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Abstract Lagrangian coherent structures (LCS) can be extracted tiroerdepen-
dent vector fields by means of the finite-time Lyapunov expo(feTLE). While the
LCS approach has proven successful in many areas and djgpiktor the analysis
of time-dependent topology, it is to some extent still anropeblem how the finite
time scope is appropriately chosen. One has to be awardthittoduction of this
finite time scope in the Lyapunov exponent, where the timgeaagas originally
infinite, is largely responsible for the recent success®RMNLE in analysis of real-
world data. Hence, there is no general upper bound for the sicope: it depends
on the application and the goal of the analysis. There iselvew a clear need for a
lower bound of the time scope because the FTLE converges teiglenvalue of the
rate of strain tensor as the time scope approaches zer@uilththis does not repre-
sent a problem per se, it is the loss of important propettigsdauses ridges in such
FTLE fields to lose the LCS property. LCS are time-dependepasatrices: they
separate regions of different behavior over time. Therbby behave like material
constructs, advecting with the vector field and exhibitiegligible cross flow. We
present a method for investigating and determining a lowenid for the FTLE time
scope at isolated points of its ridges. Our approach apthleeadvection property to
the points where attracting and repelling LCS intersecesEhpoints are of partic-
ular interest because they are the loci where Lagrangiaardigs varies most and
which are important in typical questions of Lagrangian fogg. We demonstrate
our approach with examples from dynamical systems theatgamputational fluid
dynamics.

1 Introduction

Traditional vector field topology [7] deals with several égof distinguished
streamlines. Those that degenerate to isolated pointsapdggcial role in the form
of critical points: if they exhibit saddle-type flow behawio their linearized neigh-
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borhood, they give rise to separatrices. Separatricesatber type of distinguished
streamlines: those that converge to saddle-type critioaitp in forward or reverse
time. Other cases include periodic orbits, i.e., isolatedad streamlines and invari-
ant tori. Common to all these special cases is their deomathese constructs are
obtained as limit cases as integration time of the streanapproaches infinity [1].
This, except for technical issues, does not represent dgmmoi$Steady vector fields
are constant over time and hence do not require the notioropksof time.

The traditional Lyapunov exponent (LE) shares many aspeittsvector field
topology. Despite additional technical issues regardimgerics and boundedness
of the temporal domain, its properties are well defined andatalepend on addi-
tional parameters. It was, however, the boundedness aéiggdral domain together
with the aim of choosing a region of interest also in termsioktthat lead to the
finite-time Lyapunov exponent (FTLE). A main risk, howe\srthe choice of too
short advection time for FTLE computation and resultingintespretation.

Lagrangian coherent structures (LCS) by means of the FTILlE4§8e become
a prominent alternative for the investigation of time-degeent topology of vector
fields. In this paper, we present a method for validating drabsing the advection
time parameter for 2D FTLE computation with respect to pribscl error measures.
We base our approach on a main principle of LCS: their adeegtioperty [12], i.e.,
their behavior as material lines.

1.1 Finite-Time Lyapunov Exponent

Vector fields exhibit a spectrum of Lyapunov exponents.théslargest exponentin
this spectrum that has become a prominent tool for prediitiaénalysis in time-
dependent vector fields. The LE can be determined by congtwio neighboring
trajectories in phase space and measuring their separat®s time approaches
infinity. Since the LE was originally introduced for predibility analysis, it has
to reflect properties along trajectories. Therefore, prdoa has to be taken to as-
sure that the “neighboring” trajectories do not separatddg e.g., by renormaliza-
tion [2].

Since the systems under investigation are often defined anita fémporal do-
main only, or because it is often the objective of the useestrict the analysis to a
temporal region of interest, the FTLE has been becoming raondemore popular.
Again, there are techniques to assure proximity of the (icitpl) involved trajec-
tories, such as the localized FTLE [8].

Whereas the LE and FTLE have been applied for a long time tdigtebility
analysis, there is a recent trend in the visualization comtyuio use FTLE for
revealing the topology of time-dependent vector fieldslét§b] showed that ridges
present in the FTLE represent a time-dependent countetigpaegparatrices from
vector field topology [7]: they separate regions of qualiey different behavior.

In the context of time-dependent vector field topology, tHe [E is typically

computed from théow mapfpfg+T (x), mapping seed poinisof trajectories to their
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end points after advection for finite tinTe According to Haller [6], the finite-time
Lyapunov exponendr(x,to, T) computes from the flow magp as follows:

U(X,IO,T) = |Tl||n\/ max[(D(RthrT(X))TD(Q%)JrT(X)]a (1)

Amax(-) being the major eigenvalue.

2 Method

In this paper, we do not address the choice of the advectionpiarameter in the
context of specific applications and related applicatioefded questions. In fact,
we rather consider the fundamental advection property & t@€-find appropriate
advection times inside a prescribed interval of temportalrast.

Let us examine the two extreme choicesTorinfinity and zero. AST — o, the
FTLE convergesto the classical LE. Hence, this extreme case imposes niz-part
ular concerns. The interpretation and use of the LE is wedldished. If, on the
other handT — O, it can be easily shown that the FTLE converges to the larges
eigenvalue of the rate of strain tensor of the vector fieldthis case, due to the
instantaneous property of the rate of strain tensor, it cebe assumed that the ad-
vection property [6] of ridges inside this field is satisfiednsistent with Shadden
etal’s Theorem 4.4 [12].

Shadden et al. measured fluxes of the instantaneous vef@tityacross FTLE
ridges as a means of verifying the advection property ofgiWELE ridges. How-
ever, zero flux alone is a necessary but not sufficient cardibr advection: it
does not capture tangential motion, i.e., the advectionpmorant along the ridge
does not need to satisfy the advection property even if thedtwoss the ridge is
zero. Unfortunately, it is hard to identify point corresplemces between ridges from
FTLE fields with different starting timeig because common ridge definitions, such
as height ridges by Eberly [3], are purely geometric, ileeytare not represented
by identifiable particles that advect. We therefore follodifferent approach: we
measure the advection property only for distinguished tsaam the FTLE ridges,
i.e., we identify point correspondences in terms of adwecti

For sufficiently well defined LCS (according to Shadden &t &he advection
property holds for both ridges in the FTLE field computed frimrward trajecto-
ries and ridges in the FTLE field computed from reverse-tinagttories. These
ridges typically intersect. The intersection points giiserto hyperbolic trajecto-
ries [5, 11] and are important in the Lagrangian skeletorudiulence [9]. Hence,
if both types of ridges satisfy the advection property, frieperty must also hold

1 We follow a conceptual, or continuous, argumentation hkréhe discrete case, preacautions
have to be taken such as renormalization [2] or evaluatidheofelocity gradient along the trajec-
tories [8].
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for their intersections. In 2D vector fields, these intetieas are isolated points (we
exclude congruent ridge regions because these repregmmnatate cases that can
be avoided by perturbing the vector field). Thus, one needdeiotify point cor-
respondence between ridge intersections of successive Fifrie steps (aty and
to+ At).

As FTLE computation typically depends on time-dependestretized vector
fields, it is very hard to derive generic rules for paramétgZTLE visualizations.
FTLE computation is heavily dependent on the structure asitipn of the sam-
pling grid, and the advection time. Furthermore, FTLE ridges only tend to rep-
resent LCS if they are sufficiently sharp [12]. Providingamnétic strategies for
finding a good choice of parameters is very hard because megigidns directly
depend on the goal of the user. Therefore, FTLE visualinats other feature ex-
traction procedures, is typically a trial-and-error prdaee representing the basic
exploration by visualization. Once the user has found a $amgrid that suf-
ficiently captures the FTLE structures he wants to see, hasdf@an appropriate
threshold filtering out insufficiently sharp ridges (thisxdae accomplished by fil-
tering by an eigenvalue of the FTLE Hessian [10]), and haadcaminimum and
maximum FTLE advection tim&, our new technique takes over these parameters.
Although our method can be further manually parametrizegkeiforms well with
the default values (described below). As the result, ourriiie provides a plot of
advection discrepancy with respect to FTLE advection fimé can identify local
and global optima inside the prescribed rang€ adnd in particular, provide a lower
bound onT with respect to a prescribed accuracy in terms of averagection error
of ridge intersections.

One contribution of this paper is a comparably robust tegimifor tracking
FTLE ridge intersections. It is based on the assumptiontti@user already has
chosen a meaningful time scope for the analysis, i.e., wihereower bound of the
time interval already produces comparably sharp ridgesoAting to Shadden et
al. [12], this will lead to FTLE ridges that already approxitaly satisfy the advec-
tion property. Therefore, the advection property of theriséctions can be exploited
for making the correspondence finding more robust. We thesgmt a technique to
quantify the advection property of the intersections analashow it can be used
to optimize the FTLE advection time for obtaining FTLE fields where the ridge
intersections satisfy the advection property up to a pilesdraverage error. Inter-
estingly, we observed for typical discretizations of FTL&hpling grids that the
advection property is not a monotonic function of the finileLE advection time:
we observed local optima. Hence, our findings indicate timaecan appropriate
interval of possible finite advection times is identifiedisidesirable to choose an
optimum inside this interval, possibly by our technique.
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2.1 FTLE Ridge I ntersection

FTLE sampling is a computationally expensive task. Onedsdfore typically lim-
ited to comparably low resolutions of the FTLE sampling gAtthough there are
techniques that adapt the sampling grid to the vicinity ofSL[d] and ridges in
general [10], they are, as many adaptive sampling techajgusceptible to missed
features, or would require a-priori knowledge about thedéfe therefore base our
analysis on a regular sampling of the FTLE and use regionstefast if high reso-
lution is required.

The ridge lines in the resulting scalar FTLE fields are ex&g@according to
Eberly’s [3] criterion. The subsequent intersection pchoe for obtaining the in-
tersections is a trivial problem in the 2D context invediégkin this paper. To assert
sufficient quality of the geometric intersections, we impagninimum intersection
angle threshold.

2.2 Intersection Tracking

As illustrated in Figure 1, we extract forward and revers&ETields for bothty
andtp + At. This leads to two sets of intersection@y) at timety andi(tp + At) at
to + At. A straightforward approach would use a very srddll This would produce
almost identical ridges and hence finding correspondeneglen their intersec-
tions would lead to a trivial tracking problem. Further, timit caseAt — 0 would
be used for defining the intersection velocity

Ui(to -+ At/2) = (i(to+ At) —i(to)) /At. @)

We have carried out such an analysis using the quad-gyrem&andiscussed in
Section 3.1. Unfortunately, it turns out that ridge exti@etends to be only accurate
in the order of the cell size of the FTLE sampling grid, andsthusing small\t leads
to poor accuracy ofij, becausé(tg) andi(to+ At) are too close with respect to the
resolution of the FTLE sampling grid. Thus, using lardéimproves accuracy. The
time spanAt can be estimated from the average speedthe vector field and the
cell sizeh of the FTLE sampling gridAt = ch/uwith a constant > 1. However, in
this caseAt is not small enough to allow the estimation of the intersectielocity
by the linearization (2), i.e., the intersection point cainbe assumed to move at
constant speed along a straight line at sufficient precidiosimgAt.

Using comparably largét leads to another problem: intersection correspon-
dences are harder to identify because the ridge interssctimve over larger dis-
tances; the FTLE ridges move and deform, and may even diaajpperew ones
might originate. However, since the input to our method isaird parametriza-
tion (see Section 2) of FTLE and already satisfies the adwe@iioperty to some
extent, we can utilize the advection property to solve theespondence problem:
the intersection points at tintg are advected along path lines to titge+ At and
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u(i(to + At),to + At)

attracting
LCS

Fig. 1 FTLE ridge intersectionsobtained with a fixed FTLE advection tinTewith starting times
to (left) andtp + At (right). The spatial discrepancyis defined as the distance betweén + At)
and the endpoint of the path line started(&f) after advection timet.

these advected points are checked for correspondencehwitidge intersections at
to + At (Figure 1). To further avoid erroneous correspondencdseatold limiting
discrepancy is imposed and the correspondence is identified as the tlesesin-
ing candidate with respect . The measur@ reflects the Lagrangian advection
consistency of the FTLE ridge intersections and is denatedaection discrepancy
in our technique.

2.3 Measuring Advection Quality

Various evaluation approaches are possible for the advediscrepancyd. For
greedy considerations we determifyg,(T), the minimumd of all intersections at
a given value ofT. We also comput®(T), the average over all intersections. Of
course many other techniques, e.g., from statistics, cappked.

Whereasdmin tends to show the best case in terms of advectocan be used
to get an overall picture of the advection quality of the FTiidges. All plots are
in units of FTLE sampling grid cell size. This way one can Besoose a limit of
advection discrepancy in terms of FTLE grid cells and thesu&ily or numerically
identify which regions ofl satisfy this requirement.

A possible problem are intersections that do not or do ordyisl move over
time. It is likely that these intersections exhibit smalhnd hence exhibit inappro-
priately high advection quality since they exhibit low disgancy only due to the
fact that they stand still. This can be addressed by an iawegesghting ofd with
the length of the corresponding trajectory from Figure lwideer, it is unlikely
that a time-dependent vector field exhibits a zero over eldériime. We did not
encounter this problem in the context of CFD simulationthalgh it could appear
in vector fields from other domains.
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Fig. 2 Left: quad-gyre example. Center: buoyant plume datasghtRbuoyant flow with obsta-
cles, heated at its lower side and cooled at the top.

2.4 Finding Locally Optimal Advection TimesT

Having now the building blocks at hand, it would be possibleun an optimization
process over all feasible grid resolutions, advection simestarting timeg,, and
ridge sharpness thresholds for a given dataset. Accordifitnéorem 4.4 in [12],
this would likely result in infinite resolution and infinitedeection timeT for all
to. On the other hand, there is a region of interest for all patars of the analysis
(Section 2). This is particularly important for the adveatitime scopel which
depends on the questions of the user and the applicationEFitges typically
grow with time and can fill the complete domain in, e.g., cative flows).
Therefore, we perform an analysis of the advection diserephy uniform sam-
pling of T inside the prescribed advection time interval and provigeatogether
with theT producing global minima of the different discrepancy measéy, and
0. Finding the global minimum inside the region of interesffo$erves here as a
straightforward example. Of course more sophisticatelartieies for data analysis
can be applied. An important question that can be interalgtiand visually an-
swered from the plot of the advection discrepancy is the mimn required FTLE
advection timer that makes sure that the advection property is in the avesaige
fied up to a given tolerance. In our current approach we shibaate visual inspec-
tion of the plots, in particular because they tend to exlabttiers and are therefore
susceptible to errors if simple automatic analysis tealescare applied.

3 Resultsand Evaluation

In the following, we demonstrate and evaluate our methodhoeettime-dependent
2D examples: the analytic quad-gyre example (Section &rig,two CFD simula-
tions of buoyant flow (Sections 3.2 and 3.3).
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Fig. 3 FTLE visualization for the quad-gyre dataset at tifgie= 20 in a region of interest at the
center of the dataset. The FTLE advection timesry: 4 (left),—4 (left center), 13 (right center),
and—13 (right). The intersection points between forward-timel geverse-time FTLE ridges are
marked by black crosses.

3.1 Quad-Gyre

The double gyre example was introduced by Shadden et alt¢gle}amine FTLE
and LCS and to compare them to vector field topology. Thissdatzonsists of two
vortical regions separated by a straight separatrix thatects two saddle-type crit-
ical points: one temporally oscillating horizontally aetbpper edge and the other
synchronously oscillating horizontally along the lowegedFigure 2 (left)). This
is a prominent example where vector field topology gives atsuttially different
result from that by FTLE. This dataset is temporarily peitodo avoid boundary
issues, we use a larger range of field, resulting in four gyreerefore, we call this
example quad-gyre. Using

f(x,t) = a(t)x®+b(t)x,
a(t) = esin(wt), (3)
b(t) =1—2¢esin(wt),

the quad-gyre is defined in space-time as follows:

— mAsin(7tf (x)) cog my)

u(x,y.t) = | mAcogf(x))sin(my) It | - (4)
1

As recommended by Shadden et al., we use the configuratied/4, w = /5,
andA = 1/10. Figure 2 (left) shows a hedgehog plot of the vector fietd-a0 and
Figure 3 depicts the FTLE inside a region of interest at threare

Figure 5 shows a result plot from our method and Figure 4 aesponding visu-
alization. It is apparent that the plot &f;in is much lower than the plot @f, mostly
due to outliers, but both are similar with respect to locatemxa and trends. Itis also
apparent how well the ridge sharpness criterion rejectéleosifrom the analysis.
This fact is consistent with the statement by Shadden ehal.a FTLE ridge has
to be sufficiently sharp to represent an LCS. Our test diyeeflects the fact that
as the analysis is restricted to sharp ridges, the adveptianiple is substantially
better satisfied.
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Fig. 4 Quad-gyre example. Forward FTLE ridges in red and backwabiuie, low saturated start-
ing atty = 20 and high saturated &t= 20.3 for various special marked in the discrepancy plot
in Fig 5. 'P3H’ is the same as 'P3’ but with a threshold supgirgg ridges that are not sharp. For
each intersection & = 20, a pathline is visualized (black). If the pathline leamla torresponding
intersection aty = 20.3, the starting point is visualized by a green dot.

We can also well observe from the plot that the advection gntygs more and
more violated as the FTLE advection timeeaches low values. This again supports
Shadden et al’s findings.

3.2 Buoyant Plumes

Our first CFD example is a time-dependent simulation of bubydumes inside
a 2D box, depicted in Figure 2 (center). The domain is a sqoffemeter side
length filled with air. The air is initially in rest and at 40. Gravity forces are
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Fig. 5 Quad-gyre example. Discrepancy plots for a setup with FTiaiag timety = 20 and
ridge intersection advection to tinhe= 20.3 (At = 0.3). Global optimum ird plot atT = 2.5. For
three special , marked a$1 - P3, visualizations are given in Fig 4.

acting downwards. No-slip conditions are imposed on allnatawies. The left and
the right walls both are supplied with adiabatic boundargditions, making the
walls neutral in the sense that there is no heat exchangethdtbutside. There is
a region in the center of the lower wall that is heated toC7&nd a corresponding
region on the upper wall that is cooled to&

Figure 6 shows the plot from our analysis usifig= 20 andAt = 1. It can be
seen that the average discrepancy has a decreasing treratid&d a plot of the
number of used intersections for judgment of uncertainty. \Flidation and for
further investigation, we generated images where the cet@pidges are advected,
not only their intersections (Figure 7). It is visible in theplot thatT = 4 exhibits
high error,T = 6 reduced, and@ = 8 already average error below the size of a FTLE
sampling cell. The global optimum inside tldeplot is atT = 8.6. The images in
Figure 7 support this finding, it can be seen thatTor 8 the advected ridges and
the ridges of the corresponding time fit well almost everyrgh# has to be noted
that we advected here the repelling ridges, i.e., those fooward FTLE. We also
did this for the attracting ridges and there the deviatios wauch smaller. Never-
theless, according to the initial motivation of our methsdch a comparison with
complete advected ridges instead of intersections canetetttangential discrep-
ancy between the motion of the ridges and the vector field\ieha

3.3 Buoyant Flow with Obstacle

Our second CFD example is again a buoyant unsteady flow @Ryurght). During
the 80 seconds of simulation time, a convective flow evoluas t the effect of
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Fig. 6 Buoyant plumes dataset. Examining the plotgofwe identify clearly too low advection
times (untilT = 4), medium quality ranges (arouid= 6), and comparably high quality (lower
than the size of a FTLE sampling cell) for= 8 and larger. Please refer to Fig. 7.

Fig. 7 Buoyant plumes dataset. Advected FTLE ridges (black doid)carresponding ridges (red
lines) of later FTLE visualizing ridge advection qualityr fT = 4 (left), T = 6 (center), and =8
(right). The temporal differencAt between théy of the FTLE fields is 1 second (this is also the
time that was used for the advection of the ridges). One canhse withT = 8 advection quality
is getting sufficient for typical applications. Please reteFig. 6.

heating the lower wall to 7% and cooling down the opposing upper wall t&C5
Two rectangular obstacles, a small one on the bottom wallaaladger one on the
side walls, prevent the onset of a simple circular flow. Wetyse 10 to study the
early phase of turbulence development (Figure 2, rightteNleat in the following
description, time is given in seconds, length units are itense

Convective flows are known for their complex topology. We geta FTLE vi-
sualization withtp = 10 and used a threshold for the eigenvalue of the Hessian to
suppress many weak FTLE ridges caused by the turbulent flevapylied our
method forT in the interval[0.4,2.6], Figure 8 contains the resulting advection
discrepancy plot and Figure 9 shows visualizations for etiees times selected
according to the plot. In this analysi§,= 2.125 produced the global minimuh
inside the prescribed interval. If advanced data analgsisrtiques would be used,
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Fig. 8 Buoyancy dataset: averagg)(and minimum &nin) advection discrepancy plots. Again it
is evident that increasing FTLE advection time improvesabteection property. Please refer to
Fig. 9 for the investigation of selected advection timie§ = 0.2, T = 0.5, andT = 1.0).

Fig. 9 Buoyancy dataset. Advected FTLE ridges (black dots) anasponding ridges (red lines)
of later FTLE visualizing ridge advection quality, for= 0.2 (left), T = 0.5 (center), and = 1.0
(right). The temporal differencAt between thég of the FTLE field is 005 seconds (this is also
the time that was used for the advection of the ridges). Onesea from thé plot that withT =1
advection quality is getting sufficient for typical applicas. Please refer to Fig. 8.

that are able to address noise, itis likely that a lower valaeld be obtained, more
consistent with our observation of a valuelof 1. As in our other experiments, the
advection discrepancy first decays rapidlyTamcreases and once it has reached a
certain quality, the decay slows down. However, due to tiga hiCS complexity in
this flow, our chosen FTLE sampling grid resolution does raqitare the intersec-
tions very robustly. This is no surprise since it is knowrt thach flows exhibit very
complex, i.e., massively folded LCS, and hence are vencdiffto investigate (the
ridges in Figure 9 (right) are folded, i.e., the line featucensist of several ridges).
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4 Conclusion

We presented a technique for measuring the advection pgyopeFTLE ridge in-
tersections in 2D vector fields. Our approach can be seenagdlthe flux-based
approach by Shadden et al. By analyzing the temporal behafitioe ridge intersec-
tions, not only flow discrepancy orthogonal to the ridges,ddso tangential to the
ridges can be revealed. Our measurements support the ticabloehavior stated by
Theorem 4.4 in [12], i.e., that the error in the advectionperty tends to decrease
with increasingl'. We also have observed that the advection property is kssttisr
fied by sharp ridges. An apparent property of our approadieisibise in the order
of the size of a FTLE cell. As mentioned, this error is seeryimgtroduced by the
ridge extraction stage and hence related to the resolutithed-TLE sampling grid.
A thorough analysis is, however, subject to future work. diwvd also be interest-
ing to compare our approach with the flux-based approach bgdin et al. and to
compare their accuracy. Further, it seems that both appesamould complement
each other, possibly leading to a more robust and more aeceehnique.
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