domain is required for good results, non-rectilinear input
grids tend to cause high computational cost using our sampling-based
approach.

Notice that this approach can also be used for computing continuous
scatterplots without uncertainty, since input data without uncertainty is
a special case in our model with σ1 = σ2 = 0.

4.1.3 Convolution-Based Approach

In cases where the computational cost to compute uncertain continu-
ous scatterplots using the sampling-based approach is high, we pro-
vide here an alternative approach that does not require massive sam-
pling. Instead, it is based on convolution. Our approach builds on
that by Bachthaler and Weiskopf [3], and is thus only applicable to
bivariate data defined on simplicial grids. If the given grids are not
simplicial and one still wants a fast preview, one can decompose the
input cells to simplices, however, including the approximation error
induced by such decomposition. For exact results of non-simplicial
grids, our sampling-based approach would need to be used instead.

Bachthaler and Weiskopf presented how to compute the density κ
for a given mapping τττ . Since τττ satisfies mass conservation, for an
input grid consisting of triangles T , the contribution of a triangle τττ(T )
in the data domain to the total density at a point (ξ1,ξ2)

⊤ ∈ τττ(T ) is

κ(ξ1,ξ2;τττ(T )) =
λ (T )

λ (τττ(T ))
, (26)

with triangle area λ (T ) in the spatial domain, and triangle
area λ (τττ(T )) in the data domain.

If the input grid consists of tetrahedra Te, every tetrahedron τττ(Te)
is projected to the 2D data domain according to Bachthaler and
Weiskopf’s approach [3]. There, the contribution of a tetrahe-
dron τττ(Te) to the total density at a point (ξ1,ξ2)

⊤ ∈ τττ(Te) depends
on the Euclidean distance between the front face (τττ−1

f ) and back face
(τττ−1

b
) of τττ−1(ξ1,ξ2;τττ(Te)) in Te in the spatial domain and the gradient

of ξ1 and ξ2 in Te in the spatial domain, which formulates as

κ(ξ1,ξ2;τττ(Te)) =

∥

∥

∥
τττ−1

f (ξ1,ξ2;τττ(Te))−τττ−1
b

(ξ1,ξ2;τττ(Te))
∥

∥

∥

∥

∥

∥

∂ξ1

∂x
× ∂ξ2

∂x

∥

∥

∥

. (27)

The constant gradient ∇gi = ∂ξi/∂x of each variable ξi in a tetrahe-
dron is computed from its four nodes xi with i ∈ 1, . . . ,4, using the
averaging-based approach by Correa et al. [9] defined as





(x2−x1)
⊤

(x3−x1)
⊤

(x4−x1)
⊤



∇gi =





τττξi
(x2)−τττξi

(x1)
τττξi

(x3)−τττξi
(x1)

τττξi
(x4)−τττξi

(x1)



 . (28)

The left-hand side consists of a 3×3 matrix times a 3-vector, and the
right-hand side is a 3-vector of scalar differentials of the variable ξi.
Thus, ∇gi can be directly solved for nondegenerate tetrahedra.

According to Bachthaler and Weiskopf [3], the density at a
point (ξ1,ξ2)

⊤ in Ψ can be constructed by linear superposition of the
contributions κ(ξ1,ξ2;τττ(c)) from all cells c ∈ G, with input grid G,
based on the linear model from Equation 3 as

κ(ξ1,ξ2;τττ(Ω)) = ∑
c∈G

κ(ξ1,ξ2;τττ(c)) . (29)

If no uncertainty is involved, every point in the spatial domain links
to only one point with a fixed position in the data domain. However,
if there is uncertainty, such a point represents a density according to a
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Algorithm 2 UCSP: Convolution-based approach (triangle grid)

Require: uncertain bivariate data τ̃ττ , defined on triangle grid G
1: procedure UCSP CONVOLUTIONTRI(τ̃ττ)
2: for all pixel ϒ ∈Ψ do
3: for all triangle T ∈ G do
4: if ϒ.center ∈ τττ(T ) then

5: interpolate σ1,σ2 at τττ−1(ϒ.center;τττ(T ))

6: κ ←
λ (T )

λ (τττ(T ))

7: build convolution kernel k based on σ1,σ2

8: convolve κ using k
9: update UCSP by accumulating this result

10: end if
11: end for
12: end for
13: end procedure

Algorithm 3 UCSP: Convolution-based approach (tetrahedral grid)

Require: uncertain bivariate data τ̃ττ , defined on tetrahedral grid G
1: procedure UCSP CONVOLUTIONTET(τ̃ττ)
2: for all pixel ϒ ∈Ψ do
3: for all tetrahedron Te ∈ G do
4: if ϒ.center ∈ τττ(Te) then
5: interpolate σ1 f

,σ2 f
at front τττ−1

f (ϒ.center;τττ(Te))
6: interpolate σ1b

,σ2b
at back τττ−1

b
(ϒ.center;τττ(Te))

7: κ ←
‖τττ−1

f (ϒ.center;τττ(Te))−τττ−1
b (ϒ.center;τττ(Te))‖

||
∂ξ1
∂x
×

∂ξ2
∂x
||

8: divide κ by number |M| of used segments

9: for all segment m ∈M along τττ−1
f −τττ−1

b
do

10: interpolate σ1,σ2 at m.center
11: build kernel k from σ1,σ2

12: convolve κ using k
13: update UCSP by accumulating this result
14: end for
15: end if
16: end for
17: end for
18: end procedure

probability distribution (in our case, the bivariate normal distribution)
centered at the fixed position (Figure 2b). Thus, the role of uncer-
tainty is to “blur” the density in the data domain, more precisely, to
blur the density obtained without uncertainty in the data domain by
a convolution kernel that corresponds to the bivariate normal distribu-
tion given by the uncertainty at that point in the spatial domain. Thus,
a continuous scatterplot with uncertainty, κ(τ̃ττ(Ω)), defined on the en-
tire domain, can be considered a superposition of many such “blurred”
results, which can be formulated as

κ(τ̃ττ(Ω)) = ∑
(ξ1,ξ2)⊤∈τττ(Ω)

(

∑
c∈G

κ(ξ1,ξ2;τττ(c))∗ k

)

, (30)

with convolution operator ∗, and bivariate normal distribution ker-
nel k constructed by interpolating mean (µ1,µ2)

⊤ and standard de-
viation (σ1,σ2)

⊤ in c for position τττ−1(ξ1,ξ2;τττ(c)). See Algorithms 2
and 3 for details.

4.1.4 Uncertainty Indication

Inspired by gradient plots, we not only visualize the uncertain contin-
uous scatterplots with color-coding (see, e.g., Figure 7b and 7f), but
additionally display the outline of its certain (mean) counterpart by
a superimposed white line (see, e.g., Figure 7d and 7h). This helps
interpretation w.r.t. uncertainty [10].

4.2 Continuous Parallel Coordinates With Uncertainty

For continuous parallel coordinates with uncertainty, we focus on the
two cases n = 2,m≥ 2 and n = 3,m≥ 2. In the computation, cases
with m > 2 need to be split into independent cases with n = m = 2 and
n = 3, m = 2. That means, the dimension of the data (sub)domain Ψi

is 2 or decomposed to 2 (Section 3.1).
Constructing uncertain continuous parallel coordinates plots can be

split into the construction of several independent 2D parallel coordi-
nate systems, each computed from a 2D continuous scatterplot [19].
We base our approach on the scattering algorithm mentioned by Hein-
rich and Weiskopf [19]. Our resulting algorithm is almost identical to
our sampling-based approach for obtaining uncertain continuous scat-
terplots (Section 4.1.2). The only difference is to replace Line 17 in
Algorithm 1 with

draw L
ξξξ
ηηη (ϒ) with density α according to κ(ϒ) .

In our case, L
ξξξ
ηηη(ϒ) is a trapezoid in the independent 2D parallel

coordinates domain, with one of its bases on axis ξi spanning the
interval [minϒξi,maxϒξi], and the other base on axis ξi+1 spanning
[minϒξi+1,maxϒξi+1]. Based on mass conservation with respect to that
trapezoid, the density α is given as

α =
2κ(ϒ)λ (ϒ)

(

(maxϒξi−minϒξi)+(maxϒξi+1−minϒξi+1)
)

‖ξi,ξi+1‖
, (31)

with ‖ξi,ξi+1‖ being the distance between the ξi-axis and the ξi+1-
axis in η1-direction, which defaults to 1 (Figure 2a). The point density
ϕ in the parallel coordinates domain can be constructed implicitly by
superposition of these trapezoids, which can be computed by accumu-
lating the density of the trapezoids within a small interval along axis η2

according to Equation 13. With this approach, one can also generate
uncertain continuous parallel coordinates plots directly from existing
uncertain continuous scatterplots.

4.3 Fibers with Uncertainty

Fibers are the preimage of ξξξ in the spatial domain (Section 3.1) and
represent the intersection of the isocontours of the components of ξξξ .
If ξξξ is two-dimensional, fibers f of (ξ1,ξ2)

⊤ can be formulated as

f (ξ1,ξ2) = τττ−1(ξ1,ξ2) = τττ−1(ξ1)∩τττ−1(ξ2) . (32)

Accordingly, fibers f̃ of the uncertain field τ̃ττ are

f̃ (ξ1,ξ2) = τ̃ττ−1(ξ1,ξ2) . (33)

In this case, however, a formulation by means of an intersection of
sets, as in Equation 32 is not possible, as the preimages τ̃ττ−1(ξ1) and
τ̃ττ−1(ξ2) are distributions, not sets, and thus τ̃ττ−1(ξ1,ξ2) not a set in
the spatial domain either, but a probability distribution P̂(x;ξ1,ξ2) in
R

2. P̂(x;ξ1,ξ2) represents the probability that values at x lie within
[ξ1,ξ1 + dξ1]× [ξ2,ξ2 + dξ2]. Thus, Algorithm 1 lends itself to com-
puting fibers with uncertainty. For each position given in the 2D
data domain, we can compute the corresponding uncertain fibers us-
ing Lines 3–16 of Algorithm 1 (Figure 8).

To enable effective exploration of (uncertain) continuous scatter-
plots, we additionally propose “range-fibers”, which are the preimages
of ranges of Ψ instead of points ξξξ ∈ Ψ. Range fibers are simply ob-
tained by increasing the pixel-size region in Lines 3–16 of Algorithm 1
to the range of interest, if ρ = 0. In case ρ 6= 0, Algorithm 1 can be
easily adapted accordingly. Figure 9 demonstrates the utility of range
fibers for analyzing the impact of uncertainty in the spatial domain.

5 RESULTS

We demonstrate the utility and the properties of our approaches using
uncertain bivariate and trivariate examples of increasing complexity.
We start with a simple quad in 2D, to demonstrate our different ap-
proaches, the role of uncertainty, and implications (Section 5.1). We
then proceed from n = 2 to n = 3, by using an uncertain bivariate cube
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Fig. 3. Bivariate Cube example. Top row: original geometry; middle row: 5-tetrahedron subdivision; bottom row: 6-tetrahedron subdivision. Geom-
etry in the spatial domain (first column), and geometry in the data domain (second column). Traditional continuous scatterplot (third column) and
traditional continuous parallel coordinates (fifth column). Our uncertain continuous scatterplot (column four), and our uncertain parallel coordinates
(column six) are similar to their traditional counterparts due to the low uncertainty. Notice, however, the rather strong impact of the subdivision.

(Section 5.2). Having established an understanding of our approaches,
we then move to simulated meteorological data, also starting with a
case with n = 2 (Section 5.3), followed by a case with n = 3 (Sec-
tion 5.4). Finally, we demonstrate our approach for visualizing fibers
in uncertain data, using the same examples for n = 2 and n = 3 (Sec-
tion 5.5).

5.1 Bivariate Square

Let us start with a synthetic example with m = n = 2, consisting
of a single square cell. Figure 1a shows the original grid, compris-
ing four vertices A, B, C, and D, with respective bivariate values
(400,−1000)⊤, (800,1100)⊤, (−700,−600)⊤, and (−1200,900)⊤.
The uncertainty is set to be uniform and isotropic as σ1 = σ2 = 100,
ρ = 0, for all four vertices. The upper row of Figure 1 shows the
results for this case. To investigate the influence of subdivision into
simplices, we subdivide the quad into two triangles, and show the re-
spective results in the lower rows of Figure 1. As an additional alter-
native, we use the same data positions but swap the values of C and D,
which we show in columns four, five, eight, and nine. The first column
of Figure 1 shows the geometry of the examples, whereas the second
and fourth column shows the traditional (without uncertainty) contin-
uous scatterplot [3]. The third and fifth column shows our uncertain
continuous scatterplot using our sampling-based approach. In anal-
ogy, column six and eight shows the traditional (without uncertainty)
continuous parallel coordinates plot [19], whereas column seven and
nine shows our uncertain continuous parallel coordinates plot. Notice
that we do not show results for our convolution-based approach, since
it produces results identical to those of the sampling-based approach
for the triangulated dataset. The convolution-based approach differs
only in terms of execution times, which are available in Table 1 and
document its efficiency.

5.2 Bivariate Cube

We now increase from n = 2 to n = 3, by investigating a single syn-
thetic bivariate cube cell. Figure 3a shows the basic grid, contain-

ing eight vertices A, B, C, D, E, F , G, and H, with respective bivari-
ate values (400,500)⊤, (800,−100)⊤, (400,−1000)⊤, (800,1100)⊤,
(−700,900)⊤, (−1200,300)⊤, (−700,−600)⊤, and (−1200,900)⊤.
Also here, we set uncertainty to be uniform and isotropic, in this case
σ1 = σ2 = 30 , ρ = 0, for all eight vertices. The upper row of Figure 3
shows results for this case. To also investigate the influence of subdi-
vision into simplices, a procedure still quite often applied at the cost
of introduced deviations, we subdivide the cube into five tetrahedra
and into six tetrahedra (middle and bottom row of Figure 3), respec-
tively. The first column of Figure 3 shows the geometry in the spatial
domain, whereas the second column shows their geometry in the data
domain. The third column shows the traditional (without uncertainty)
continuous scatterplot and the fifth column the traditional (without un-
certainty) continuous parallel coordinates plot, whereas our uncertain
continuous scatterplot and uncertain parallel coordinates plot is shown
columns four and six. All continuous scatterplots are computed using
our sampling-based approach.

By comparing the plots with uncertainty and without uncertainty,
we can see that, since the uncertainty is set lower compared to the
Bivariate Square dataset, the “blurring” effect is weaker. This effect is
not only apparent in the continuous scatterplots with uncertainty but
also in the continuous parallel coordinates plots with uncertainty.

5.3 2D ERA5 Hourly Data

ERA5 is the fifth-generation ECMWF atmospheric reanalysis of the
global climate, which includes an uncertainty estimate that provides
guidance on the accuracy of the products [1]. Here, we take the data
on February 02, 2020, at 00:00, at pressure level 350 hPa. The original
grid is a rectangular grid with resolution 719×360. We visualize spe-
cific humidity q, temperature t, and relative vorticity vo. The means
of these variables in the spatial domain are shown in the top row of
Figure 5, whereas the corresponding standard deviations are shown
in the bottom row. The uncertainty estimation for ERA5 is based on
physical considerations using an ensemble of data assimilations (EDA)
system [1]. Since EDA does not account for correlated errors, ρ = 0.
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Fig. 4. Continuous scatterplots of 2D ERA5 Hourly dataset, of specific humidity q and temperature t, without (a) and with (b) uncertainty, and of
temperature t and relative vorticity vo, without (c) and with (d) uncertainty. White outlines of certain (mean) continuous scatterplots for reference.
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Fig. 5. 2D ERA5 Hourly dataset. Top row: mean values in the spatial
domain. (a) Mean of specific humidity q, using a white (low) to dark
blue (high) color scale. (b) Mean of temperature t, using a blue (low) to
red (high) color scale. (c) Mean of relative vorticity vo, using a black (low)
to yellow (high) color scale. Bottom row: column-wise corresponding
standard deviations, also in the spatial domain, using a blue (low) over
white (medium) to red (high) color scale.

Figure 4 shows the respective continuous scatterplots for specific
humidity and temperature, without (a) and with (b) uncertainty, and
correspondingly for temperature and relative vorticity (c)–(d). Fig-
ure 6, on the other hand, shows these quantities in continuous parallel
coordinates plots without (a) and with (b) uncertainty.

As we can see in Figure 4d, the error range at (ii) is larger than the
error range at (i), which means that if the temperature reaches this high
level, the uncertainty of relative vorticity becomes high. In Figure 4b,
we can observe how the uncertainty of humidity varies along with the
temperature. One can also observe in Figure 4b that, though at the
same temperature level, the uncertainties of humidity are different. As
is visible at (i) and (ii), at the chosen temperature, the error range
differs between the left and the right side. A closer inspection with
respect to the zero-axis of humidity, reveals that the blurred region at
(i) in Figure 4b represents unphysical negative humidity, which reveals
limitations with the uncertainty-based representation of ensembles and
could guide respective improvements of EDA.

5.4 3D ERA5 Hourly Data

Here, instead of taking the data from only one pressure level, as in Sec-
tion 5.3, we take the entire data from 37 pressure levels with vertical
coverage from 1000 hPa to 1 hPa. Thus, the resolution of this rectangu-
lar grid is 719×360×37. The top two columns of Figure 7 show con-
tinuous scatterplots for specific humidity q and temperature t, and rel-
ative vorticity vo and temperature t—without uncertainty in columns
one and three, and with uncertainty in columns two and four. In the
bottom row, we provide a view on all three quantities using continu-
ous parallel coordinates plots—in traditional form without uncertainty
in columns one and three, and with uncertainty using our approach in
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Fig. 6. Continuous parallel coordinates plot of 2D ERA5 Hourly dataset,
showing quantities from Figure 4, without (a) and with (b) uncertainty.

columns two and four. The first two columns have been obtained by
our convolution-based approach, whereas the last two columns with
our sampling-based approach.

In Figure 7d and 7h, we mark some locations that we want to in-
vestigate and compare with respect to uncertainty. We can see that at
these chosen locations, Uq, the error range of specific humidity, Ut , the
error range of temperature, and Uvo, the error range of relative vortic-
ity relate Uq > Uvo > Ut . From Figure 7b, we can see that in range
(i), where the temperature is high, the error range on the left (low q)
is larger than on the right (high q). This is opposite to the observation
from Figure 4b, and is caused by the fact that in this case, all pressure
levels have been considered. Since the blurred region caused by uncer-
tainty reaches even more negative values of humidity as in Figure 4,
we conclude that the unphysical issue with the uncertainty-based rep-
resentation of ensembles is even stronger away from medium heights
over the ground in this model.

5.5 Fibers in ERA5 Hourly Data

As a final example, we investigate fibers in uncertain 2D and 3D bivari-
ate fields. Our results have been obtained by the approach presented
in Section 4.3. We select four sample positions in the data domain of
the 2D and 3D ERA5 Hourly datasets, depicted in the first column of
Figure 8. The fibers without uncertainty corresponding to these sam-
ple positions are shown in the second column of Figure 8. These have
been generated using the topology toolkit [5, 40]. Compare the uncer-
tain fibers obtained with our method, shown in the third column.

Our uncertain fibers in Figure 8c and 8f, reveal regions around the
equator which have high uncertainty in relative vorticity, and regions
near the Arctic that exhibit low uncertainty in relative vorticity.

From the zoomed views in Figure 8j and 8n, we can see that for
the sample position where the uncertainty is larger, the fibers with un-
certainty are less opaque in the volume rendering, which means the
probabilities P̂ are lower. In those zoomed views, one can also see the
structure of varying P̂ along the uncertain fibers.

Finally, we chose three regions in uncertainty-dominated ranges (lo-
cated outside of the white mean outline), with two boxes (red and
green) in regions where the specific humidity is negative (Figure 9a),
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Fig. 7. 3D ERA5 Hourly dataset. First column: continuous scatterplots and continuous parallel coordinates plot without uncertainty, computed with
the traditional approaches [3, 19]. Using our convolution-based approach, we obtain respective results with uncertainty, as shown in the second
column. Using our sampling-based approach provides the results without and with uncertainty shown in the third and fourth column, respectively.

and visualize their range-fibers, consisting only of uncertainty-induced
fibers (Figure 9b). We can locate the widespread red/green range-
fibers, which caused the unrealistic humidity/temperature combina-
tions within the red/green boxes. In comparison, the range-fiber be-
longing to the blue box in Figure 9a, is not apparently unphysical and
is more compact.

6 DISCUSSION

Let us first discuss the performance measurements, provided in Ta-
ble 1. For the sampling-based approach, we subdivided every rectan-
gular cell of the data grid uniformly at subdivision resolution Rc, and
in each resulting subcell, we chose a random position to interpolate
the uncertain data in terms of mean and standard deviation.

In some cases, the convolution-based approach is slower than
the sampling-based approach, which results from the fact that Algo-
rithms 2 and 3 cannot be run on the GPU in parallel in our implemen-
tation. That is, we cannot update the result in Ψ in parallel due to the
read-write lock on graphics memory. For this reason, in our CUDA
implementation, instead of convolving every pixel’s certain density ac-
cording to the uncertainty and accumulating the results, we evaluate
the accumulated influence of all blurred results to a given pixel. For

this reason, the runtime of the implementation is higher, in some cases.

In our evaluation, we focused on uncertain continuous scatterplots
instead of uncertain continuous parallel coordinates plots, because un-
certain continuous parallel coordinates plots tend to suffer from occlu-
sion during the projection process, and therefore uncertainty structure
is typically better revealed in the continuous scatterplots.

We observe that not only in simple datasets the decomposition into
simplices affects the analysis, as shown in Figures 1 and 3. As is
revealed in Figure 7 at the example of temperature, its span is reduced
by the decomposition, and therefore we strongly suggest to use the
sampling approach in case of bivariate data given on rectilinear grids.

For the case m = 3, our implementation can be straightforwardly
extended from 2D to 3D by using a trivariate Gaussian distribution. In
cases where the uncertainty is not given by a parametric model but,
e.g., given by ensembles, our uncertain continuous scatterplots, paral-
lel coordinates, and (range-)fibers can be considered a superposition of
certain continuous scatterplots, parallel coordinates, and (range-)fibers
computed from these ensembles. If, on the other hand, the uncertainty
model is parametric but based on other probability density functions,
our approach can be easily adapted, provided that the parameters can
be interpolated in the spatial domain.

Table 1. Performance results, evaluating the method (continuous scatterplots (CSP) and continuous parallel coordinates plots (CPC)), different
choices for the subdivision resolution Rc for each cell of the original data grid, influence of the resolution RCSP of the resulting CSP, and the
resolution RCPC of the resulting CPC. All measurements and results were obtained on a GeForce GTX 1070 GPU with 8GB VRAM and CUDA 8.

dataset 2D ERA5 Hourly 3D ERA5 Hourly

variables q and t t and vo q and t t and vo

uncertainty without with without with without with without with

1. CSP (sampling)

Rc 40×40 40×40 40×40 40×40 20×20×20 10×10×10 20×20×20 10×10×10

RCSP 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k

Time 12.50 s 1837.43 s 14.40 s 2123.24 s 1574.60 s 27350.00 s 2242.40 s 45216.30 s

2. CSP (convolution)
RCSP 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k

Time 36.56 s 91.36 s 38.75 s 87.18 s 1604.20 s 10191.40 s 4765.10 s 44370.80 s

3. Fibers
Rc 5×5 5×5 5×5 5×5 5×5×5 5×5×5 5×5×5 5×5×5

Time — — — ≈ 0.08 s — ≈ 12.45 s — —

4. CPC (from 1.)
RCPC 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k 1k×1k

Time 110.35 s 120.16 s 112.70 s 118.20 s 113.94 s 119.78 s 133.07 s 139.10 s
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Fig. 9. Range-fibers in 3D ERA5 Hourly dataset. (a) Two selected regions (red, green) with negative specific humidity, and another region (blue) for
comparison. Correspondingly colored uncertain range-fibers (b). Zoomed views of boxes in (b) reveal the compact distribution of blue part (c)–(d).

7 CONCLUSION

In this paper, we presented a mathematical model and two numeri-
cal approaches for extending continuous scatterplots to uncertain data.
One of the numerical approaches served as ground truth for the de-
velopment of the other, generally more efficient one. Based on that,
we extended continuous parallel coordinates plots and (range-)fibers
to uncertain data. We demonstrated the properties, the utility, and the
interplay of our approaches using both synthetic and simulated data.
Future work could research further acceleration, extension to cases

with m > 2, and extension to different probability distributions.

ACKNOWLEDGMENTS

We thank Kai Sdeo and the reviewers for their help. This work has
been supported by DFG (Deutsche Forschungsgemeinschaft) grant
GSC 220 in the German Universities Excellence Initiative at Hei-
delberg University, and the subproject A7 of the Transregional Col-
laborative Research Center SFB / TRR 165 “Waves to Weather”
(www.wavestoweather.de) funded by the German Research Founda-
tion (DFG).

Author’s copy. To appear in IEEE Transactions on Visualization and Computer Graphics.



REFERENCES

[1] ERA5 hourly data on pressure levels from 1979 to present.

http://dx.doi.org/10.24381/cds.bd0915c6.

[2] S. Bachthaler, S. Frey, and D. Weiskopf. Poster: CUDA-accelerated con-

tinuous 2D scatterplots. 2009.

[3] S. Bachthaler and D. Weiskopf. Continuous scatterplots. IEEE Transac-

tions on Visualization and Computer Graphics, 14(6):1428–1435, 2008.

[4] S. Bachthaler and D. Weiskopf. Efficient and adaptive rendering of

2D continuous scatterplots. Computer Graphics Forum, 28(3):743–750,

2009.

[5] T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gue-

unet, P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe,

P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai, M. Soler,

P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An Overview

of the Topology ToolKit. In Proceedings of Topological Methods in Data

Analysis and Visualization, 2019.

[6] G.-P. Bonneau, H.-C. Hege, C. Johnson, M. M. Oliveira, K. Potter, and

P. Rheingans. Overview and State-of-the-Art of Uncertainty Visualiza-

tion. In Scientific Visualization: Uncertainty, Multifield, Biomedical,

Scalable, vol. 17 of Mathematics and Visualization, pp. 3–27. Springer,

2014.

[7] F. H. Bursal. On interpolating between probability distributions. Applied

Mathematics and Computation, 77(2):213–244, 1996.

[8] H. Carr, Z. Geng, J. Tierny, A. Chattopadhyay, and A. Knoll. Fiber sur-

faces: Generalizing isosurfaces to bivariate data. Computer Graphics

Forum, 34(3):241–250, 2015.

[9] C. D. Correa, R. Hero, and K. Ma. A comparison of gradient estimation

methods for volume rendering on unstructured meshes. IEEE Transac-

tions on Visualization and Computer Graphics, 17(3):305–319, 2011.

[10] M. Correll and M. Gleicher. Error bars considered harmful: Exploring al-

ternate encodings for mean and error. IEEE Transactions on Visualization

and Computer Graphics, 20(12):2142–2151, 2014.

[11] A. R. Didonato, M. P. Jarnagin, Jr., and R. K. Hageman. Computa-

tion of the integral of the bivariate normal distribution over convex poly-

gons. SIAM Journal on Scientific and Statistical Computing, 1(2):179–

186, 1980.

[12] T. G. Donnelly. Algorithm 462: Bivariate normal distribution. Communi-

cations of the ACM, 16(10):638, 1973.

[13] G. Favelier, N. Faraj, B. Summa, and J. Tierny. Persistence atlas for crit-

ical point variability in ensembles. IEEE Transactions on Visualization

and Computer Graphics, 25(1):1152–1162, 2019.

[14] D. Feng, L. Kwock, Y. Lee, and R. M. T. II. Matching visual saliency to

confidence in plots of uncertain data. IEEE Transactions on Visualization

and Computer Graphics, 16(6):980–989, 2010.

[15] F. Ferstl, K. Brger, and R. Westermann. Streamline variability plots for

characterizing the uncertainty in vector field ensembles. IEEE Transac-

tions on Visualization and Computer Graphics, 22(1):767–776, 2016.

[16] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann. Visual anal-

ysis of spatial variability and global correlations in ensembles of iso-

contours. Computer Graphics Forum, 35(3):221–230, 2016.

[17] D. Günther, J. Salmon, and J. Tierny. Mandatory critical points of 2D

uncertain scalar fields. Computer Graphics Forum, 33(3):31–40, 2014.

[18] J. Heinrich, S. Bachthaler, and D. Weiskopf. Progressive splatting of con-

tinuous scatterplots and parallel coordinates. Computer Graphics Forum,

30(3):653–662, 2011.

[19] J. Heinrich and D. Weiskopf. Continuous parallel coordinates. IEEE

Transactions on Visualization and Computer Graphics, 15(6):1531–1538,

2009.

[20] A. Inselberg. The plane with parallel coordinates. The Visual Computer,

1(2):69–91, 1985.

[21] A. Inselberg. Parallel Coordinates: Visual Multidimensional Geometry

and Its Applications. Springer, 2009.

[22] A. Inselberg and B. Dimsdale. Multidimensional lines II: Proximity and

applications. SIAM Journal on Applied Mathematics, 54(2):578–596,

1994.

[23] J. F. Kenney and E. S. Keeping. Mathematics of Statistics, Part 2, 2nd ed.

pp. 92, 202–205, 1951.

[24] P. Klacansky, J. Tierny, H. Carr, and Z. Geng. Fast and exact fiber sur-

faces for tetrahedral meshes. IEEE Transactions on Visualization and

Computer Graphics, 23(7):1782–1795, 2017.

[25] D. J. Lehmann and H. Theisel. Discontinuities in continuous scatter plots.

IEEE Transactions on Visualization and Computer Graphics, 16(6):1291–

1300, 2010.

[26] D. J. Lehmann and H. Theisel. Features in continuous parallel coor-

dinates. IEEE Transactions on Visualization and Computer Graphics,

17(12):1912–1921, 2011.

[27] A. M. MacEachren, A. Robinson, S. Hopper, S. Gardner, R. Murray,

M. Gahegan, and E. Hetzler. Visualizing geospatial information uncer-

tainty: What we know and what we need to know. Cartography and

Geographic Information Science, 32(3):139–160, 2005.

[28] M. Otto, T. Germer, H.-C. Hege, and H. Theisel. Uncertain 2D vector

field topology. Computer Graphics Forum, 29(2):347–356, 2010.

[29] M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3D vector

fields. In Proceedings of 2011 IEEE Pacific Visualization Symposium, pp.

67–74, 2011.

[30] D. B. Owen. Tables for computing bivariate normal probabilities. Ann.

Math. Statist., 27(4):1075–1090, 1956.

[31] C. Petz, K. Pthkow, and H.-C. Hege. Probabilistic local features in un-

certain vector fields with spatial correlation. Computer Graphics Forum,

31(3):1045–1054, 2012.

[32] T. Pfaffelmoser, M. Mihai, and R. Westermann. Visualizing the variability

of gradients in uncertain 2D scalar fields. IEEE Transactions on Visual-

ization and Computer Graphics, 19(11):1948–1961, 2013.

[33] T. Pfaffelmoser, M. Reitinger, and R. Westermann. Visualizing the posi-

tional and geometrical variability of isosurfaces in uncertain scalar fields.

Computer Graphics Forum, 30(3):951–960, 2011.

[34] T. Pfaffelmoser and R. Westermann. Visualization of global correla-

tion structures in uncertain 2D scalar fields. Computer Graphics Forum,

31(3):1025–1034, 2012.
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