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Abstract

Advection has been the standard transport mechanism in flow visualization. Diffusion, in contrast, has not been

considered important in visual flow field analysis so far, although it is inherent to many physical processes. We

present a novel technique that allows for interactive 3D visualization of both advection and diffusion in unsteady

fluid flow. We extend texture-based flow visualization, which is advection-oriented, by diffusion. Our finite volume

approach based on WENO (weighted essentially non-oscillatory) reconstruction is well parallelizable and features

low numerical diffusion at interactive rates. Our scheme contributes to three different applications: (a) high-

quality dye advection at low numerical diffusion, (b) physically-based dye advection accounting for diffusivity

of virtual media, and (c) visualization of advection-diffusion fluxes in physical media where the velocity field is

accompanied by a concentration field. Interactive rendering of the virtual dye is accomplished by ray casting. We

apply our GPU implementation to CFD examples of thermal convection and evaporation phenomena.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—; J.2 [Physical Sciences and Engineering]: Physics—

1. Introduction

Flow visualization plays an important role in science and en-
gineering. In particular, the field of computational fluid dy-
namics (CFD) produces data of ever growing size and com-
plexity, and visualization serves as one of the primary means
of obtaining qualitative insight into these data. Many visu-
alization techniques rely on characteristic curves of vector
fields, such as stream lines and path lines—from direct vi-
sualization of individual curves or sets of curves [TB96],
over surfaces [Hul92, GKT∗08] and volumes constructed
from these field lines [XZC04], to implicit representations
by scalar fields derived from them [vW93,WJE00]. Whereas
these techniques proved to be successful in a wide area of
applications where the purely advective transport property of
the field is of interest, only few techniques have been devised
so far for the visualization of diffusion effects. It is the aim of
this paper to fill this gap—by providing a technique for ap-
propriate analysis of flow fields where diffusion is taken into
account. Advection-diffusion processes are widely present,
besides diffusion of velocity in standard Navier-Stokes solu-
tions due to viscosity, they gain importance when additional
diffusive quantities such as temperature or concentration of
soluble substances are involved.

Dye advection is a prominent technique for visualizing

advective processes in flows. It visualizes the transport of
virtually inserted dye and hence represents the computa-
tional counterpart to injection of ink or smoke in physical
experiments. In fluid dynamics, this simulation of transport
of quantities due to prescribed velocity is called passive ad-

vection. Both in simulation and visualization major effort is
spent to avoid the involved numerical diffusion, i.e., artificial
diffusion of the quantity due to numerics—primarily caused
by repeated interpolation of the quantity during advection
in discrete grids. Although numerical diffusion tends to in-
troduce blur, dye advection has the advantage that, in con-
trast to, e.g., streak surface generation, no geometric repre-
sentation has to be maintained, allowing for visualization of
arbitrarily complex flows. Whereas traditional passive ad-
vection solves the advection equation for prescribed flows,
we solve for the advection-diffusion equation, accounting
for diffusion processes. To obtain appropriate visualization
of advection-diffusion data, it is important to keep numer-
ical diffusion low during visualization. We achieve this by
adopting a finite volume approach based on weighted essen-
tially non-oscillatory (WENO) reconstruction. Our tech-
nique contributes to three different scenarios:

• Interactive dye advection in 3D flow fields at high quality
and low numerical diffusion, requiring velocity data only.
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• Physically plausible dye advection including diffusion of
dye. By adjusting diffusivity to that of ink in water or
smoke in air, one obtains the computational counterpart
to these common experiments. This also requires only ve-
locity data. If the flow field resulted from an advection-
diffusion simulation with known diffusivity, the diffusiv-
ity of the virtual dye can be set accordingly for inspection.

• Visualization of transport due to diffusion. We introduce
the novel concept of passive diffusion, the advection of
dye according to the diffusion flux derived from concen-
tration data. It can be either used alone for visualization
of diffusion, or in combination with the velocity data for
visualizing advection-diffusion. Besides these fields, it re-
quires the constant of diffusivity of the concentration data.

2. Related Work

In scientific visualization, one line of research adopts
a Lagrangian view on texture-based flow visualization—
with line integral convolution (LIC) being their role
model [CL93]. The other area of research, which is rele-
vant to this paper, advects a texture from frame to frame.
The majority of previous work in this research direction is
based on semi-Lagrangian advection or similar schemes. For
example, texture advection techniques address 2D visual-
ization [JEH00, vW02, WHE01], 3D visualization [TvW03,
WSE07], and visualization on surfaces [LJH03, vW03,
LTWH08]. It is also possible to combine dye advection tech-
niques with LIC, as described by Shen et al. [SJM96]. An
overview of texture-based flow visualization techniques in
general, including further references to prior work, is pro-
vided by Laramee et al. [LHD∗04]. A serious problem of
semi-Lagrangian advection is the high level of numerical
diffusion introduced by repeated resampling of the trans-
ported texture. In particular, resampling with bilinear or tri-
linear interpolation leads to strong blurring, which can be
understood from a signal-processing perspective [Wei09].
Therefore, higher-order reconstruction filters can reduce
blurring [AB06]. An alternative approach adopts the con-
cept of level-set advection to avoid blurring for advected
dye. In this approach, the boundary between dye and back-
ground is modeled as an interface transported without blur
[CKSW08, Wei04].

However, none of the above methods from scientific vi-
sualization modeled diffusion explicitly. In fact, there is
previous work that uses diffusion for flow visualization.
For example, Sanderson et al. [SJK04] employ reaction-
diffusion for flow visualization, adapting reaction-diffusion
methods for generic texture synthesis in computer graphics
[Tur91,WK91]. Similarly, Markov random field texture syn-
thesis can be adopted for flow visualization [TA03]. Also,
anisotropic (non-physical) diffusion, known from image fil-
tering, can be applied to flow visualization [DPR00]. An ex-
tension to unsteady flow is provided in [BPR01], by adapt-
ing the diffusion tensor and blending the transport diffusion

evolution results started at successively incremented times.
Finally, there is a large body of research on diffusion ten-
sor visualization, mostly in medical imaging and visualiza-
tion [VZKL06]. It is important to note that none of these
diffusion-related papers use physical diffusion in combina-
tion with physical advection.

Most closely related work is the physically-based dye
advection by Li et al. [LTH08]. They applied the piece-
wise parabolic method [CW84] (PPM) for visualization by
dye advection in time-dependent 2D flow fields, providing
a technique exhibiting low numerical diffusion. The tech-
nique allows for comparably large time steps by advecting
each cell backward in time and sampling a parabolic recon-
struction of the dye inside the resulting polygon. Several rea-
sons motivated our choice for the weighted essentially non-
oscillatory scheme [LOC94] (WENO) instead: it represents
a generalization to arbitrary order of accuracy, is based on
a clear mathematical foundation, lends itself better to paral-
lelization, and, last but not least, allows for the incorporation
of diffusion using a finite volume formulation.

We base our approach on the WENO scheme as described
by Dumbser and Käser [DK07]. We perform dimensional
splitting, i.e., we apply the 1D scheme subsequently in the
three spatial dimensions. For incorporating active diffusion,
we follow Chou and Shu [CS07] and use linear instead of
WENO weights for computing the concentration gradient.

3. Advection and Diffusion

Dye advection in visualization, i.e., the simulation of the
behavior of virtual dye inside prescribed (time-dependent)
vector fields, is called passive advection in computational
fluid dynamics. It leads to a linear problem that contrasts ac-

tive advection, the advection of velocity itself during flow
simulation resulting in a nonlinear problem that is harder to
solve. This is one of the reasons why visualization by dye
advection tends to be fast, compared to flow simulation it-
self. Nevertheless, numerical diffusion is a major problem
also with passive advection and substantial effort is taken to
reduce it, as, for example, in the dye advection method by Li
et al. [LTH08], typically at the cost of reduced performance.

If physical diffusion is included in the advection prob-
lem, it typically leads to the advection-diffusion equation.
Whereas we address passive advection only, diffusion tra-
ditionally plays an active role in science and engineering,
i.e., it is the concentration variation of the quantity itself that
governs its diffusion. If the virtual dye takes the role of the
quantity, we obtain physical dye advection accounting for
diffusion of solubles in typical flow media. We call this ap-
proach active diffusion to contrast it from our second variant
that we call passive diffusion. We introduce passive diffusion
as a means of visualizing the mechanisms “behind” concen-
tration changes due to diffusion. In this case, the flow field
needs to be accompanied by a (time-dependent) concentra-
tion field for analysis by our technique.

c© 2012 The Author(s)
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3.1. Advection-Diffusion Equation

The traditional advection-diffusion equation [BSL60] reads

∂φ

∂t
+(∇φ)u = D∆φ (1)

with the concentration φ = φ(x, t), velocity u = u(x, t), con-
stant of diffusivity D, and Laplacian ∆. To allow for passive
diffusion, introduced in Section 3.3, we generalize Eq. 1:

∂φ

∂t
+(∇φ)u+(∇φ)j = Dφ∆φ (2)

by introducing flux density j, and account for diffusion flux:

∂φ

∂t
+(∇φ)u− (∇φ)Dψ∇ψ = Dφ∆φ (3)

with φ being the concentration of the quantity of inter-
est (here the virtual dye), its constant of diffusivity Dφ,
ψ = ψ(x, t) being the concentration field (e.g., of solubles
or quantities such as heat) governing the passive diffusion
process, and its constant of diffusivity Dψ (please see Sec-
tion 3.3 for a thorough explanation). Here, j =−Dψ∇ψ rep-
resents the diffusion flux due to the concentration variation
of the quantity ψ, according to Fick’s law [Fic55]. Please
note that our implementation solves Eq. 3 for dye concen-
tration φ only; u, ψ, and Dψ are obtained from simulation
data. In our formulation of passive diffusion, we aim at vi-
sualizing the transport of ψ, by making the virtual dye move
according to it. This is achieved by using j as another advec-
tive mechanism for the transport of φ as described by Eq. 2.
That is, the concentration gradient of ψ induces (additional)
transport of the virtual dye.

3.2. Active Diffusion

In the traditional case of diffusion that we call active, the
diffusion is governed solely by the gradient of the virtual dye
itself, hence Dψ = 0 and Eq. 3 simplifies to the traditional
advection-diffusion equation:

∂φ

∂t
+(∇φ)u = Dφ∆φ. (4)

This variant builds only on the velocity field—it does not re-
quire accompanying time-dependent simulation data of the
concentration field. In general flow visualization, diffusivity
Dφ can be chosen, e.g., from physics textbooks, to achieve
physically correct interaction of the fluid and tracers used in
experiments, such as smoke in the analysis of automotive de-
sign (Figure 1). If the velocity field resulted from a flow sim-
ulation that included diffusion, i.e., an advection-diffusion
problem, and if the used diffusivity is known, it can be used
as Dφ to obtain corresponding dye behavior. Although we re-
strict ourselves here to isotropic diffusion, it is worth notic-
ing that our finite volume approach also allows for, e.g., data-
driven anisotropic diffusion. Setting Dφ = 0 turns Eq. 4 into
traditional (passive) dye advection (Figure 2):

∂φ

∂t
+(∇φ)u = 0. (5)

Figure 1: Flow over a “blunt body” (front to back). Advec-

tion of dye without diffusion model (top, with a streak line for

comparison). Active diffusion (bottom) mimics diffusion of

smoke in experimental analysis. Resolution 600×125×121.

Due to the low numerical diffusion of the WENO scheme
(Section 4.1) and its ability to provide interactive dye advec-
tion in 3D, this reduced mode, to the best of our knowledge,
is already a new contribution to the field of dye advection.

3.3. Passive Diffusion

Our central contribution is the visualization of transport of
quantities due to diffusion. It requires an accompanying con-
centration field ψ, which often represents temperature or sol-
ubles such as ink or vapor, together with its constant of dif-
fusivity, Dψ. If passive diffusion is not combined with active
diffusion (Dφ = 0), as in our experiments, Eq. 3 simplifies to

∂φ

∂t
+(∇φ)u− (∇φ)Dψ∇ψ = 0. (6)

Interestingly, our passive advection-diffusion model can be
incorporated into the traditional passive advection scheme
(Eq. 5) by combining advection flux and diffusion flux:

∂φ

∂t
+(∇φ)(u−Dψ∇ψ) = 0. (7)

In Section 4.2, we describe in detail how our approach is for-
mulated in terms of the finite volume scheme. Interestingly,
the passive diffusion term is implemented similarly to the
active diffusion term there, not the advection term.

3.4. Numerical Diffusion

So far, we neglected inaccuracies resulting from diffusion,
either on the simulation or visualization side. Grid-based
CFD faces the serious issue that accuracy of advection of
quantities such as heat or solubles highly depends on grid
resolution, i.e., undersampling and numerical diffusion are
omnipresent problems, typically leading to results that de-
viate substantially from the true physical behavior. Imagine

c© 2012 The Author(s)
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(a) (b) (c)

Figure 2: Unsteady buoyant air flow (CFD) in a closed container heated at bottom (red plate, 75◦C) and cooled at the top

(blue plate, 5◦C). Two isosurfaces, one at 38◦C (blue) and one at 42◦C (red). Advected dye (green, without diffusion model)

seeded at center (black box). Finite volume method using WENO reconstruction at both dye resolutions 244× 124× 244 (a)

and 122×62×122 (b) exhibits much lower numerical diffusion than trilinear reconstruction at 244×124×244 (c).

a flow exhibiting foliation, i.e., repeated thinning and fold-
ing of the fluid, transforming an initially compact region that
contains a quantity to arbitrarily many and arbitrarily finely
folded sheets. Even if there would be no numerical diffusion
during advection, already the sampling of these sheets would
require unmanageably fine resolution.

Unfortunately, numerical diffusion (including undersam-
pling) is hard to model. It depends, among other things, on
the varying speed and direction at which the quantity is prop-
agated through each cell of the grid during advection. It is
therefore not practical to quantify numerical diffusion, nei-
ther during simulation, nor during dye advection.

All our three scenarios are subject to numerical diffusion.
Numerical diffusion of the dye φ is, however, kept compa-
rably low due to WENO reconstruction. In the scenario of
dye advection without diffusion modeling (Eq. 5), the issue
is, like in other texture advection techniques, usually not ad-
dressed. In the scenario of dye advection with active diffu-
sion (Eq. 4), the dye φ is subject to both active diffusion
due to diffusivity Dφ > 0 and numerical diffusion. Hence,
the effective diffusion of φ tends to exceed that prescribed
by Dφ. Since numerical diffusion is not quantified, one ap-
proach to judge its influence is to compare the result with
dye advection using Dφ = 0. We compare the results visu-
ally: small difference indicates that numerical diffusion af-
fects (is in the order of) the one modeled by Dφ. Finally, in
the scenario of passive diffusion (Eq. 6), one can make use
of the concentration field ψ from simulation data if there are
identifiable sources therein. For the example of the Buoyant
Flow data set, one can obtain the region where the room is
heated by applying a threshold filter to the ψ field. By con-
tinuously seeding dye in this region and using our active dif-
fusion model (Eq. 4), one can adjust Dφ until φ matches the
(time-dependent) ψ field, see Figure 3. This can compensate
for inappropriate Dψ due to both numerical diffusion in the
simulation and dye advection. The obtained Dφ can then also
be used as Dψ in our passive diffusion model.

4. WENO-Based Finite Volume Method

As we have seen in Sections 3.2 and 3.3, the three different
modes of our scheme (traditional dye advection, active dif-
fusion, and passive diffusion) can be accomplished by solv-
ing for Eq. 4 (passive advection with active diffusion). Since
diffusion requires comparably small time steps, Eq. 4 lends
itself well to solution by the finite volume method, where
the temporal change of the quantity within a cell is modeled
by its fluxes over the boundaries of the cell. The quantity
itself is represented in a per-cell manner. Hence, the evalu-
ation of the necessary fluxes at the cell boundaries requires
reconstruction. As demonstrated in Figure 2, tensor-product
linear interpolation leads to excessive blur. The PPM ad-
dresses this problem by parabolic reconstruction within the
cell. As demonstrated in Figures 7 and 8, WENO reconstruc-
tion achieves even better results. Furthermore, it allows for
dimensional splitting (see Section 4.2) which simplifies im-
plementation, and more important, substantially accelerates
the dye advection, allowing for interactive rates.

We first describe WENO reconstruction in 1D (Sec-
tion 4.1), then we detail how Eq. 4 is formulated using finite
volume in 1D using WENO reconstruction (Section 4.2). Fi-
nally we describe our GPU implementation (Section 4.3).

4.1. WENO Reconstruction

The finite volume formulation requires the evaluation of
fluxes at the boundaries of the cells, necessitating the recon-
struction of φ within each cell. The advection flux is simply
its value at the boundary multiplied by the velocity compo-
nent normal to the boundary, whereas the the diffusion flux
requires the evaluation of its gradient at the boundary, i.e.,
the derivative of φ, in direction normal to the boundary.

We describe WENO reconstruction with respect to our ap-
plication based on a 1D finite volume. The reader is referred
to [DK07] for a thorough introduction to the topic and fur-
ther details. We describe the reconstruction for the example

c© 2012 The Author(s)
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(a) (b) (c)

Figure 3: Diffusivity adjustment in buoyant flow example

(vertical cross section, low temperature - blue, high temper-

ature - red). Virtual dye (green, mixed with color from tem-

perature) seeded at hot plate at lower image border. Using

Dφ = 1.11 · 10−5 (a), Dφ = 1.65 · 10−5 (b), and (theoreti-

cal) diffusivity from simulation Dφ = 2.19 · 10−5 (c). In (a)

the dye region is too small, in (c) too large, and in (b) the

reduced diffusivity compensates numerical diffusion well.

of third-order accurate reconstruction (using second-order
polynomials). The extension to higher degrees is straight-
forward [DK07]. In our experiments, we obtained a good
trade-off between efficiency and accuracy using fourth-order
accurate WENO, i.e., cubic polynomials.

Let us consider second-order reconstruction polynomials

φk(x) =
2

∑
j=0

ŵ
k
jx

j

with k being the index of their central cell, and coefficients
ŵk

j , as shown in Figure 4. The coefficients have to be chosen
conservatively, i.e., the integrals of φk over the cells have to
be identical to the cell-centered values φi:∫ x

i− 1
2

x
i− 3

2

φk dx = φi−1,
∫ x

i+ 1
2

x
i− 1

2

φk dx = φi,
∫ x

i+ 3
2

x
i+ 1

2

φk dx = φi+1.

This represents

ŵ
k
0(xi- 1

2
-xi- 3

2
)+

ŵk
1

2 (x2
i- 1

2
-x2

i- 3
2
)+

ŵk
2

3 (x3
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2
-x3
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2
) = φi-1

ŵ
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2
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2
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2
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2
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ŵk
2
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i+ 1

2
-x3
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2
) = φi

ŵ
k
0(xi+ 3

2
-xi+ 1

2
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ŵk
1

2 (x2
i+ 3

2
-x2

i+ 1
2
)+

ŵk
2

3 (x3
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2
-x3
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2
) = φi+1

and can be formulated as a matrix-vector product:

Lk





ŵk
0

ŵk
1

ŵk
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φi−1
φi

φi+1
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Lk =
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2
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i
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Figure 4: Example of 1D WENO reconstruction. Cell cen-

ters x with cell-averaged values φ and reconstruction poly-

nomials φ(x). Resulting WENO reconstruction φWENO(x)
for cells i − 1 and i (bold). Note that neither φ(x) nor

φWENO(x) pass through the values at the centers.

During dye advection, the coefficients ŵk
j are determined by





ŵk
0

ŵk
1

ŵk
2



= L
−1
k





φi−1
φi

φi+1



 .

The reconstruction φWENO
i (x) of the concentration φ(x)

inside cell i is a linear combination of the polynomials φk(x):

φWENO
i (x) =

i+1

∑
k=i−1

ωkφk(x)

with weights ωk = ω̃k/∑
i+1
j=i−1 ω̃ j using ω̃l = λl/(ε+σl)

r.
As reported in [DK07] we use ε = 10−5, r = 4, and

λl =

{

103 if l = i,

1 otherwise.

The oscillation indicators σl can be obtained from a matrix
Σ by σl = ŵlΣŵl . In our third-order WENO example,

Σmn =
2

∑
r=1

∫
V

∂rxm

∂xr

∂rxn

∂xr
dx.

Both Σ and L−1
k

are precomputed, e.g., using a computer
algebra system, since, after transformation to a reference
space, they neither depend on the mesh nor on the problem.

4.2. Finite Volume Method

On uniform (or rectilinear) grids the WENO reconstruction
and the whole finite volume approach can be formulated in
an efficient manner using dimensional splitting. Since cell
face normals coincide with coordinate axes in these grids,
one can apply the 1D-procedure sequentially in x-, y-, and
z-direction to accomplish a time step of the 3D dye advec-
tion (see [JS96]). Hence, the 1D reconstruction described in
Section 4.1 together with the 1D finite volume approach de-
scribed below are applied for each direction, denoted here as
x with respective velocity component u.

c© 2012 The Author(s)
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u

i j

u

i j

∂φi/∂x

∂φij/∂x

∂φj/∂x

i j

(a) (b) (c)

Figure 5: Riemann solution for fluxes ((a) and (b)). WENO

reconstruction (bold) exhibits discontinuities at cell faces.

Flux (transparent rectangle) is determined from advection

direction u, choosing “donor” side. For diffusion (c), gradi-

ent at faces is computed from central reconstruction polyno-

mial (green, blue) and averaged (black) (cf. Figure 4).

Let φi(t) be the amount of dye inside cell i at time t, and
φi(t +δt) the amount after time step δt. The concentration
change δφi = φi(t +δt)−φi(t) according to Eq. 5 computes
in the finite volume scheme as δφi = ( f i+− f i−)δt, i.e., the

balance over time δt between influx f i+ of dye into cell
i and outflux f i− of dye from cell i. For convergence, δt

has to be chosen sufficiently small, usually by prescribing
a Courant-Friedrichs-Lewy condition (CFL) value. CFL re-
lates to maximum velocity umax in the field and cell size h

by CFL = umaxδt/h.

In case of passive advection without diffusion (Eq. 5),
we compute f i+ and f i− from velocity u and concentration
φWENO

i . Please note that, according to Figure 5, the Riemann
solution of f i+ and f i− depends on the sign of u (u = usim

is interpolated in space and time from the simulation data).
Let xi+ 1

2
= x j− 1

2
be the face between cell i and j. In case (a)

f i− = u ·φWENO
i (xi+ 1

2
), f j+ = u ·φWENO

i (xi+ 1
2
)

and f i+ = f j− = 0, whereas in case (b) f i− = f j+ = 0 and

f i+ = u ·φWENO
j (x j− 1

2
), f j− = u ·φWENO

j (x j− 1
2
).

In a straightforward approach φ could be reconstructed
at time t: φWENO

i, j (xi+ 1
2
, t) and u could be time-averaged:

u = [usim(xi+ 1
2
, t)+usim(xi+ 1

2
, t +δt)]/2. For a higher order

of accuracy, and hence better convergence of the scheme al-
lowing for larger time steps, we apply prediction steps in-
stead (see below).

Next, we include active diffusion to obtain the finite vol-
ume formulation of Eq. 4. Applying the vector identity ∆ =
∇ ·∇ to its right hand side we obtain Dφ∆φ = Dφ∇ ·∇φ.
Assuming uniform Dφ and applying the Gauss theorem:

Dφ

∫
V
∇·∇φdV = Dφ

∫
S=∂V

∇φ ·ndS.

Dφ∇φ · n is the diffusion flux Dφ∇φ of the virtual dye
through the cell face with normal n. In our 1D scheme
and the example in Figure 5(c) this gives rise to diffusion
fluxes di− = d j+ = Dφ∂φi j/∂x, with, for mass conservation,

∂φi j/∂x= (∂φi/∂x+∂φ j/∂x)/2 (exchange i and j if opposite
orientation of ∂φi j/∂x). Hence, including active diffusion,

δφi = ( f i+− f i−+di+−di−)δt. (8)

Finally, passive diffusion is included (Eq. 7), i.e., for passive
diffusion we derive u = −Dψ∂ψ/∂x, and for passive advec-
tion together with passive diffusion u = usim − Dψ∂ψ/∂x.
Again, in a straightforward approach Dψ∂ψ/∂x could be
time-averaged: Dψ[∂ψ(xi+ 1

2
, t)/∂x+ ∂ψ(xi+ 1

2
, t + δt)/∂x]/2

from simulated ψ by interpolation, and usim also time-
averaged, as above. However, we will use prediction steps
here, too. Please note that whereas the concentration is eval-
uated from φWENO, its gradient ∂φ/∂x is computed from the
central polynomial φk [CS07] (Figure 5).

To improve the accuracy of the finite volume scheme,
we apply prediction steps instead of the straightforward ap-
proaches based on averaging, sketched above. The underly-
ing idea is to obtain a better accuracy for the fluxes f and d

within ]t, t + δt] by generating predictions using integration.
Whereas usim and ψ are simulated and hence available at any
“future” time τ ∈]t, t + δt], φi and hence φWENO

i and φi are
only available at time t. However, Eq. 4 can be used to pro-

vide integration-based per-cell approximation values φ̃i(τ) at
time τ. By rearranging Eq. 4 to

φ̃t := ∂φ/∂t = Dφ∆φ− (∇φ)u

one obtains an approximation φ̃t for ∂φ/∂t [DK07]. Each
of the n prediction steps of size δt/n consists of eval-
uating φ̃t at the center of each cell i and estimating
φ̃i(τ+δt/n) = φ̃i(τ)+ φ̃tδt/n, in parallel for all cells. In

our 1D case φ̃t = Dφ∂2φ̃i/∂x2 − ∂φ̃i/∂xu. The procedure
is repeated n times (n = 1 in our experiments) and each
time WENO reconstruction is applied to φ̃i(τ) to obtain
φ̃WENO

i (τ) and φ̃i(τ). In each step, f i+(τ) and f i−(τ) as
well as di+(τ) and di−(τ) are computed from φ̃i(τ) and
φ̃WENO

i (τ). During prediction steps, these fluxes are accu-
mulated and finally used in Eq. 8 to obtain φi(t + δt) =
φi(t)+δφi.

4.3. Implementation

The WENO-based finite volume method substantially bene-
fits from GPU parallelization in that there is spatial and tem-
poral locality in the algorithm. We employ the CUDA API
(single-precision) to compute advection-diffusion and use
data streaming for memory efficiency. Figure 6(a) describes
the overall procedure. The input to our implementation in-
cludes a set of parameters (including the polynomial WENO
order), can contain geometry objects to be rendered together
with the ray-casted volume, and the vector (and scalar con-
centration) data. If the data are given on an unstructured grid,
the interpolation weights for each node of our (arbitrary) uni-
form dye advection grid are precomputed and used for inter-
polating the data (u, ψ) before transfer to the GPU, avoiding
expensive point location at each time step. Device (GPU)

c© 2012 The Author(s)
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memory is allocated for the dye, the two consecutive time
steps of simulation data, and the OpenGL buffers.

To increase performance, each GPU thread block loads an
array of data from device memory into its shared memory
along the current axis α of dimensional splitting. The num-
ber of thread blocks equals bd = r((d + 1)mod3)× r((d +
2)mod3)×⌈r(d)/s⌉, where r(d) is the resolution in dimen-
sion d, and s is the size of a thread block limited by GPU
shared memory size. This constraint means that if the reso-
lution along α is too large, the arrays must be divided into
overlapping subsets. The overlaps (ghost cells) are necessary
to perform WENO reconstruction, and their size depends on
the WENO order and the number of prediction steps (Fig-
ure 6(b)). The WENO reconstruction is carried out, and the
advection and diffusion fluxes are computed. Finally, the dye
concentration is updated in device memory. For optimization
(early rejection), a data fragment processed by a thread block
is skipped if no dye is present. In order to determine the pres-
ence of dye, parallel reduction (i.e., summation of array el-
ements) is performed. Coalesced access, which significantly
reduces transfer time between device memory and kernels,
occurs only in computation in x-dimension. However, re-
gardless of the dimension, transfer time is well hidden by
computation of advection and diffusion. To avoid fluctua-
tions in physical time during interaction, we apply respec-
tive corrections to the dye advection time step δt. For further
details please refer to the supplementary material.

For volume rendering, ray casting is utilized, following
the example in the NVIDIA’s CUDA SDK. Our implemen-
tation additionally supports volume lighting, ray-casted iso-
surfaces [Lev88] of the ψ field, and geometric objects.

5. Results

We demonstrate and evaluate our technique by visualizing
advection-diffusion in three CFD examples. Additionally,
we investigate the performance of our technique with re-
spect to numerical diffusion, mass conservation, and speed.
All examples were run on GeForce GTX 580 (3GB). The
first CFD example, a buoyant flow inside a closed con-
tainer, exhibits strong time-dependency and was simulated
on a uniform grid with dimension 61 × 31 × 61 and 2000
time steps (spanning 50 seconds). Heat takes in this case the
role of the diffusing quantity. The second example, a flow
around a heating coil, is quasi-stationary and was simulated
on an unstructured tetrahedral grid comprising 93227 cells.
Also in this case we visualize the diffusion of heat. The last
CFD example is the quasi-stationary simulation of an evap-
orating drop, conducted on a uniform grid with resolution
192×128×128. In this case vapor takes the role of the dif-
fusing quantity. All results were obtained with fourth-order
WENO, i.e., using third-order polynomials. Please see also
the accompanying video for more details on the results in-
cluding performance information.

(a) (b)

Figure 6: (a) Advection-diffusion procedure. Operations in

blue blocks are performed on CPU, OpenGL is used in or-

ange blocks, green blocks are done in CUDA on GPU. (b)

Blocking if dye grid dimension exceeds GPU shared mem-

ory. Number of prediction steps and order of WENO recon-

struction define the number of ghost cells. For efficiency,

blocks should be large, e.g., contain 128 output cells.

5.1. Comparison to Physically-Based Dye Advection

We compare our dye advection scheme to the most closely
related work, the physically-based dye advection (PBDA)
due to Li et al. [LTH08]. For comparison, we reduced our
approach to 2D and implemented PBDA on the GPU. In Za-
lesak’s disk test for numerical diffusion, one revolution of a
disk-shaped dye distribution is performed about an axis sit-
uated at its bottom (Figure 7). We used CFL = 0.4 for our
approach and CFL = 3.0 for PBDA. Whereas in our tech-
nique CFL is limited only by an upper bound for stability
reasons, we experienced artifacts when choosing small CFL

with PBDA. As in [LTH08], we used 20× 20 samples per
cell for this comparison. Both approaches perform compara-
bly well for high resolutions. However, it is apparent that our
WENO-based approach performs considerably better at low
resolutions. Low numerical diffusion at low resolution is of
major importance for our technique because today’s graphics
hardware does not yet allow for interactive rates at high res-
olution. Our approach also performs better in terms of mass
conservation (Table 1). It is apparent that resolution plays a
major role with respect to mass conservation only for finite
volume based on bilinear interpolation (Lin-FV).

We also used a 2D CFD simulation of a von Kármán vor-
tex street consisting of 151 time steps for comparing our ap-
proach to [LTH08] (Figure 8). In this case, we used 60×60

c© 2012 The Author(s)
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Resolution Initial state WENO PBDA

100x100

400x400

Figure 7: Zalesak’s disk test. Our WENO-based approach

exhibits lower numerical diffusion than PBDA.

Table 1: Relative change in mass (%) for bilinear finite vol-

ume (Lin-FV), PBDA, and WENO-based finite volume in Za-

lesak’s disk test (Figure 7).

Resolution Lin-FV PBDA WENO

100x100 -5.5057 -4.9869 0.0016

200x200 -1.4950 -4.9018 0.0003

400x400 -0.2392 -5.1294 -0.0004

instead of 20 × 20 samples per cell with a CFL of 6.0 in
PBDA, and a CFL of 0.85 in our approach. Still, it is ap-
parent that our approach exhibits lower numerical diffusion.
Table 2 gives performance details for the von Kármán ex-
ample. In favor of PBDA, we applied for the measurements
20×20 samples per cell. Still, each dye advection step is one
order of magnitude faster in our approach, but since CFL is
larger in PBDA, the resulting times for advecting dye over
a given physical time period are comparable. On the other
hand, this causes our approach to produce one order of mag-
nitude higher frame rates, allowing for interactive dye ad-
vection.

5.2. CFD Examples

Buoyant flow driven by a heat gradient is a prominent can-
didate for visualization by our technique because it exhibits
both advection and diffusion of heat, see Figure 2 for an in-
troduction. The data set exhibits a time-dependent circular

Table 2: Performance comparison between WENO and

PBDA for the von Kármán vortex street. Time for one step

(Comp. time) vs. the whole simulation (Total time).

Resolution
Comp. time [ms] Total time [s]

WENO PBDA WENO PBDA

100x300 2.84 19.93 4.74 4.68

500x1500 10.76 85.76 44.85 50.51

1000x3000 34.94 283.78 291.12 334.58

2000x6000 114.44 963.27 1907.15 2272.36

Figure 8: Dye advection in 2D von Kármán vortex street

with our WENO-based finite volume method (top) and PPM

(bottom). WENO exhibits lower numerical diffusion.

flow behavior. No diffusion model was used for the dye in
this figure, it visualizes the mixing behavior, i.e., the stretch-
ing of the fluid into sheets, leading to foliation. The dye ad-
vection in Figure 9(a) shows advection alone (Eq. 5): the dye
follows the hot plume upward and thereafter it is advected
downward by the cold plume. Figure 9(b) shows only pas-
sive diffusion (Eq. 6 with u = 0): the dye, i.e., the heat, flows
from the hot plate through the cold plume into the cold plate
at the top of the container. Figure 9(c) shows the superposi-
tion of the two, the true advection-diffusion of heat: like in
Figure 9(a), the dye is advected upward but then part of it is
caught by the cold plate instead of being advected downward
again by the cold plume. Please see also the performance de-
tails in Table 3.

As a second example, we visualized advection-diffusion
of heat in the heating coil data set. The coil is located be-
tween two pipes: an inner and an outer one, both cooled. An
airflow passes the coil from bottom to top and is heated. Our
technique reveals different transport behavior with respect
to passive advection (Eq. 5) and passive advection-diffusion
(Eq. 6), see Figure 10. One can easily see how heat is trans-
ported by advection-diffusion to the cooled walls.

As a third example, we applied our technique for the vi-

Table 3: Buoyant flow example at different configurations

(no lighting and no isosurfaces). 1) Single dye at resolution

122×62×122 with early rejection (worst case in brackets),

and 2) without. 3) Two independent dyes, and 4) one dye at

244×124×244. See also the accompanying video.

Config. Avg. FPS Render [ms] Dye comp. [ms]

Conf.1) 47.1 (22.6) 7.7 14.3 (35.0)

Conf.2) 22.7 9.0 35.1

Conf.3) 25.6 (12.3) 9.6 36.3 (73.4)

Conf.4) 10.3 (3.2) 7.8 97.6 (302.0)

c© 2012 The Author(s)
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(a) (b) (c)

Figure 9: Buoyant unsteady flow example (with clipping) by green dye seeded at the hot (red) plate. Pure advection (a), only

diffusion flux (b) (passive diffusion), and both advective and diffusion flux (c) (passive advection-diffusion). In (b), diffusion

flux transports the dye outward hot air (red) and toward cold air (blue). In (c), the dye reveals the true transport of heat: it is

diffusing toward the cold plume and partially leaving at the cold (blue) plate before it is advected downward by the cold plume.

(a) (b)

Figure 10: Heating coil example. Air flow from bottom to

top, dye (green) seeded at two points at lower side of coil,

and isosurfaces of temperature (red). Dye advection by ad-

vection only (a) vs. dye advection by advection-diffusion of

heat (b). It is apparent that heat is repelling the dye from the

coil and transporting it to the cooled walls in (b).

sualization of advection-diffusion in the context of an evap-
orating drop, i.e., we visualize advection-diffusion of va-
por. The simulation was conducted using a finite volume-
based direct numerical simulation employing the volume-of-
fluid method for tracking of different phases [SW08]. The
main air flow direction is from the left to the right. Fig-
ure 11 shows advection-diffusion visualized by our tech-
nique. In this case advection dominates diffusion—the pas-
sive advection-diffusion visualization (Eq. 6) is indistin-
guishable from that of advection only. Nevertheless, passive
diffusion only (Eq. 6 with u = 0) reveals that diffusion is
strongest at the upstream front of the drop.

6. Conclusion

We have presented an interactive visualization technique
for advection-diffusion processes based on the finite vol-

(a) (b)

Figure 11: Evaporating drop example with isosurfaces at

vapor concentration 0.0001 and 0.005 (blue), drop located

to the left. Dye (green) is seeded once (a) and continuously

(b) at the drop. Transport outward the drop is revealed by

passive diffusion only (a). However, due to the high drop

speed, advection dominates the transport behavior (b).

ume method with WENO reconstruction. We further have
introduced the concept of passive diffusion to visualize dif-
fusion fluxes individually or in combination with advec-
tion. Our technique contributes to three scenarios: (a) high-
quality interactive dye advection at low numerical diffusion,
(b) physically-based dye advection accounting for diffusiv-
ity of the virtual media, and (c) visualization of advection-
diffusion in simulation data. As demonstrated, our approach
is able to reveal the transport mechanisms due to advection-
diffusion that are responsible for concentration changes. A
possible direction for future work is the extension of our ap-
proach to physical processes beyond advection-diffusion.
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