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ABSTRACT

In this paper, we study the visual design of hierarchical multivari-
ate data analysis. We focus on the extension of four hierarchical
univariate concepts—the sunburst chart, the icicle plot, the circu-
lar treemap, and the bubble treemap—to the multivariate domain.
Our study identifies several advantageous design variants, which
we discuss with respect to previous approaches, and whose utility
we evaluate with a user study and demonstrate for different analysis
purposes and different types of data.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization application domains—Information vi-
sualization

1 INTRODUCTION

Multivariate data and hierarchical data are ubiquitous. But whereas
visualization has researched either field intensely and very success-
fully during the last decades, only very little is known about the
visualization of hierarchical multivariate data, i.e., trees with mul-
tiple attributes at each node. However, since such data are broadly
present, for example, as omics data in biology, statistics data in
census, or business data of hierarchical organizations, dedicated vi-
sualization techniques are needed for their effective analysis.

This motivates us to carry out a systematic design study on
the visualization of multivariate quantitative features with a com-
mon hierarchical structure. Based on task analysis, we narrow
down the design space to some promising combinations of tech-
niques from multivariate visualization and hierarchical visualiza-
tion. Guided by the requirements and respective motivations, we
finally derive four effective visual representations for hierarchical
multivariate data: multivariate sunburst charts (MSB), multivariate
icicle plots (MIP), multivariate circular treemaps (MCT), and mul-
tivariate bubble treemaps (MBT), which we evaluate using a user
study and discuss in terms of their strengths and limitations.

The contributions of this paper include:
• systematic study on visualizing hierarchical multivariate data,
• four new visual solutions (MSB, MIP, MCT, MBT),
• evaluation of the proposed solutions by a user study, and
• optimization of the bubble treemap layout algorithm.

2 RELATED WORK

There exist different classification schemes for visualizing multi-
variate data. Keim and Kriegel [18,19] classify them into six types:
pixel-oriented, geometric, icon-based, hierarchical, graph-based,
and hybrid. Notice that the hierarchical type is considered for multi-
ple ordinal attributes, i.e., hierarchical structure, whereas we focus
on quantitative multivariate data. Wong and Bergeron [42] divide
the techniques into two-variate display-based, multivariate display-
based, and animation-based. He et al. [16] provide a problem-
oriented classification, which groups the techniques by the tasks
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“feature”, “fusion”, and “correlation”. There exist also numerous
hierarchical visualization techniques, a collection of which is pre-
sented by Schulz [30]. Basically all these tree-based visualization
techniques are derived from the following five basic visualization
approaches: node–link diagrams, treemaps, circular treemaps, ici-
cle plots, and sunburst charts. To the best of our knowledge, there
are very few works that correlate these two fields.

Several previous works have proposed visualization approaches
for hierarchical multivariate data for very specific applications [8,
10,12,21,28], which are, however, not effective for static visualiza-
tion or general cases. Wittenburg et al. [40, 41] present approaches
for visualizing hierarchical multivariate data by aligning the cells in
treemaps. In our work, we do not include treemaps, because of their
issues with reading the hierarchy and the constraints on showing
internal nodes [25,43]. Another example for hierarchical multivari-
ate visualization are the hierarchical parallel coordinates by Fua et
al. [13], which, however, serve for hierarchical exploration of multi-
variate data, but cannot convey the hierarchical structure of the data.
Engel et al. [11], on the other hand, present an interesting approach
to transform multivariate data into a tree. Nevertheless, our goal is
not to “bridge” multivariate and hierarchical representations, but to
integrate them. Vosough et al. visualize hierarchical categories in
parallel coordinates [36], which addresses visualization of multiple
hierarchies of multivariate data. In their case, each attribute has a
different hierarchical category. In contrast, we focus on multivari-
ate data with a common hierarchy shared by all attributes. Arleo
et al. present GiViP [2], which can reveal the inter-relationships be-
tween hierarchical attributes based on a redesigned chord diagram.
However, our focus is on quantitative analysis of multivariate nodes
within a common hierarchy.

3 TASK ANALYSIS

Before we describe our design choices (Section 4) and the visual
design (Section 5), let us motivate our work.

3.1 Hierarchical Multivariate Data

The terms multivariate and multidimensional are often vaguely
used. Nevertheless, in our context, the term multivariate refers to
the dimensionality of the range, while the term multidimensional
refers to the dimensionality of the domain [4]. As an extension
of univariate and bivariate, the term multivariate (or hypervariate)
typically refers to data that consist of three or more variables or
observations. In this study, we focus only on data that are multivari-
ate in terms of quantitative level of measurement, and are discrete.
Second, the data of interest are structured under a defined hierarchy.
Thus, hierarchical multivariate data are data that exhibit a tree struc-
ture, with all nodes (including internal ones) consisting of multiple
attributes, or in other words, multiple attributes share the same tree
structure. Mathematically, they are very similar to a directed tree

T (V,E), (1)

(with nodes V and edges E), with the only difference that the nodes
possess multiple attributes. Notice that we therefore use the term
“hierarchical multivariate” for this kind of data—as opposed to the
term “multivariate hierarchical” data.
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Figure 1. Traditional visualization concepts for hierarchical data.
Treemaps (a), radial trees (b), icicle plots (c), sunburst charts (d),
and circular treemaps (e), visualizing the Flare dataset using D3 [7].

3.2 Open Challenges

Generally, tree/hierarchy visualizations can be grouped into two
main types of design—approaches based on explicit node–link
representations, and approaches employing space-filling strategies
which are implicit [31]. In traditional node–link representations,
visualization of even a single attribute per node is nontrivial, as il-
lustrated in Figure 1b. In traditional space-filling strategies, on the
other hand, two attributes could be mapped to visual variables, e.g.,
to size/length and color, as demonstrated in Figure 1c. There ex-
ist many approaches to visualize additional attributes in traditional
hierarchical representations. They typically employ additional pat-
terns, as in the case of uncertainty [15, 32], or features such as
height [39], which results in 3D representations with the involved
difficulty of occlusion. However, such approaches are still very
limited regarding the number of additional data range dimensions.
Noted by Nobre et al. [27], tree visualizations support very poorly
on representing several (> 5) node attributes. The main goal of
this work is to tackle this challenge in 2D visual space. From our
results (Section 7), we can see that our techniques are able to vi-
sualize seven attributes. Another open challenge is with respect to
representation of arbitrary data on internal nodes. Most tree visual-
ization techniques follow an aggregation scheme, i.e., the internal
nodes in the treemap, the icicle plot, and the sunburst chart show the
sum of their children. The traditional circular treemap (Figure 1e),
in contrast, just packs children into circles whose radii do not repre-
sent quantities. The node–link diagram, on the other hand, can show
any data on internal nodes, but as mentioned before, even showing
one attribute is challenging. The goal of this work is also aiming to
break the constraints of hierarchical visualization techniques. Our
resulting MSB, MIP, and MCT address this open challenge.

3.3 Requirements

Since this research is inspired by Functree2 [10] from the field of
bioinformatics, we have conducted several face to face discussions
with bioinformaticians who work on omics data. In these discus-
sions, we presented them Functree2, and asked them for their as-
sessment of the utility of Functree2 and possible improvement, with
the aim of deriving general requirements on visualizing hierarchical
multivariate data. They mentioned, for example, that the nodes in
Functree2 are hard to see due to their small size, which inspired
us to investigate possible alternatives with higher space-efficiency.
Since they agreed that Functree2 is easy to understand, and due to
the fact that domain experts are typically not visualization experts,
we also want possible alternatives to be simple to interpret. In terms
of visual encoding, the mapping suggestions proposed by Mackin-
lay [23] have been considered. As an initial work on this topic, and
to serve for print publications, we limit the scope to 2D static repre-
sentations. Furthermore, the domain experts mentioned that Func-
tree2 could help them with comparison tasks on all levels, which
became our main focus. Additionally, they also mentioned some
specific requirements that might not be easy to generalize, such as
depicting arbitrary data on internal nodes. We realized that in al-
most all tree visualization techniques, the internal nodes only show
aggregation of the children’s values, or even no data (Section 3.2).
Thus, for hierarchical multivariate data in general, we rank this re-

quirement with the least priority in terms of generalizability. Based
on these rationales, we determined the list of general desirable prop-
erties for the resulting approaches:
R1 Static representation: applicable for (printed) publication;
R2 Avoid occlusions: limit the representation to 2D;
R3 Simple interpretation: explicit visual mapping;
R4 Readability: clear multivariate and hierarchical properties;
R5 Arbitrary data on internal nodes: not just aggregation.

We put R5 last due to its least priority.

4 DESIGN CHOICES

4.1 Visualization of Hierarchical Data

When visualizing hierarchical data, in limited visual space, there is
always a trade-off between compactness and readability of the hier-
archy [15]. Hierarchical visualizations with very low compactness,
such as node–link diagrams (e.g., the radial tree in Figure 1b), may
profit from increased readability of the hierarchy [24], but utilize
too much visual space [22], limiting the amount of space available
for visualizing multivariate properties, which decreases the read-
ability of the multivariate properties, as shown in Figure 6a. On
the other hand, implicit hierarchical visualizations are highly space-
efficient. However, very compact visualizations, as for example
the treemap (Figure 1a), achieve a high information density, but
typically make it difficult to read the hierarchical structure of the
data [25, 43], with the result that Requirement R4 from Section 3.3
is not fulfilled. In our choice of hierarchical visualization concepts,
we need to balance the compactness and the readability of the hi-
erarchy. Thus, we do neither favor the treemap nor the node–link
diagram concept as candidates for conveying hierarchical structure.

Hierarchical visualization techniques that may exhibit occlu-
sions, like Beamtrees [34] or Cheops [3], do not fulfill Require-
ment R2 to avoid occlusions. Out of the five basic and well-known
tree visualization techniques shown in Figure 1, we consider the
icicle plot (Figure 1c), the sunburst chart (Figure 1d), and the circu-
lar treemap (Figure 1e) as potential candidates for integration with
multivariate visualization concepts, since they balance readability
and compactness [22, 25]. In our considerations (and Table 1), we
treat icicle plots and sunburst charts as being related, as the latter
is a circular variant of the former. Although related, we take both
into consideration, since icicle plots have advantages on accuracy
and efficiency in reading, and sunburst charts have advantages re-
garding user acceptance [33]. We denote the smallest unit (small
rectangle) in the icicle plot and (“curved rectangle”) in the sunburst
chart as a segment. Notice that in the case of the icicle plot, the hor-
izontal extent of a segment is denoted width in this paper, and in the
sunburst chart, the angular extent of a segment is denoted angular
width. That is, e.g., the angular widths of the direct children of the
root node in a sunburst chart sum up to 2π . In both the sunburst
chart and the icicle plot, we denote the other extent of a segment to
be its length, which is constant in both schemes (radial length in the
sunburst chart and vertical length in the icicle plot).

Furthermore, in order to fulfill Requirement R5, proper adjust-
ments are clearly needed. Notice that, since we base our techniques
on traditional tree visualization techniques, our techniques inherit
their limitation on scalability, e.g., regarding the representation of
large and deep hierarchical structures.

4.2 Visualization of Multivariate Data

For multivariate visualization, candidate concepts need to utilize the
visual space left by the trade-off between compactness and readabil-
ity of the hierarchy. For example, parallel coordinates, scatterplot
matrices, and dimensional stacking [20] would be hard to combine
with hierarchical approaches because they already exhibit a quite
high visual complexity and require a considerable amount of space.
Glyphs, as a class of multivariate visualization concepts that uses
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small and independent visual objects [6], have their major strength
in readability [38], making them our targeted candidate.

Many glyph concepts do not lend themselves well for multivari-
ate visualization under the requirements we have generalized in Sec-
tion 3.3 [14]. For example, techniques like Chernoff faces [9] and
stick figures [29] do generally not map to strong quantitative vi-
sual variables [23], and are therefore not satisfying Requirement R3.
Using bar charts for the multivariate attributes, on the other hand,
would further decompose the width of segments, which already
tends to be too thin in hierarchical visualization, as discussed be-
low. This motivated us to use stacked bar charts instead. Clock
glyphs could be a candidate, but since area is a better quantitative
visual variable than color, we chose pie charts instead. Star glyphs
/ radar charts could be an option as well, but their line-type design
would make it difficult to identify attributes.

As a result of this search, we identify the stacked bar chart and
the pie chart as those multivariate visualization concepts, that are
sufficiently compact and simple to read, and thus good candidates
for integration with hierarchical visualization techniques. Notice
that such concepts also suffer from visualizing large numbers of
attributes, which limits their scalability.

4.3 Design Space

Based on the previous discussions, Table 1 lists the design space
within which this study is located, with the orange-marked area be-
ing determined as potentially promising. Since the potential glyph
candidates need to follow the layout placement driven by the hier-
archical component [38], the aspect of their outer shape must be
considered as well. That is, in order not to lose compactness, we do
not want to combine rectangular concepts with circular ones, e.g., to
combine (stacked) bar charts with circular treemaps, or pie charts
with sunburst charts / icicle plots. Thus, the two remaining com-
binations we examine are stacked bar charts included in sunburst
charts and icicle plots, and pie charts included in circular treemaps.

Next, we document our visual design, guided by the previously
determined requirements, and located in the considered design
space area from Table 1. Our design is structured into two main
parts: multivariate sunburst charts and multivariate icicle plots (Sec-
tion 5.1), and multivariate circular treemaps and multivariate bubble
treemaps (Section 5.2).

5 VISUAL DESIGN

5.1 Multivariate Sunburst Chart / Multivariate Icicle Plot

As a basis for our integration, let us now investigate the properties
and limitations of the traditional sunburst chart and traditional icicle
plot in more detail (cf. Figure 1d and 1c):
Pa1 Inconsistent mapping in sunburst charts. The sunburst

chart maps the quantities (the data at the leaves of the hier-
archy and the sum of the children at internal nodes) to the
angular width of each segment. That is, the (radial) length of
all segments is constant, i.e., all segments are aligned on cir-
cles, and these circles are uniformly spaced (white circles in
Figure 1d). Since the perimeter of these circles varies with ra-
dius, the sunburst chart does not map consistently to the visual
variable “area”. (For icicle plots, value maps to the width of a
segment and thus consistently to the visual variable “area”.)

Pa2 Medium compactness. If a node has no children, then the an-
gular width (sunburst chart) or width (icicle plot) of the parent
is not used in descendant layers, causing unused visual space.

Pa3 Thin leaves. Because descendants can only inherit from the
angular width of the parent, “deep” descendants can become
very thin in the sunburst chart (e.g., pink in Figure 1d). If
we additionally delineate segments with (white) outlines of
constant width, sufficiently deep nodes cannot be visualized
at all. The icicle plot suffers even more from this issue, as

(a) (b) (c) (d) (e)

Figure 2. Design study for the stacked bar chart component. Tra-
ditional stacked bar chart (a), and its normalized alternative (b) for
eased attribute comparison. Separated alignment (c), padded with
background color, could lead to visual ambiguities when combined
with hierarchical techniques. Padding with another color (d) leads
to visual clutter and can cause misinterpretation. Padding with low-
saturated color (e) is our favored design component.

the segment width, in contrast to the sunburst chart, does not
grow with deeper levels (Figure 1c).

Pa4 Aggregation. Both sunburst charts and icicle plots can only
show the sum of the children’s values at internal nodes.

The design space led us to incorporate stacked bar charts into the
sunburst chart / icicle plot, with each segment of the sunburst chart
/ icicle plot containing one stacked bar. The first design task is the
orientation of the bars. To prevent asymmetry in the representation
and to avoid mapping of quantities to angular width, which is not a
good quantitative visual variable, we orient the stacked bar chart in
radial (sunburst chart) or vertical (icicle plot) direction, i.e., value
is encoded in direction of the (radial) length of the segment.

Straightforward application of traditional stacked bar charts (Fig-
ure 2a) would make it, however, hard to compare an attribute be-
tween siblings (between individual bars of the stacked bar chart).
This motivated us to align the stacked portions, which we first tried
to achieve by normalizing each bar (Figure 2b). Although such
normalization eases comparing an attribute across different bars, it
complicates quantitative interpretation. Therefore, our second (and
preferred) approach is to align each attribute separately (Figure 2c–
2e). Our first design (Figure 2c) works quite well with an individual
stacked bar chart. However, it would not work well if integrated into
the sunburst chart / icicle plot, because there, we also need (white)
area for separating the nodes, as well as the levels of the hierarchy
(corresponding to the white circles from Figure 1d), which would
lead to visual interference. Thus, we experimented with another
“padding” color in the stacked bar chart, for example, black (Fig-
ure 2d), but this visually disrupted the stacked information, making
it harder to perceive it as a multivariate entity. Beyond that, the
padding color could be misunderstood as an additional attribute. All
this motivates us to use low-saturated color for padding (Figure 2e),
which we choose as the solution for our integrated approach.

As already motivated, we put the stacked bars in vertical direc-
tion into the icicle plot (Figure 3a), and in radial direction into the
sunburst chart (Figure 3c). This means that, in contrast to the tradi-

Table 1. Considered design space in this study (orange), chosen so-
lutions (checked), and related work. The design space is spanned
by multivariate visualization (MV) techniques, and hierarchical visu-
alization (HV) techniques. CT stands for circular treemaps, SB for
sunburst charts, IP for icicle plots, and NLD for node–link diagrams.

MV

HV
CT SB/IP treemaps NLD

bar charts [8] [40, 41]

stacked bar charts ✓ [10, 21]

pie charts ✓ [21]

star glyphs

clock glyphs [12]
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Figure 3. Multivariate icicle plot (left two columns) and multivariate sunburst chart (right two columns), demonstrated using the same simple
synthetic dataset. Internal nodes showing the average of their children (top row), and showing the sum of their children (bottom row). Layout
strategy with equal sibling (angular) width ((a), (e), (c), (g)), and with equal leaf (angular) width ((b), (f), (d), (h)).

tional sunburst chart, the quantitative information is mapped to the
radial length of a segment, instead of mapping to the angular width,
and in case of the icicle plot, it is mapped to the length of a segment
instead of its width. This is a necessary design decision, since both
traditional sunburst charts and traditional icicle plots can only show
the sum of the children’s values at internal nodes (Pa4) using (angu-
lar) width. However, by this new mapping in our resulting concept,
any multivariate data can be shown at internal nodes.

Thus, we are now free to choose the (angular) width of the seg-
ments. We determined two useful strategies for choosing the (angu-
lar) width: the equal siblings strategy and the equal leaves strategy.
The equal siblings strategy takes the (angular) width of the parent
node and distributes it equally to the (angular) widths of its children.
See the strategy applied to the sunburst chart in Figure 3c and 3g,
and to the icicle plot in Figure 3a and 3e. The equal leaves strategy,
in contrast, distributes the entire global (angular) width (2π in case
of the sunburst chart, and the entire visualization width in case of
the icicle plot) equally to all leaf segments of the hierarchy. See Fig-
ure 3d and 3h for this strategy applied to the sunburst chart, and Fig-
ure 3b and 3f for the icicle plot. It is apparent that the equal leaves
strategy successfully avoids the “thin leaves” issue (Pa3), increases
the compactness (Pa2), and eases the identification and reading of
leaves [24]. However, one can also see that with the equal siblings
strategy, the hierarchy and internal nodes are better readable. With
both strategies, both the hierarchy aspect and the multivariate aspect
of the hierarchical multivariate data are well conveyed. Finally, Fig-
ure 3 also demonstrates that our approaches are able to show on an
internal node the sum of the values of its children, but also any other
quantity, as demonstrated with the mean value of the children. This
concludes the design of our MSB and MIP.

5.2 Multivariate Circular Treemap / Multivariate Bubble
Treemap

The second part of our design study focuses on extending the con-
cept family of circular treemaps to the multivariate domain. Let us
summarize the properties and limitations of the traditional circular
treemap (Figure 1e) first:
Pb1 Consistent mapping. The traditional circular treemap maps

the quantities at the leaves to the area of disks. Thus, the cir-
cular treemap maps consistently to the visual variable “area”.

Pb2 Medium compactness. Since the parent nodes are circles too,
the compactness is not very high, but it is also not as low as,
e.g., in the case of the radial tree.

Pb3 Depth encoding by saturation. To improve the readability,
the depth of a node is typically mapped to brightness, hue,
or saturation of the background color of the respective circle,
as demonstrated in Figure 1e. However, due to perceptual
limitations, this constrains the available maximum number of
hierarchy levels.

Pb4 No information on internal nodes. The circular treemap
does not show any quantitative data on internal nodes. They
only present the hierarchical information by grouping the rep-
resentations of their children. Thus, only the leaves show
quantitative information.

The design space guided us to choose the pie chart to be incor-
porated into the circular treemap. In case of the sunburst chart
/ icicle plot, our first design decision was about the orientation
of the stacked bar within each segment. In case of the circular
treemap, pie charts fit perfectly into a disk-based visual represen-
tation scheme, and due to symmetry, orientation is not an issue.

The next design step again investigates the multivariate visual
component itself, which is the pie chart in our case. Straightfor-
ward application of the traditional pie chart (Figure 5a) exhibits
some limitations. In the traditional pie chart, each quantitative at-
tribute is mapped to a sector of the disk, and the area of the disk
depends on the sum of the values of all attributes. If the attributes
have different units, however, such a representation would not be
suitable. Nevertheless, it is also not readily visible that, e.g., the red
and light blue sectors in Figure 5a exhibit the same value, and how
much the yellow and purple sectors differ.

This motivated us to search for alternatives and optimizations
based on pie charts. We found polar area diagrams (also known as
nightingale rose charts). Instead of mapping the quantities to sec-
tors with varying angle, polar area diagrams map each quantity to
a sector with equal angle but varying radius, as shown in Figure 5b.
We extended the polar area diagram with a circular guide to sup-
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Figure 4. Hierarchy of the dataset from Figure 3, visualized with a bubble treemap with internal nodes by concave hulls (a), and internal nodes
by almost convex hulls (b). Entire synthetic dataset from Figure 3: (c) example state after step 1 of the bubble treemap algorithm, (d) MCT with
each internal node showing the multivariate mean of its children, (e) MBT, and (f) MCT for data with different units.

(a) (b) (c)

Figure 5. (a) In pie charts, the area of the disk is determined by the
sum of all attributes, and the area of a sector by its value. (b) In polar
area diagrams, the angle is fixed, and the value is mapped to area.
This enables visualization of attributes with different units, in contrast
to (a). (c) Added maximum guide for eased comparison.

port quantitative comparison with its maximum (Figure 5c), which
is applicable in cases where all attributes have the same unit or if
attributes with different units have been normalized. While both
the pie chart and the polar area diagram map quantity to area, polar
area diagrams have several benefits:

• Simple localization of attributes. Since the angles in polar
area diagrams are uniform and thus fixed, it is much easier to
locate a certain attribute, compared to traditional pie charts,
where sectors have varying angles and varying offsets.

• Simple comparison. Polar area diagrams ease intra-node and
inter-node comparison. The visual variable “length”, which
is related to polar areas, helps to compare different attributes
within a node. Moreover, the additional guide from Figure 5c
helps to judge a value in its range. Inter-node comparison is
eased, due to the simplified localization of attributes.

• Simple identification of small values on leaves. The equal
angle strategy in polar area diagrams makes each sector well
visible. Small values on leaves lead to short sectors instead of
very thin ones (as in sunburst charts / icicle plots), which are
easier to spot.

Based on this evaluation, we identified polar area diagrams (with
guide) as the best candidate for integration into circular treemaps.

As a design alternative to increase the compactness of the hi-
erarchical scheme, we also take into consideration the bubble
treemap [15] (Figure 4a and 4b), which uses compact packing
curves for reflecting the hierarchy, instead of circles, as used in the
circular treemap. In the bubble treemap, the smoothness of an inter-
nal node’s packing curve can be adjusted by a parameter, providing
shapes ranging from convex hulls to concave hulls. The increased
compactness of the bubble treemap enables larger leaf representa-
tion, as exemplified in the comparison between our resulting ap-
proaches, the MCT (Figure 4d) and MBT (Figure 4e).

However, both the MCT and the MBT so far share the limita-
tion that they cannot show quantitative data on internal nodes (Pb4).
Thus, it is the final goal of our design study to provide a solution
to this limitation, and we found such a solution for the MCT. We
redesigned the circular packing ring, which groups the children of
internal nodes, and visualize the data of such nodes on that ring.

Figure 4d shows an example, where we visualize on internal nodes
the multivariate average of their children. In case of different units,
we split the ring into equal-angled sectors, one sector for each at-
tribute, and display the attribute (normalized with respect to the
range of the attribute) with saturated color in that sector, padded
with low-saturated color, similar to our stacked bars, as shown
in Figure 4f. However, a side effect of this approach is that the
thick circles (leveraged internal nodes) affect the compactness and
squeeze the visual space of the leaves.

Finally, the traditional circular treemap uses increasing, e.g., sat-
uration of the internal node disks to represent the depth and thus
improve readability (Pb3). However, due to perceptual limitations,
this limits the maximum depth of the hierarchy. Additionally, the
colors of the internal node disks would likely lead to interference
with the polar area diagrams. We researched this problem and came
up with the option to add narrow shadows on the outer boundary of
the disks, which is similar to the idea in Cushion treemaps [35]. We
employ this approach in both of our solutions, the MCT and the
MBT (Figure 4d and 4e) to support readability.

6 IMPLEMENTATION

As the implementation of our MSB, MIP, and MCT is rather simple
and straightforward, we only provide some details on the implemen-
tation of the MBT.

Our main contribution regarding the implementation of the mul-
tivariate bubble treemap is with respect to optimization of the origi-
nal algorithm to compute the bubble treemap [15]. Compared to the
original algorithm in [15], we employ one additional step of sorting
for acceleration of the computation of the force-based layout. The
overall process structures as follows (Algorithm 1):

1. Determine the largest radius among all attributes for each
node, and compute the traditional circular treemap layout.
This can be achieved using various algorithms [37,44]. In our
implementation, we use the circle packing library in D3 [7].

2. Sort all nodes in the tree by depth in descending order.
3. Apply a fast force-based layout algorithm.
4. Replace all disks with corresponding polar area diagrams.

To compute the layout, our algorithm runs the force simulation
once for all nodes at the same depth of the tree, whereas the original
bubble treemap algorithm needs to run the force simulation once for
every internal node. Thus, the time complexity of our algorithm is
O(d(T )), with d(T ) being the depth of the tree, in contrast to the
original bubble treemap algorithm’s time complexity O(i(T )), with
i(T ) being the number of internal nodes in the tree.

7 CASE STUDY

To demonstrate the properties of our approaches and their utility, we
start our evaluation with a case study using omics data (Section 7.1),
whose attributes exhibit the same unit. Our second application is on
statistics data (Section 7.2), whose attributes have different units.
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Algorithm 1 MBT layout

Require: nodes = {n},∀n =⇒ n.depth ↓
1: procedure FASTLAYOUT(nodes)
2: for all n ∈ nodes do
3: if n.depth has changed then
4: RUNSIMULATION(S)
5: end if
6: if n.height is 0 then
7: circle← CIRCLE(n.center,n.radius)
8: circle.pid← n.parent.id
9: string← STRING(circle,n.parent.center)

10: string.pid← n.parent.id
11: set proper force on string
12: add circle, string to scene S
13: else
14: build hull for all circles and hulls whose pid is n.id
15: hull.pid← n.parent.id
16: delete all string in S whose pid is n.id
17: string← STRING(hull,n.parent.center)
18: string.pid← n.parent.id
19: set proper force on string
20: add hull, string to scene S
21: end if
22: end for
23: return S
24: end procedure

Require: T is a tree with multivariate nodes
1: procedure MBTLAYOUT(T )
2: nodes← CIRCULARTREEMAPLAYOUT(T )
3: nodes← RESORT(nodes)
4: scene S← FASTLAYOUT(nodes)
5: update all circles in S by corresponding polar area diagrams
6: end procedure

7.1 Omics Dataset

Here, we evaluate our approaches on the omics data, which the
Functree2 [10] visualization has focused on. The data consist
of seven samples of NCBI gene identifiers [26] abundance, with
the respective hierarchical relation being predefined in the KEGG
database [17]. Layers of the tree correspond to functional cate-
gories, which from top to bottom are the biological category, bio-
logical process, and KEGG pathway. We compare our representa-
tions with Functree2 in two main analysis tasks: comparison and
exploration (also demonstrated in the accompanying video).

Comparison. In Functree2, the comparison of a sample’s value
between nodes is difficult because the stacked bar charts are not
aligned there. For this reason, interactive functionality is provided
in Functree2, to select an attribute and map its values to circle areas
for comparison between nodes, as shown in Figure 6a. Our MSB
and MIP (Figure 6b–6e), in contrast, enable simultaneous compar-
ison of all attributes in a single static representation. Although our
representations have the strength of being able to compare multiple
attributes, their weakness is with respect to the comparison of the
total amounts of all attributes, which is the strength of Functree2.
However, since such sum up is only applicable if all attributes have
the same unit and could even be misleading (Simpson’s paradox),
we think this trade-off is definitely acceptable.

Exploration. In Functree2, if one wants, e.g., to understand how
the values in the KEGG pathway relate to the values in upper lay-
ers, like the biological process or biological category, one can se-
lect a leaf node and examine the corresponding nodes in the upper
layer with the help of the highlighted path (Figure 6a). On the other
hand, localization of the dominant nodes in lower levels (e.g., locate
nodes a, b, c in Figure 6a) in the static view of Functree2 without in-

teraction is less easy. Because Functree2 is based on the radial tree,
visual reading is complicated due to extended visual transitions [5].
Thus, such highlighting based on selection is very helpful when a
tree has many levels. However, in Figure 6b, 6d, and 6e, finding
such relations can be accomplished straightforwardly.

Figure 7 shows the same data using the MBT and the MCT. Fig-
ure 7a demonstrates the advantage of the MBT for visualizing prop-
erties of leaves over our other design variants. Figure 7b, on the
other hand, shows how these multivariate quantities vary propor-
tionally on the internal nodes of the MCT. From Figure 6b and Fig-
ure 7b, we can see the rather low compactness of the MCT.

7.2 National Statistics Dataset

Our next example is national statistical data [1], where all attributes
differ in their units. The data consist of three layers: Continent, clas-
sified as Oceania, Africa, Asia, Europe, and America, Subcontinent,
consisting of, e.g., Western Europe, and Nation. The mean opera-
tion (for derived quantities at internal nodes of the hierarchy) is ap-
plied to seven attributes, which are: surface area, population, GDP,
sex ratio, urban population percentage, threatened species count,
and CO2 emission estimates. Since the units differ, we normalized
each attribute separately in its range, leading to the results shown in
Figure 8. In the MBT and the MCT as shown in Figure 9, we can
clearly identify apparent multivariate features. Also, we can iden-
tify countries, e.g., the United States, exhibiting the largest GDP,
large surface area, and large CO2 emission estimate. Another ex-
ample is China, having the largest population, large surface area,
large GDP, and large CO2 emission estimate. From Figure 8b, it
can be seen that total CO2 emission (violet) in East Asia is compa-
rable to North America, but at the same time that population (red)
of East Asia is much higher than that of North America. Only due
to the integrated hierarchical multivariate visualization, one can di-
rectly identify from this the underlying principle, i.e., that the value
of CO2 emission per person is much lower in East Asia. One can
also observe the multivariate features across different hierarchical
levels, e.g., from Figure 8a and 8b. Although East Asia has a rel-
atively high urban population percentage, due to the overall low
development of Asia, this number is reduced at the Continent level.

8 USER STUDY

So far, we have demonstrated with a case study that our four de-
sign solutions are useful for the analysis of hierarchical multivari-
ate data. Here, we back this up with a user study, which evaluates
our approaches with respect to the requirements that we determined
in Section 3.3. For a more compact presentation, we introduce the
following acronyms: MSB/MIP-S stands for MSB/MIP with the
equal siblings strategy, whereas MSB/MIP-L stands for MSB/MIP
with the equal leaves strategy.

8.1 Approach

Let R1–R5 refer to the five requirements we derived in Section 3.3.

For R1 (static representation) and R2 (avoid occlusions), our four
design solutions are static and 2D. We achieved these requirements.

For R3 (simple interpretation) and R4 (readability), we conducted a
user study online (due to the COVID-19 pandemic). The readability
of hierarchical properties directly depends on the tree visualization
technique, so it is not our main focus in the evaluation. In the user
study, we mainly focus on the readability of the quantitative multi-
variate properties under the hierarchical layouts.

For R5 (arbitrary data on internal nodes), MSB/MIP-S and
MSB/MIP-L achieved this requirement. For MBT, this seems to
be very hard to achieve and would likely be hard to read. For MCT
in case of not normalized attributes (not different units), only the
proportion can be represented. In case of normalized attributes, the
data can be represented on internal nodes.
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Figure 6. (a) Functree2, for comparison with our designs, ((b), (e)) MSB, and ((c), (d)) MIP, all demonstrated using the Omics dataset. Internal
nodes show average of their children. Layout strategy with equal sibling (angular) width ((d), (e)), and with equal leaf (angular) width ((b), (c)).

8.2 Tasks

We derived eight tasks (T1–T8, with listed questions) from Require-
ment R4. R3 was evaluated indirectly by the correctness and com-
pletion time of T1–T8, and R4 was evaluated directly by T1–T8.
For every representation, the same questions have been asked for
simplifying the comparison. For the questions, the participant had
three answers to choose from: A, B, or “hard to tell”. A or B indi-
cate a region, leaf, internal node, or a certain comparison according
to the task. Task-relevant elements in the visualizations are indi-
cated by arrows and labels.

• T1 – Comparison between two attributes in one internal node
(R4): Compare the length/height of the red and light blue re-
gion of internal node 1, which region is larger, A or B?

• T2 – Comparison between two attributes in one leaf (R4):
Compare the area/height of the red and light blue region of
leaf 1, which region is larger, A or B?

• T3 – Comparison of one attribute between different leaves
(R4): Compare the area/height of the yellow region of leaf
A and leaf B, which is larger?

• T4 – Comparison of one attribute between a leaf and an inter-
nal node (R4): Compare the length in its range of the yellow
region of internal node A, and the area in its range of the yel-
low region of leaf B, which is larger? / Compare the height

of the yellow region of internal node A and leaf B, which is
larger?

• T5 – Comparison of one attribute between internal nodes (R4):
Compare the length/height of the gray region of internal node
A and internal node B, which is larger?

• T6 – Estimation of the value of one attribute in a leaf (R4): Es-
timate the range of the value of the light blue area (maximum
is 1), A: <0.4 or B: >0.4?

• T7 – Estimation of the value of one attribute in an internal
node (R4): Estimate the range of the value of the violet area
(maximum is 1), A: <0.4 or B: >0.4?

• T8 – Reading the hierarchy (R4): The parent node of leaf 1 is
internal node A or internal node B?

8.3 Design

Participants. 22 participants were recruited from students and
staff. 4 majored in mathematics, 11 in computer science, 3 in geoin-
formatics, 2 in bioinformatics, 1 in other natural science fields, and
1 in human science fields. 8 were female, 14 male.

Procedure. The participants were welcomed and asked to be
focused during their participation. They were introduced to carry
out the user study using full-screen display of their browsers and
to not zoom in during the survey. In case they had no color weak-
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Figure 7. Omics dataset visualized with MBT (a), and MCT (b) with internal nodes showing the multivariate mean of their children.
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Figure 8. MSB ((c), (d)) and MIP ((a), (b)), demonstrated using National Statistics dataset. The color legend refers to Figure 9. Internal nodes
show the average of their children. Layout strategy with equal sibling (angular) width ((a), (c)), and with equal leaf (angular) width ((b), (d)).

ness or color blindness, they were allowed to continue and were
introduced to our four representations by an introduction video (see
supplemental material). After they had understood the technique,
all tasks, together with the representations, were presented to the
participants one by one in a randomized order.

Data. We used the National Statistics dataset presented in Sec-
tion 7.2. All pictures were presented at resolution 700×700 pixels.

Framework and measurements. We implemented the user
study in the SurveyGizmo framework, which provided measure-
ment of completion time of each task and the achieved accuracy.

8.4 Evaluation

The results of our user study are provided in Figure 10. We also per-
formed an ANOVA test on the completion time of T1–T8 to analyze
whether an actual difference exists between these representations.
The results of F-value and p-value of T1–T8 are listed in Table 2.

Since T1, T4, and T7 have p< 0.1, the differences between these
means are relatively statistically significant, which means it is rea-
sonable to compare the means of completion time between these
tasks. For other tasks with p > 0.1, we only compare the accuracy.

For T2, T3, and T6, which only concern leaves, MSB-L is one of
the best candidates. Due to the low compactness of MCT (discussed
in Section 5.2 and also observed in Section 7.1), it has the worst

Table 2. ANOVA test on the completion time of T1–T8.

Tasks F-value p-value

T1 F(4, 105) = 3.3588 p = 0.0125

T2 F(5, 126) = 0.4577 p = 0.8071

T3 F(5, 126) = 1.0871 p = 0.3708

T4 F(4, 105) = 2.0771 p = 0.0890

T5 F(4, 105) = 1.5499 p = 0.1932

T6 F(5, 126) = 1.2835 p = 0.2751

T7 F(4, 105) = 2.0117 p = 0.0981

T8 F(5, 126) = 0.4759 p = 0.7937

accuracy in these tasks. MBT, due to the compactness, in contrast,
performed much better than MCT, comparable to MSB-L.

For T1, T5, and T7, which only concern internal nodes, in gen-
eral, MSB and MIP do not exhibit significant differences. However,
the equal sibling strategy is slightly better than the equal leaf strat-
egy. MCT has the worst accuracy, because the stacked bar is curved
along the circle packing line, which affects readability. MBT does
not support such tasks.
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Figure 9. National Statistics dataset visualized with MBT (a), and MCT (b) with each internal node showing the multivariate mean of its children.
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Figure 10. Accuracy (a) and completion time (b) for tasks T1–T8 and our different representations. (a) Correct answer (green), false answer (or-
ange), and “hard to tell” answer (gray). (b) The whiskers represent the 10–90 percentile interval around the median, while the box represents the
interquartile range (Q1–Q3).

For T4, MSB takes less time than MIP. Again, MCT has the
worst performance. MCT performed the worst not only because of
its weakness regarding presentation of leaves due to the low com-
pactness, but also due to the difficulty of comparing a polar area in
its range and a bar in its range. From the fact that MCT performed
worst in almost all tasks, one can argue that Functree2 would per-
form badly in such a study due to its low compactness.

For T8, all representations performed quite well. As mentioned,
the readability of the hierarchy mostly depends on the hierarchical
visualization technique. Since the icicle plot, the sunburst chart,
and the circular treemap are very widely used, and bubble treemaps
as a variant to circular treemaps are also easy to understand, this
result is in accordance with our expectations.

In general, we can see that the MSB is better than the MIP. We
think this is because the sunburst chart has advantages regarding
user acceptance compared to the icicle plot [33].

9 LIMITATIONS

We need to mention that the scalability of all our four representa-
tions is limited by the chosen tree/multivariate visualization com-

ponents (Section 4.1 and 4.2). In practice, we suggest the number
of nodes to be less than 500, and the number of attributes to be no
more than 10. Further research on the scalability is still needed. Ad-
ditionally, since our main focus is to “ease the comparisons”, and
considering the fact that the user’s exploration and interpretation
strongly depend on experience and are hard to evaluate, we focus
our user study mainly on visual perception. Thus, further investiga-
tions on user’s exploration and interpretation are needed. From the
resulting representations, we see that the MBT is not able to depict
values on internal nodes, and the MCT exhibits bad performance
regarding visual perception due to its low compactness.

10 CONCLUSION

We presented a design study on the visualization of hierarchical
multivariate data. First, we determined the respective requirements.
This guided us in the selection of concepts from multivariate vi-
sualization and visual representation of hierarchical data. For the
hierarchical component, this resulted in the sunburst chart, the ici-
cle plot, the circular treemap, and the bubble treemap as the basic
layout. For the multivariate aspect of the data, we found the stacked
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bar chart and the concept of the pie chart to be an appropriate basis
for finding design variants that support integration with the hierar-
chical layouts. Finally, we determined four integrations for visualiz-
ing hierarchical multivariate data, with several subspaces of design
adjustments. We demonstrated our solutions using different data,
and evaluated them with respect to the previously determined re-
quirements. Future work could include improving scalability and
introducing interactive focus+context approaches. Additionally, in
case the quantitative property of the multivariate component is not
desired but the correlation between attributes is, replacing the polar
area diagrams with chord diagrams could be further investigated.
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