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Abstract
Scientists and engineers are making increasingly use of hp-adaptive discretization methods to
compute simulations. While techniques for isocontouring the high-order data generated by these
methods have started to appear, they typically do not facilitate interactive data exploration. This
work presents a novel interactive approach for approximate isocontouring of high-order data. The
method is based on a two-phase hybrid rendering algorithm. In the first phase, coarsely seeded
particles are guided by the gradient of the field for obtaining an initial sampling of the isosurface
in object space. The second phase performs ray casting in the image space neighborhood of
the initial samples. Since the neighborhood is small, the initial guesses tend to be close to the
isosurface, leading to accelerated root finding and thus efficient rendering. The object space
phase affects the density of the coarse samples on the isosurface, which can lead to holes in the
final rendering and overdraw. Thus, we also propose a heuristic, based on dynamical systems
theory, that adapts the neighborhood of the seeds in order to obtain a better coverage of the
surface. Results for datasets from computational fluid dynamics are shown and performance
measurements for our GPU implementation are given.
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1 Introduction

Computational simulations use finite element methods to approximate the solution of partial
differential equations. While the use of low-order linear basis functions within the finite
elements was common in the past, the increasing need for numerical accuracy and efficiency
motivates the development of more sophisticated numerical methods. An example is the
hp-adaptive finite element method used in computational fluid dynamics, which produces
high-order approximations inside each element. This leads to more accurate representations
of physical phenomena. However, for visual inspection, the rendering of such data can become
costly due to expensive evaluation. Approximate representation is one way to offer a viable
visualization approach, allowing a trade-off between rendering speed and accuracy. Low-order
resampling and isocontouring algorithms such as Marching Cubes (MC) [9] are among the
simplest solutions to this problem. Adaptive sampling variations of MC can further reduce
the error and capture more complex structures [14, 17]. However, resampling approaches
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Figure 1 Isocontouring of a sequence of different density levels for a high-order dataset obtained
from a Discontinuous Galerkin flow simulation.

introduce error and often lead to increased memory demands due to the large number of
lower-order elements needed to represent the original data with sufficient accuracy.

To overcome these limitations, more attention has been paid recently to methods for
direct contouring of high-order data. Usually, in these methods, isocontouring is realized
as a root finding or gradient descent problem. Due to the high-order nature of the data,
there is no closed-form solution for these approaches, and numerical methods must be used
instead. Since these methods are typically computationally expensive, they are often carried
out in a pre-processing step, which was applied in several mesh-extraction [14, 16, 17] and
point-based algorithms [4, 20, 18, 11]. Although interactive rendering is possible with these
techniques because the isosurface is computed during pre-processing, changing isovalues
requires recomputation of the isosurface and hence the overall visualization is often no longer
interactive. The ability to change isovalues interactively is present in some ray casting or
ray tracing isocontouring algorithms [19, 12, 7]. However, the evaluation during rendering of
such numerical methods typically leads to lower frame rates.

In this work we present a technique for the interactive approximate contouring of high-
order data. It allows to choose the trade-off between rendering speed and rendering quality
and is called iHOS (isocontouring of High-Order Surfaces) in this paper. It relies on a hybrid
algorithm that distributes the isocontouring workload over pre-processing and rendering
phases, allowing for interactive exploration by changing isovalues. The main components
include:

A parallel particle-based technique to generate a coarse, view-independent sampling of
the isocontour in object space, which is only executed when the isovalue changes.
An algorithm based on dynamical systems theory that allows for improved isosurface
sampling.
GPU-based ray casting that shoots a collection of rays for each quad around each sample
in object space.

The method is designed to be efficiently mapped to parallel architectures and does not
rely on inter-element connectivity information. Element reordering is not necessary for
correct rendering, although performance improvement is achieved by processing elements in
front-to-back order. Results are presented for datasets composed by convex cells. However,
since no cross-cell rays are used, the method can be easily adapted to work with concave
cells through the use of a more general point-in-polyhedron test. These are desired features
that allow easy handling of structured and unstructured meshes as well. Figure 1 presents
the results obtained with our method for a sequence of different isovalues for a high-order
dataset obtained from a Discontinuous Galerkin flow simulation.
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2 Related Work

There is a vast literature on isocontouring; the discussion below focuses on techniques for
high-order data. Figueiredo et al. [4] proposed physically-based approaches for extracting
triangle meshes from implicit surfaces. One method is particle-based while the second is
based on a mass-spring system, and represents the first attempt on using particles to sample
high-order data. This work inspired Witkin and Heckbert [20] to develop a point-based tool
for the modeling and visualization of implicit surfaces. When used as a modeling tool, points
represent handles for changing shapes. As a visualization tool, points are projected onto
the surface and rendered as discs, with size and distribution adaptively computed according
to the curvature of the surface. Meyer et al. [11] proposed a technique for isosurfaces
generated from high-order finite element simulations that builds upon the approach of Witkin
and Heckbert. Potential functions are used for particles repulsion, giving more control
over particle distribution. This method handles cells with curved surfaces and allows for
interactive visualization of a given isosurface. However, interactive exploration of different
isovalues is not viable since every isovalue change typically takes several minutes due to
resampling.

Kooten et al. [18] presented the first interactive particle-based method for implicit surface
visualization that runs entirely on the GPU. The projection method is an adaptation of that by
Witkin and Heckbert. Particle repulsion relies on a spatial-hash data structure that requires
costly and frequent updates, thus preventing its use for rendering large datasets. Although
not directly related to isocontouring, we mention the work by Zhou and Garland [21], which
presents a point-based approach for the direct volume rendering of high-order tetrahedral data.
Despite their effectiveness, point-based methods typically only provide a coarse representation
for the isosurface, and accurate representations require a huge number of points. Haasdonk et
al. [5] presented a multi-resolution rendering method for hp-adaptive data based on polynomial
textures targeted to 2D rendering. Schroeder et al. [16] presented a mesh extraction method
that explores critical points of basis functions to provide topological guarantees on the
extracted mesh. Similar to other mesh extraction methods, it employs computationally
expensive pre-processing to allow interactive exploration of arbitrary isovalues. Remacle
et al. [14] proposed a method for resampling high-order data inspired by adaptive mesh
refinement (AMR) methods. The original high-order data is down-sampled to a lower-order
representation which is suitable for lower-order visualization algorithms like Marching Cubes
[9]. The resampling error threshold can be adjusted, but low thresholds can lead to memory
consumption explosion.

A competing strategy is to avoid pre-computation and compute isocontours during
rendering. Nelson and Kirby [12] presented a ray tracing-based method for the isocontouring
of spectral/hp-adaptive data. The method works by projecting the high-order functions
onto each traced ray and computing the intersection with the isosurface from the resulting
univariate function. Visualization error is carefully quantified and reduced. On the other
hand, it typically takes several seconds to generate the final image, prohibiting interactive
exploration of the data.

Knoll et al. [7] presented an interactive interval arithmetic-based method for the ray
tracing of implicit surfaces on the GPU. It is currently one of the fastest ray tracers for
implicits, presenting also robustness with respect to the root-finding process. However,
the equations of the implicits must be converted to an inclusion-computable form, which
increases the number of arithmetic operations needed to evaluate the equations. This is not
a problem in the case of polynomials with only few coefficients, as can be verified by their
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results. However, in the case of simulation data we usually have polynomials with hundreds
of coefficients and thousands of polynomials to be evaluated for each frame, and the use of
interval arithmetic may impact performance.

3 Isocontouring High-Order Surfaces

In this section we describe the details of the isocontouring High-Order Surface (iHOS)
algorithm. We start by first giving an overall description, followed by details of each step.

3.1 iHOS design
Interactive rendering rates in iHOS are obtained by dividing the isocontouring workload
between object and image space computations, each defined in a separate phase. The first
phase, in object-space, generates an initial sampling of the isosurface by projecting particles
(here called seeds) along the gradient field onto the surface. Only seeds successfully projected
onto the surface are considered for further processing. Each projected seed generates a
surface-tangent, seed-centered quadrilateral (quad) that covers the neighborhood of the seed.
The second step uses the fragments generated by the rasterization of those quads as the initial
points for a ray casting that refines the isosurface representation in image space. Figure 2
gives an overview of the iHOS pipeline.

To compute the initial isosurface approximation, we start by placing a set of seeds
uniformly distributed inside each cell and projecting them onto the surface. The projection
affects the density of the seeds and thus the sampling quality. There are methods described
in the literature that handle this problem by using repulsion/attraction or birth/kill of
seeds in a pre-processing stage [20, 11, 18]. Despite their effectiveness, these procedures
are computationally expensive, requiring the update of complex data structures that are
hard to efficiently map to parallel architectures. Although our experimental results show
that satisfactory quality images are obtained even without handling the sampling problem,
we additionally propose a heuristic that helps in reducing the artifacts of the final image.
This heuristic is implemented as a pre-processing stage that analyzes, under the dynamical
systems theory perspective, the seeds behavior along the gradient field during projection.
Differently from the previous methods that must compute the pre-processing for each isovalue,
this pre-computation is executed only once for the entire dataset and does not depend on a
specific isovalue. The next sections give an in depth explanation of each step of our algorithm.
We start by first reviewing the finite element (FE) high-order data subject to this work.

3.2 hp-adaptive FE Data
FE methods imply discretization. The physical domain Ω is discretized in a compatible mesh
(meaning that the elements intersect only at the boundary faces, edges, or vertices). A given
mesh M with N elements [14] can be defined as

M =
N⋃
i=1

ei (1)

where ei is the i-th element. In some FE method simulations, results are stored at the
vertices of regularly distributed elements. However, recent numerical methods brought the con-
cepts of h- and p-adaptiveness. h-adaptive methods vary the element size (h-refinement) while
p-adaptive methods are those that can vary the order of the basis functions (p-refinement).
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Figure 2 iHOS pipeline: An initial sampling of the isosurface is generated in object space by
projecting coarsely seeded particles over the isosurface along the gradient field in object space. Each
projected point generates a quadrilateral whose fragments will be used as starting points for the ray
casting in the image-based phase.

The hp-adaptive methods combine both. These methods are of special interest because they
can, through the balance between h- and p-adaptiveness, increase the convergence order of
computations. In p or hp methods, results are defined continuously for each element using
high-order functions.

In the specific case of Discontinuous Galerkin methods [13] the solution is computed
separately for each element, which means that the solution can be discontinuous at the
element boundaries. It is also common to have the higher-order basis functions defined in a
reference space, and a mapping function that transforms coordinates from reference to world
space. Although this mapping can be non-linear, we currently only handle transformations
that include rotation, translation, reflection, and scaling.

3.3 Object Space Sampling
The task of finding an isosurface for a given polynomial data can be formulated as a root-
finding problem. For high-order polynomials, the lack of closed form solutions lead to the use
of iterative numerical methods. Newton-Raphson (NR) is one of the best known methods for
numerical root finding. Additionally, it presents good convergence rates when the starting
point is already close to the desired solution. However, uniformly distributed seeds may not
be close to the solution and NR may fail, leading to poor sampling. One possible solution
is to guide the seeds through the gradient field until they get closer to the isosurface and
then apply NR to refine the projection. Since we just want to bring the seeds closer to the
isosurface, we decided for guiding the points by means of integration. After the integration
step it is assumed that the seeds are closer to the desired isosurface and we start with the
NR iterations. Directional NR [8] along the gradient is used, since it has the additional
advantage of quadratic convergence. Equation 2 shows the formulation used for the NR
iterations.

xk+1 = xk − f(xk)
∇f(xk) · ∇f(xk)

∇f(xk) (2)
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(a) (b) (c) (d)

Figure 3 Isosurface approximation: (a) Seeds are initially distributed uniformly into each cell.
(b) Seeds are guided through integration along the gradient field towards the desired isosurface. (c)
Seeds are projected using directional NR on the isosurface. (d) Surface-tangent quads are generated
for each point projected onto the isosurface.

where k is the time step (k = 0, 1, . . .), x is the point position in reference space, and f
is the polynomial for the current cell.

All computations are performed separately for each seed point since no neighborhood
information is needed. Figure 3 gives an overview of the first phase.

3.4 Image Space Refinement
The input for the second phase of our method is a set of surface-tangent, seed-centered quads
that together cover the isosurface. Points lying on these quads can be used as starting points
for the ray casting that will refine the representation of the isosurface. These points are
efficiently obtained through the rasterization of the quads in image space. The fact that
these points are already close to the isosurface implies that we can use the directional NR
method along the ray direction, as show in Figure 4. Equation 3 shows the formulation for
the directional NR used for the fragment projection:

xk+1 = xk − f(xk)
∇f(xk) · r

r, (3)

where k is the time step (k = 0, 1, . . .), x is the point position in reference space, f is the
polynomial for the current cell, and r is the ray vector in reference space.

The generated ray and fragment coordinates are transformed into the reference coordinate
system, where the ray-isosurface intersection computations are performed. After the maximum
number of iterations is reached, if the fragment is not projected onto the isosurface (within
an error tolerance bound) or it has been moved outside of the cell, it is discarded. If the
fragment is successfully projected, shading is computed and the corresponding pixel color is
updated.

4 Sampling Strategies

Both steps, the object space sampling (Section 3.3) and the image-based refinement (Sec-
tion 3.4), require appropriate sampling for obtaining a complete isosurface representation. In
some cases holes can result due to improper sampling. As a limit case of the object space
sampling, infinitely dense seeding would guarantee a complete isosurface representation, but
in practice, no guarantees about the resulting isosurface sampling can be given.

The reason is that in general no assumptions about the behavior of the gradient field can
be made, and hence of the mapping of the seeds to the isosurface. It is, for example, generally
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(a) (b)

Figure 4 Isosurface refinement: (a) Quads are rasterized in image space. (b) Each fragment is
projected against the isosurface through directional Newton-Raphson.

not possible to estimate the maximum distance between two seeds when they are mapped
to an isosurface of arbitrary isolevel. A limit case of the image space refinement is a single
quad that spans the complete screen, which would be equivalent to a ray casting approach.
This would lead to the typically low performance of these methods due to computationally
expensive root finding along the viewing rays. Our method operates between the two
mentioned limit cases. To motivate the parametrization and a sampling technique, we will
first discuss the relevant issues and implications that arise in the context of sampling.

4.1 Sampling Issues
The proposed approach suffers from the fact that the fragments are processed independently
and therefore it is impossible to detect, and to directly fix holes in the isosurface. Holes can
be caused by different reasons:

1. the root finding may fail, e.g. due to insufficient iteration count,
2. the root finding may deliver a point on a nearby isosurface if the quad is not well aligned

with the isosurface, i.e. the isosurface exhibits too high curvature with respect to the
initial sampling,

3. the quad sizes are insufficient.

The first cause is hard to address explicitly because the efficiency of our method relies on
synchronized root finding and hence constant iteration count (see Section 5.2). However, this
reason is typically negligible. Because we use quads that are aligned with the tangent plane
of the isosurface at each sampling seed, the second case depends only on the quality of the
initial sampling and the last one on the quad sizes. The initial sampling has to be performed
each time the isolevel is changed and therefore the exploration of isocontours requires high
performance for this operation. This makes the use of expensive approaches not feasible for
this step. Unfortunately, it is generally not possible to find a distribution of the seeds for the
object space sampling that leads to uniformly sampled isosurfaces for all possible isovalues.
This makes non-uniform quad sizes for the image space refinement necessary.

Therefore, we propose a method for estimating sufficient quad sizes in Section 4.2 and
place the seeds for the object space sampling regularly inside each cell. One problem is
that even comparably large quads cannot guarantee hole-free coverage of the isosurface
because the sampling points can be arbitrarily distant due to the possible intricacy of the
gradient field. Additionally, large quads typically lead to high overdraw and hence to lowered
performance. All in all, a balance has to be found between the number of initial seeds for
the object space sampling and the sizes of the quads.
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For approximate results at high performance that can serve as a preview to more expensive
but robust methods such as that by Knoll et al. [7], the sampling in object space can be
parametrized and the size for the quads can be derived from that sampling as shown in
Section 6. As an alternative, we now propose a method to estimate conservative quad sizes
for individual quads.

4.2 Estimating Quad Sizes using FTLE
A method to determine quad sizes that guarantees a complete covering of the isosurfaces
under the assumption of an appropriate object-space sampling can be derived from dynamical
systems theory. The finite-time (or local) Lyapunov exponent (FTLE) was originally defined
to measure the predictability of dynamical systems [10, 6]. More precisely, it measures
the exponential growth that a perturbation undergoes when it is advected for a finite time
interval in a vector field. The flow map φT (x), which maps a sample point x to its advected
position φT (x) after advection time T , is the basis for the Cauchy-Green deformation tensor
∇φT (x). Using

∆T (x) = (∇φT (x))> · ∇φT (x) (4)

and λmax being the largest eigenvalue, leads to the finite-time Lyapunov exponent [6]:

σT (x) = 1
|T |

ln
√
λmax(∆T (x)). (5)

For our application, we are only interested in the growth of the distance between two
seeds as they are guided by the gradient field and therefore we omit the normalization by
advection time and the logarithm in Eq. 5. Additionally, since we look for points on the
isosurfaces, i.e. the intersections of isosurfaces with gradient field lines starting at the seeds,
the integration along the field lines shall not be limited by integration time (or length).
Instead, it has to be limited by the prescribed isolevel l. We define φl(x) to be mapping the
position x to the isosurface of isolevel l along the corresponding gradient field line (the field
line is stopped if a critical point of the gradient field is reached). Using Eq. 5, this would
lead to the separation factor

sl(x) =
√
λmax(∆l(x)). (6)

We follow a direct approach for evaluating sl(x). To avoid numerical issues and to be able
to exclude certain seeding neighbors n ∈ N (x) of x, as described below, the computation of
sl(x) is not based on the gradient of φl(x), but it is calculated directly:

sl(x) = max
n∈N (x)

||φl(n)− φl(x)||
||n− x||

. (7)

The quad size d(x) at φl(x) is sl(x) times the corresponding seeding distance ||n−x||. If
the resolution of the object space sampling is appropriate, using these quad sizes guarantees
a complete covering of the isosurface at level l. For obtaining quad sizes that are appropriate
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for any isolevel, the maximum separation ŝ(x) over all isolevels, computed in a preprocessing
step, is used to determine the quad sizes:

ŝ(x) = max
lmin≤l≤lmax

sl(x). (8)

This quantity relates to the FTLE maximum by Sadlo and Peikert [15]. Unfortunately,
neighboring seeds can get mapped to different isosurface parts, making the resulting quad sizes
too conservative. This leads to unnecessary overdraw during rendering and hence lowers the
overall performance. As a remedy, we propose a heuristic that reduces the overdraw caused
by these cases. The idea is to exclude neighbors of x from the computation of ŝ(x), that are
not located in its vicinity on the same isosurface. There are several possible approaches for
detecting if two points are adjacent on the same isosurface. The straightforward approach
would be to compute the geodesic distance between the points along the isosurface. However,
this is considered impractical and too expensive.

A criterion for testing if a mapped point φl(x) and its mapped neighbors φl(n),n ∈ N (x)
are located close to each other on the same isosurface can be motivated by the fact that the
gradient is always aligned with the isosurface normal. To test if a point and its neighbor are
located on the same isosurface, the behavior of the gradient field is analyzed on the straight
line connecting them. If the isosurface is planar between the two points, the line follows the
isosurface and intersects the gradient field everywhere perpendicularly. If, on the other hand,
the isosurface is non-planar between the points or if the points even lie on different isosurface
regions, there are positions on the segment where the gradient is not perpendicular. We
introduce the following measure amin for the minimum angle between the gradient and the
segment sn going from x to n:

amin = max
t∈[0,1]

|sn · ∇s(x + tsn)|/(||sn||||∇s(x + tsn)||). (9)

Then, the neighbor n is excluded from the computation if amin exceeds a user-defined
threshold. In practice, this threshold can be typically set to 0.5 for suppressing most of
the erroneous neighbors in order to prevent too conservative quad sizes and reduce the
performance loss due to overdraw.

5 Implementation

The design of iHOS was to take full advantage of parallel architectures. Although our current
implementation runs on a single GPU, it could be easily distributed over a GPU cluster. We
start by first describing the data structures used. Afterwards we go into the details of the
implementation.

5.1 Data Storage
For the early cell culling we use an interval-tree [3] that stores the extrema of the scalar
field for each cell. This tree is stored and processed on the CPU side. The remaining data
structures are stored on the GPU through the use of different buffers. Each time the user
selects a different isovalue, we need to load the initial set of uniformly distributed seeds
and compute the isosurface approximation. Thus we allocate two seed arrays on the GPU:
one with the initial unprojected seeds and another to store the projected seeds. For each
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unprojected seed, its corresponding FTLE value is stored as its w coordinate. Actually, those
seed arrays are implemented as vertex buffer objects (VBOs). We refer to V BOunproj for the
VBO with unprojected seeds and V BOquads for the VBO that stores the quads. Polynomial,
gradient, and cell boundary data are read-only and are made available for GLSL through the
use of bindable uniform buffer objects (BUBOs). Since BUBOs are limited in size (usually
64KB) we chose to create a separate BUBO for each cell and to bind them on demand.

5.2 GLSL Shaders
Both phases of the algorithm are implemented through a set of shader programs. The first
step of the algorithm is implemented through a GLSL program composed of a vertex shader
and a geometry shader. The vertex shader reads the V BOunproj and projects the seeds onto
the isosurface (Section 3.3). These seeds are streamed up to the geometry shader and used to
generate surface tangent quads. The quads are resized accordingly to the FTLE value of the
seed (Section 5.1). In order to record the generated quads into the V BOquads we interrupt
the pipeline just after the geometry shader through the use an OpenGL extension called
Transform Feedback (or stream-out in DirectX terminology). The GLSL program responsible
for the second step is composed of a vertex and a fragment shader. The vertex shader just
redirects the vertices of the quads to the rasterization stage. The fragment shader implements
the core of the second step. It performs a ray casting using the input fragment as the starting
point for the root-finding iterations (Section 3.4). As said before, fragments that are not
sucessfully projected are discarded. However, it must be observed that fragments successfully
projected onto the isosurface are only shaded according to the new position, without having
their depth coordinate updated. This procedure greatly increases method’s performance by
allowing the use of the early-z test. A side effect of this approach is that some noise can
appear on some regions of the isosurface. This happens because a fragment closer to the
camera can be projected on a far surface, being thus wrongly shaded. This effect is greatly
reduced through the comparison between the angles of the polynomial gradient vectors at
the fragment positions before and after projection. If the two angles differ above a certain
value, it is assumed that the fragment jumped to another surface. In this case one have just
to discard the fragment. In both steps, the shaders must compute several evaluations of the
polynomials and their gradients. A shader capable of evaluating a general polynomial with
an arbitrary degree should contain a loop that could not be unrolled by the compiler. To
increase performance, we decided to keep several versions of these shaders, each one targeted
to a specific polynomial degree. For the polynomial evaluation itself we use static expressions
generated by a multivariate Horner scheme approach [2]. We decided to keep the number of
integration and NR iterations static in order to reinforce thread synchronization, increasing
performance.

5.3 Computation Flow
When the user chooses a desired isovalue the cells containing the isovalue are selected. These
cells are inserted in a separate list and arranged in front-to-back order through fast sorting
that does not have to be exact. This ordering is not necessary, but it helps the second step of
the algorithm to avoid processing occluded fragments, increasing performance. The shaders
corresponding to the polynomial degree of the current cell are activated. The corresponding
BUBO (containing the polynomial, gradient, and boundary data) for the current cell is
bound and the seeds are projected. After all seeds are projected, we start with the second
step. Again, the cell list is traversed, and now the ray casting shaders and corresponding
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BUBOs are bound. Fragments successfully projected onto the isosurface are recorded in the
frame buffer.

6 Results

Results and performance measurements were obtained on a computer with an Intel Core 2
Quad 2.4GHz processor, with 4GB of RAM, Linux operating system, and NVidia GeForce
8800 GTX video card. To demonstrate the method we used synthetic data and two density
datasets generated by hp-adaptive Discontinuous Galerkin flow simulations. The scalar fields
of all datasets are defined analytically by a multivariate polynomial defined in the reference
space in a monomial basis of the form:

P (x) =
∑

i+j+k<=n
cijkx

iyjzk (10)

with i, j, k ∈ N0, the maximum order n, the coefficients cijk, and the reference space
coordinates x, y, z. The mapping functions for all datasets include only translations. The
smaller dataset is composed of 119 hexahedral cells with polynomial degrees varying between
5 and 6. The larger dataset is composed of 34,535 convex polyhedral cells (tetrahedra, prisms,
and hexahedra) with a scalar field defined by degree 3 polynomials.

6.1 Performance
For each phase of the algorithm a set of parameters can be adjusted. For the first phase these
parameters are the number of initial seeds (ns), number of integration steps (ni), number
of NR steps (nN1), and the error for the NR projections (ε1). For the second phase the
parameters that can be adjusted are the number of NR steps (nN2), the scale factor for
the quad size (sq), and the error for the NR projections (ε2). Although the great number
of parameters may be confusing at first, they offer great flexibility to the user, allowing
the tuning towards accuracy or interactivity. From our experience we observed also that in
general one can explore both accuracy and performance by adjusting just a few of them,
keeping the others fixed. For all presented measurements we used screen resolutions of 10242

pixels.
All renderings were made with active early cell culling and with front-to-back ordering

for the cells. Figure 5 shows performance measurements for the small dataset. The fixed
parameters, and their respective values, are: ns = 103, ni = 50, nN1 = 10, ε1 = 10−3,
nN2 = 3 and ε2 = 10−4. These values were chosen through trial-and-error. The only variable
parameter is sq. Due to early cell culling only 16 cells (≈ 7.43% of the total) were processed.
The results of Figure 6 show performance measurements for the bigger dataset. The fixed
parameters are: ns = 83, ni = 50, nN1 = 10, ε1 = 10−3, nN2 = 3 and ε2 = 10−4. These
values were also chosen through trial-and-error. Again, the only variable parameter is sq.
Due to early cell culling 3,781 cells (≈ 9.13% of the total) were processed.

Figure 7 shows how the method scales with respect to the number of cells. These
measurements were made with degree 3 polynomials extracted from the bigger dataset. It
can be seen that the rendering cost does not grow linearly. This can be explained by the use
of the early-z test, which avoids the processing of fragments or even cells that are totally
occluded. This behavior is reinforced since we use front-to-back ordering for the cells. We
may still have some overdraw since we do not order the quads inside the cell. However, from
our experiments, this has not affected significantly the performance in the general case.
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Figure 5 Renderings of isovalue ≈ 2 with varying qs. From left to right, the sq value and
corresponding frames per second (fps) are: sq = 0.75 and 45 fps, sq = 1.0 and 39 fps, sq = 1.25 and
29 fps.

Figure 6 Renderings of isovalue ≈ 0.9983 with varying sq. From left to right, rendering and
zoomed images with the following sq value and corresponding frames per second (fps): sq = 0.5 and
21 fps, sq = 0.75 and 14 fps, sq = 1.0 and 12.5 fps.

The method proposed by Knoll et al. [7] may look, at first, as a competing approach.
Despite the fact that their method is meant for the robust rendering of implicits, it is fast
and could be applied separately to each cell of our datasets. Figure 8 shows a comparison
between our method and Knoll’s for the rendering of a single cell of our small dataset.
Visual inspection shows that our method is able to achieve higher framerates at better
image quality. One reason for the difference in performance is probably related to the extra
cost involved with the use of inclusion arithmetic in Knoll’s method. Although the use of
inclusion arithmetic guarantees error bounds for the results, it tends to produce inferior
results if larger error bounds are used. Since we are not primarily interested in the control of
accuracy, we rely on the direct evaluation of the original polynomial representation, which is
computationally cheaper and thus can be used in a previewing system.

Figure 7 Performance vs. number of cells. The non-linearity can be explained by the use of the
early-z test, which avoids the processing of occluded fragments.
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Figure 8 Comparison with Knoll’s method. (left) Polynomial of degree 5 rendered by our method
at ≈ 30 fps. With the standard settings (depth = 10 and error = 0), Knoll’s method rendered this
image at ≈ 8 fps without visible artifacts. (right) After optimization of their parameters (depth =
4 and error = 0) to reach the best possible image quality at ≈ 30 fps. Both images rendered in a
10242 pixel screen.

Regarding the time spent to recompute the object space approximation at each isovalue
change, for all our tests, they took less than 2 seconds. In the case of the smaller dataset,
it takes less than 1 second to recompute the seed projection. All measurements were made
with 50 integration iterations and 10 NR iterations.

6.2 Isocontouring Quality
As a previewing system the proposed method does not focus on high accuracy. Nevertheless,
it is capable of delivering results of reasonable quality. Figure 9 shows a comparison between
images generated by our method and the same images generated by POV Ray, a well known,
tested, and freely available ray tracer [1]. The discontinuities observed in these renderings
are due the Discontinuous Galerkin method used to compute the simulations. Our method
handles continuous data properly, as can be seen in Figure 10.

Despite the reasonable quality of the images, one may want to have better visual quality
for the isocontouring. In such cases the user can switch to a robust isocontouring system,

Figure 9 Comparison against POV Ray. (left) Image generated with our method, with the
following settings: ns = 103, ni = 50, nN1 = 10, ε1 = 10−3, nN2 = 3, ε2 = 10−4, sq = 1.5 and
isovalue ≈ 5.8437. This scene was rendered at 8.7fps. (right) Reference image generated from the
same dataset and same isovalue with POV Ray. Both images rendered at 10242 pixels.
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Figure 10 Rendering of Tangle dataset sampled with a grid of 43 = 64 cells (left). The dataset
is continuous inside and across cells. Zoomed image (right) shows how our method handles the
continuity at the borders correctly. Settings for this rendering are: ns = 103, ni = 50, nN1 = 10,
ε1 = 10−3, nN2 = 3, and ε2 = 10−4. The isovalue is ≈ −1.98. Image was rendered at 10242 with
≈ 9.6 fps.

as the one proposed by Knoll et al. [7]. However, we have also developed some heuristics
in order to allow our method to generate better quality images. The quality of the final
sampling depends on the relation between the number of seeds and the size of the quads.
The exact relation between these two parameters is difficult to assess since the projection
changes seed density. The FTLE-based heuristic tries to estimate “optimal” quad sizes that
“work” for all isovalues considering an initial seeding given by the user. Since the FTLE
does not take into account the topology of the isosurface, it can be too conservative, by
considering distances between seeds in disjoint surfaces. For this case we adopt a test that
estimates whether points are in disjoint surfaces (Section 4.2). Figure 11 illustrates the
sampling problems related to bad seeding/quad size relation and how our heuristic resizes
the splats according to that seeding, reducing effectively the artifacts in the final image. It
also illustrates the effect of our disjoint-surfaces test on reducing the FTLE conservativeness.
Despite the fact that it improves the quality of the final rendering, the FTLE makes the
method less attractive for previewing since it reduces its performance.

(a) (b) (c) (d) (e) (f)

Figure 11 Sampling issues related to quad size: (a) Standard quads reduced to 30% of original
size. (b) Sampling using standard quads: some artifacts can be seen due to poor sampling. (c)
Quads scaled by the FTLE and reduced to 30% of their size. (d) Sampling obtained with quads
resized by the FTLE approach. (e) Quads resized by our FTLE approach in conjunction with a
heuristic that reduces its conservativeness, reduce in 30%. (f) Sampling obtained with our FTLE
approach in conjunction with the heuristic.
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7 Conclusion and Future Work

This work has presented iHOS, an interactive approach for isocontouring higher-order data
generated by hp-adaptive discretization methods. The method operates with high-order data
whose mapping function includes only rotation, translation, reflection, and scaling. The
method does not rely on complex data structures and does not resample the original data
into lower-order representations. Results are presented for datasets composed by convex
cells. However, since no cross-cell rays are used, the method can be easily adapted to work
with concave cells through the use of a more general point-in-polyhedron test. Although
not meant to generate accurate images, the presented results show that general quality of
the generated images is good. Several parameters can be adjusted in order to control the
trade-off between efficiency and accuracy; it has been shown that one can explore both
(accuracy and performance) by adjusting just a few parameters, keeping the others at fixed
values. Some points should be addressed in future work: further reduction of the overdraw
during quad rasterization, development of an improved initial seed distribution heuristic for
the first phase, handling of large datasets, optimizations for subpixel cells and handling of
non-linear mapping functions between reference and world spaces. For future work we also
plan to adapt this method to handle dynamic datasets.
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