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Abstract Lagrangian coherent structures (LCS) can be extracted fromtime-depen-
dent vector fields by means of the finite-time Lyapunov exponent (FTLE). While the
LCS approach has proven successful in many areas and applications for the analysis
of time-dependent topology, it is to some extent still an open problem how the finite
time scope is appropriately chosen. One has to be aware that the introduction of this
finite time scope in the Lyapunov exponent, where the time scope was originally
infinite, is largely responsible for the recent success of the FTLE in analysis of real-
world data. Hence, there is no general upper bound for the time scope: it depends
on the application and the goal of the analysis. There is, however, a clear need for a
lower bound of the time scope because the FTLE converges to the eigenvalue of the
rate of strain tensor as the time scope approaches zero. Although this does not repre-
sent a problem per se, it is the loss of important properties that causes ridges in such
FTLE fields to lose the LCS property. LCS are time-dependent separatrices: they
separate regions of different behavior over time. Thereby they behave like material
constructs, advecting with the vector field and exhibiting negligible cross flow. We
present a method for investigating and determining a lower bound for the FTLE time
scope at isolated points of its ridges. Our approach appliesthe advection property to
the points where attracting and repelling LCS intersect. These points are of partic-
ular interest because they are the loci where Lagrangian dynamics varies most and
which are important in typical questions of Lagrangian topology. We demonstrate
our approach with examples from dynamical systems theory and computational fluid
dynamics.

1 Introduction

Traditional vector field topology [7] deals with several types of distinguished
streamlines. Those that degenerate to isolated points playa special role in the form
of critical points: if they exhibit saddle-type flow behavior in their linearized neigh-
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borhood, they give rise to separatrices. Separatrices are another type of distinguished
streamlines: those that converge to saddle-type critical points in forward or reverse
time. Other cases include periodic orbits, i.e., isolated closed streamlines and invari-
ant tori. Common to all these special cases is their derivation: these constructs are
obtained as limit cases as integration time of the streamline approaches infinity [1].
This, except for technical issues, does not represent a problem. Steady vector fields
are constant over time and hence do not require the notion of scope of time.

The traditional Lyapunov exponent (LE) shares many aspectswith vector field
topology. Despite additional technical issues regarding numerics and boundedness
of the temporal domain, its properties are well defined and donot depend on addi-
tional parameters. It was, however, the boundedness of the temporal domain together
with the aim of choosing a region of interest also in terms of time that lead to the
finite-time Lyapunov exponent (FTLE). A main risk, however,is the choice of too
short advection time for FTLE computation and resulting misinterpretation.

Lagrangian coherent structures (LCS) by means of the FTLE [6] have become
a prominent alternative for the investigation of time-dependent topology of vector
fields. In this paper, we present a method for validating and choosing the advection
time parameter for 2D FTLE computation with respect to prescribed error measures.
We base our approach on a main principle of LCS: their advection property [12], i.e.,
their behavior as material lines.

1.1 Finite-Time Lyapunov Exponent

Vector fields exhibit a spectrum of Lyapunov exponents. It isthe largest exponent in
this spectrum that has become a prominent tool for predictability analysis in time-
dependent vector fields. The LE can be determined by computing two neighboring
trajectories in phase space and measuring their separationrate as time approaches
infinity. Since the LE was originally introduced for predictability analysis, it has
to reflect properties along trajectories. Therefore, precaution has to be taken to as-
sure that the “neighboring” trajectories do not separate too far, e.g., by renormaliza-
tion [2].

Since the systems under investigation are often defined on a finite temporal do-
main only, or because it is often the objective of the user to restrict the analysis to a
temporal region of interest, the FTLE has been becoming moreand more popular.
Again, there are techniques to assure proximity of the (implicitly) involved trajec-
tories, such as the localized FTLE [8].

Whereas the LE and FTLE have been applied for a long time to predictability
analysis, there is a recent trend in the visualization community to use FTLE for
revealing the topology of time-dependent vector fields. Haller [6] showed that ridges
present in the FTLE represent a time-dependent counterpartto separatrices from
vector field topology [7]: they separate regions of qualitatively different behavior.

In the context of time-dependent vector field topology, the FTLE is typically
computed from theflow mapφ t0+T

t0 (x), mapping seed pointsx of trajectories to their
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end points after advection for finite timeT. According to Haller [6], the finite-time
Lyapunov exponentσ(x, t0,T) computes from the flow mapφ as follows:

σ(x, t0,T) =
1
|T|

ln

√

λmax

[

(

∇φ t0+T
t0 (x)

)⊤
∇φ t0+T

t0 (x)
]

, (1)

λmax(·) being the major eigenvalue.

2 Method

In this paper, we do not address the choice of the advection time parameterT in the
context of specific applications and related application-oriented questions. In fact,
we rather consider the fundamental advection property of LCS to find appropriate
advection times inside a prescribed interval of temporal interest.

Let us examine the two extreme choices forT: infinity and zero. AsT → ∞, the
FTLE converges1 to the classical LE. Hence, this extreme case imposes no partic-
ular concerns. The interpretation and use of the LE is well established. If, on the
other hand,T → 0, it can be easily shown that the FTLE converges to the largest
eigenvalue of the rate of strain tensor of the vector field. Inthis case, due to the
instantaneous property of the rate of strain tensor, it cannot be assumed that the ad-
vection property [6] of ridges inside this field is satisfied,consistent with Shadden
et al.’s Theorem 4.4 [12].

Shadden et al. measured fluxes of the instantaneous velocityfield across FTLE
ridges as a means of verifying the advection property of given FTLE ridges. How-
ever, zero flux alone is a necessary but not sufficient condition for advection: it
does not capture tangential motion, i.e., the advection component along the ridge
does not need to satisfy the advection property even if the flux across the ridge is
zero. Unfortunately, it is hard to identify point correspondences between ridges from
FTLE fields with different starting timest0 because common ridge definitions, such
as height ridges by Eberly [3], are purely geometric, i.e., they are not represented
by identifiable particles that advect. We therefore follow adifferent approach: we
measure the advection property only for distinguished points on the FTLE ridges,
i.e., we identify point correspondences in terms of advection.

For sufficiently well defined LCS (according to Shadden et al.), the advection
property holds for both ridges in the FTLE field computed fromforward trajecto-
ries and ridges in the FTLE field computed from reverse-time trajectories. These
ridges typically intersect. The intersection points give rise to hyperbolic trajecto-
ries [5, 11] and are important in the Lagrangian skeleton of turbulence [9]. Hence,
if both types of ridges satisfy the advection property, thisproperty must also hold

1 We follow a conceptual, or continuous, argumentation here.In the discrete case, preacautions
have to be taken such as renormalization [2] or evaluation ofthe velocity gradient along the trajec-
tories [8].
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for their intersections. In 2D vector fields, these intersections are isolated points (we
exclude congruent ridge regions because these represent degenerate cases that can
be avoided by perturbing the vector field). Thus, one needs toidentify point cor-
respondence between ridge intersections of successive FTLE time steps (att0 and
t0+∆ t).

As FTLE computation typically depends on time-dependent discretized vector
fields, it is very hard to derive generic rules for parametrizing FTLE visualizations.
FTLE computation is heavily dependent on the structure and position of the sam-
pling grid, and the advection timeT. Furthermore, FTLE ridges only tend to rep-
resent LCS if they are sufficiently sharp [12]. Providing automatic strategies for
finding a good choice of parameters is very hard because many decisions directly
depend on the goal of the user. Therefore, FTLE visualization, as other feature ex-
traction procedures, is typically a trial-and-error procedure representing the basic
exploration by visualization. Once the user has found a sampling grid that suf-
ficiently captures the FTLE structures he wants to see, has found an appropriate
threshold filtering out insufficiently sharp ridges (this can be accomplished by fil-
tering by an eigenvalue of the FTLE Hessian [10]), and has found a minimum and
maximum FTLE advection timeT, our new technique takes over these parameters.
Although our method can be further manually parametrized, it performs well with
the default values (described below). As the result, our technique provides a plot of
advection discrepancy with respect to FTLE advection timeT. It can identify local
and global optima inside the prescribed range ofT, and in particular, provide a lower
bound onT with respect to a prescribed accuracy in terms of average advection error
of ridge intersections.

One contribution of this paper is a comparably robust technique for tracking
FTLE ridge intersections. It is based on the assumption thatthe user already has
chosen a meaningful time scope for the analysis, i.e., wherethe lower bound of the
time interval already produces comparably sharp ridges. According to Shadden et
al. [12], this will lead to FTLE ridges that already approximately satisfy the advec-
tion property. Therefore, the advection property of the intersections can be exploited
for making the correspondence finding more robust. We then present a technique to
quantify the advection property of the intersections and show how it can be used
to optimize the FTLE advection timeT for obtaining FTLE fields where the ridge
intersections satisfy the advection property up to a prescribed average error. Inter-
estingly, we observed for typical discretizations of FTLE sampling grids that the
advection property is not a monotonic function of the finite FTLE advection time:
we observed local optima. Hence, our findings indicate that once an appropriate
interval of possible finite advection times is identified, itis desirable to choose an
optimum inside this interval, possibly by our technique.
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2.1 FTLE Ridge Intersection

FTLE sampling is a computationally expensive task. One is therefore typically lim-
ited to comparably low resolutions of the FTLE sampling grid. Although there are
techniques that adapt the sampling grid to the vicinity of LCS [4] and ridges in
general [10], they are, as many adaptive sampling techniques, susceptible to missed
features, or would require a-priori knowledge about the data. We therefore base our
analysis on a regular sampling of the FTLE and use regions of interest if high reso-
lution is required.

The ridge lines in the resulting scalar FTLE fields are extracted according to
Eberly’s [3] criterion. The subsequent intersection procedure for obtaining the in-
tersections is a trivial problem in the 2D context investigated in this paper. To assert
sufficient quality of the geometric intersections, we impose a minimum intersection
angle threshold.

2.2 Intersection Tracking

As illustrated in Figure 1, we extract forward and reverse FTLE fields for botht0
andt0+∆ t. This leads to two sets of intersections,i(t0) at timet0 andi(t0+∆ t) at
t0+∆ t. A straightforward approach would use a very small∆ t. This would produce
almost identical ridges and hence finding correspondences between their intersec-
tions would lead to a trivial tracking problem. Further, thelimit case∆ t → 0 would
be used for defining the intersection velocity

ui(t0+∆ t/2) = (i(t0+∆ t)− i(t0))/∆ t. (2)

We have carried out such an analysis using the quad-gyre example, discussed in
Section 3.1. Unfortunately, it turns out that ridge extraction tends to be only accurate
in the order of the cell size of the FTLE sampling grid, and thus, using small∆ t leads
to poor accuracy ofui , becausei(t0) andi(t0+∆ t) are too close with respect to the
resolution of the FTLE sampling grid. Thus, using larger∆ t improves accuracy. The
time span∆ t can be estimated from the average speed ¯u of the vector field and the
cell sizeh of the FTLE sampling grid:∆ t = ch/ū with a constantc> 1. However, in
this case,∆ t is not small enough to allow the estimation of the intersection velocity
by the linearization (2), i.e., the intersection point cannot be assumed to move at
constant speed along a straight line at sufficient precisionduring∆ t.

Using comparably large∆ t leads to another problem: intersection correspon-
dences are harder to identify because the ridge intersections move over larger dis-
tances; the FTLE ridges move and deform, and may even disappear or new ones
might originate. However, since the input to our method is a desired parametriza-
tion (see Section 2) of FTLE and already satisfies the advection property to some
extent, we can utilize the advection property to solve the correspondence problem:
the intersection points at timet0 are advected along path lines to timet0+∆ t and
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Fig. 1 FTLE ridge intersectionsi obtained with a fixed FTLE advection timeT with starting times
t0 (left) andt0+∆t (right). The spatial discrepancyδ is defined as the distance betweeni(t0+∆t)
and the endpoint of the path line started ati(t0) after advection time∆t.

these advected points are checked for correspondence with the ridge intersections at
t0+∆ t (Figure 1). To further avoid erroneous correspondences, a threshold limiting
discrepancyδ is imposed and the correspondence is identified as the closest remain-
ing candidate with respect toδ . The measureδ reflects the Lagrangian advection
consistency of the FTLE ridge intersections and is denoted asadvection discrepancy
in our technique.

2.3 Measuring Advection Quality

Various evaluation approaches are possible for the advection discrepancyδ . For
greedy considerations we determineδmin(T), the minimumδ of all intersections at
a given value ofT. We also computēδ (T), the average over all intersections. Of
course many other techniques, e.g., from statistics, can beapplied.

Whereasδmin tends to show the best case in terms of advection,δ̄ can be used
to get an overall picture of the advection quality of the FTLEridges. All plots are
in units of FTLE sampling grid cell size. This way one can easily choose a limit of
advection discrepancy in terms of FTLE grid cells and then visually or numerically
identify which regions ofT satisfy this requirement.

A possible problem are intersections that do not or do only slowly move over
time. It is likely that these intersections exhibit smallδ and hence exhibit inappro-
priately high advection quality since they exhibit low discrepancy only due to the
fact that they stand still. This can be addressed by an inverse weighting ofδ with
the length of the corresponding trajectory from Figure 1. However, it is unlikely
that a time-dependent vector field exhibits a zero over extended time. We did not
encounter this problem in the context of CFD simulations, although it could appear
in vector fields from other domains.
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Fig. 2 Left: quad-gyre example. Center: buoyant plume dataset. Right: buoyant flow with obsta-
cles, heated at its lower side and cooled at the top.

2.4 Finding Locally Optimal Advection Times T

Having now the building blocks at hand, it would be possible to run an optimization
process over all feasible grid resolutions, advection times T, starting timest0, and
ridge sharpness thresholds for a given dataset. According to Theorem 4.4 in [12],
this would likely result in infinite resolution and infinite advection timeT for all
t0. On the other hand, there is a region of interest for all parameters of the analysis
(Section 2). This is particularly important for the advection time scopeT which
depends on the questions of the user and the application (FTLE ridges typically
grow with time and can fill the complete domain in, e.g., convective flows).

Therefore, we perform an analysis of the advection discrepancy by uniform sam-
pling of T inside the prescribed advection time interval and provide aplot together
with theT producing global minima of the different discrepancy measuresδmin and
δ̄ . Finding the global minimum inside the region of interest ofT serves here as a
straightforward example. Of course more sophisticated techniques for data analysis
can be applied. An important question that can be interactively and visually an-
swered from the plot of the advection discrepancy is the minimum required FTLE
advection timeT that makes sure that the advection property is in the averagesatis-
fied up to a given tolerance. In our current approach we still advocate visual inspec-
tion of the plots, in particular because they tend to exhibitoutliers and are therefore
susceptible to errors if simple automatic analysis techniques are applied.

3 Results and Evaluation

In the following, we demonstrate and evaluate our method on three time-dependent
2D examples: the analytic quad-gyre example (Section 3.1),and two CFD simula-
tions of buoyant flow (Sections 3.2 and 3.3).
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Fig. 3 FTLE visualization for the quad-gyre dataset at timet0 = 20 in a region of interest at the
center of the dataset. The FTLE advection timesT vary: 4 (left),−4 (left center), 13 (right center),
and−13 (right). The intersection points between forward-time and reverse-time FTLE ridges are
marked by black crosses.

3.1 Quad-Gyre

The double gyre example was introduced by Shadden et al. [12]to examine FTLE
and LCS and to compare them to vector field topology. This dataset consists of two
vortical regions separated by a straight separatrix that connects two saddle-type crit-
ical points: one temporally oscillating horizontally at the upper edge and the other
synchronously oscillating horizontally along the lower edge (Figure 2 (left)). This
is a prominent example where vector field topology gives a substantially different
result from that by FTLE. This dataset is temporarily periodic. To avoid boundary
issues, we use a larger range of field, resulting in four gyres. Therefore, we call this
example quad-gyre. Using

f (x, t) = a(t)x2+b(t)x,
a(t) = ε sin(ωt),
b(t) = 1−2ε sin(ωt),

(3)

the quad-gyre is defined in space-time as follows:

u(x,y, t) =





−πAsin(π f (x))cos(πy)
πAcos(π f (x))sin(πy)d f

dx
1



 . (4)

As recommended by Shadden et al., we use the configurationε = 1/4, ω = π/5,
andA= 1/10. Figure 2 (left) shows a hedgehog plot of the vector field att = 0 and
Figure 3 depicts the FTLE inside a region of interest at the center.

Figure 5 shows a result plot from our method and Figure 4 a corresponding visu-
alization. It is apparent that the plot ofδmin is much lower than the plot of̄δ , mostly
due to outliers, but both are similar with respect to local extrema and trends. It is also
apparent how well the ridge sharpness criterion rejected outliers from the analysis.
This fact is consistent with the statement by Shadden et al. that a FTLE ridge has
to be sufficiently sharp to represent an LCS. Our test directly reflects the fact that
as the analysis is restricted to sharp ridges, the advectionprinciple is substantially
better satisfied.
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P1   T=6.1 P2   T=8.5

P3   T=10.3 P3H   T=10.3

Fig. 4 Quad-gyre example. Forward FTLE ridges in red and backward in blue, low saturated start-
ing att0 = 20 and high saturated att0 = 20.3 for various specialT marked in the discrepancy plot
in Fig 5. ’P3H’ is the same as ’P3’ but with a threshold suppressing ridges that are not sharp. For
each intersection att0 = 20, a pathline is visualized (black). If the pathline leads to a corresponding
intersection att0 = 20.3, the starting point is visualized by a green dot.

We can also well observe from the plot that the advection property is more and
more violated as the FTLE advection timeT reaches low values. This again supports
Shadden et al.’s findings.

3.2 Buoyant Plumes

Our first CFD example is a time-dependent simulation of buoyant plumes inside
a 2D box, depicted in Figure 2 (center). The domain is a squareof 1 meter side
length filled with air. The air is initially in rest and at 40◦C. Gravity forces are
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Fig. 5 Quad-gyre example. Discrepancy plots for a setup with FTLE starting timet0 = 20 and
ridge intersection advection to timet = 20.3 (∆t = 0.3). Global optimum in̄δ plot atT = 2.5. For
three specialT , marked asP1 - P3, visualizations are given in Fig 4.

acting downwards. No-slip conditions are imposed on all boundaries. The left and
the right walls both are supplied with adiabatic boundary conditions, making the
walls neutral in the sense that there is no heat exchange withthe outside. There is
a region in the center of the lower wall that is heated to 75◦C and a corresponding
region on the upper wall that is cooled to 5◦C.

Figure 6 shows the plot from our analysis usingT0 = 20 and∆ t = 1. It can be
seen that the average discrepancy has a decreasing trend. Weadded a plot of the
number of used intersections for judgment of uncertainty. For validation and for
further investigation, we generated images where the complete ridges are advected,
not only their intersections (Figure 7). It is visible in thēδ plot thatT = 4 exhibits
high error,T = 6 reduced, andT = 8 already average error below the size of a FTLE
sampling cell. The global optimum inside thēδ plot is atT = 8.6. The images in
Figure 7 support this finding, it can be seen that forT = 8 the advected ridges and
the ridges of the corresponding time fit well almost everywhere. It has to be noted
that we advected here the repelling ridges, i.e., those fromforward FTLE. We also
did this for the attracting ridges and there the deviation was much smaller. Never-
theless, according to the initial motivation of our method,such a comparison with
complete advected ridges instead of intersections can not detect tangential discrep-
ancy between the motion of the ridges and the vector field behavior.

3.3 Buoyant Flow with Obstacle

Our second CFD example is again a buoyant unsteady flow (Figure 2, right). During
the 80 seconds of simulation time, a convective flow evolves due to the effect of
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Fig. 6 Buoyant plumes dataset. Examining the plot ofδ̄ , we identify clearly too low advection
times (untilT = 4), medium quality ranges (aroundT = 6), and comparably high quality (lower
than the size of a FTLE sampling cell) forT = 8 and larger. Please refer to Fig. 7.

Fig. 7 Buoyant plumes dataset. Advected FTLE ridges (black dots) and corresponding ridges (red
lines) of later FTLE visualizing ridge advection quality, for T = 4 (left), T = 6 (center), andT = 8
(right). The temporal difference∆t between thet0 of the FTLE fields is 1 second (this is also the
time that was used for the advection of the ridges). One can see that withT = 8 advection quality
is getting sufficient for typical applications. Please refer to Fig. 6.

heating the lower wall to 75◦C and cooling down the opposing upper wall to 5◦C.
Two rectangular obstacles, a small one on the bottom wall anda larger one on the
side walls, prevent the onset of a simple circular flow. We uset0 = 10 to study the
early phase of turbulence development (Figure 2, right). Note that in the following
description, time is given in seconds, length units are in meters.

Convective flows are known for their complex topology. We setup a FTLE vi-
sualization witht0 = 10 and used a threshold for the eigenvalue of the Hessian to
suppress many weak FTLE ridges caused by the turbulent flow. We applied our
method forT in the interval[0.4,2.6], Figure 8 contains the resulting advection
discrepancy plot and Figure 9 shows visualizations for advections times selected
according to the plot. In this analysis,T = 2.125 produced the global minimum̄δ
inside the prescribed interval. If advanced data analysis techniques would be used,
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Fig. 8 Buoyancy dataset: average (δ̄ ) and minimum (δmin) advection discrepancy plots. Again it
is evident that increasing FTLE advection time improves theadvection property. Please refer to
Fig. 9 for the investigation of selected advection timesT (T = 0.2, T = 0.5, andT = 1.0).

Fig. 9 Buoyancy dataset. Advected FTLE ridges (black dots) and corresponding ridges (red lines)
of later FTLE visualizing ridge advection quality, forT = 0.2 (left), T = 0.5 (center), andT = 1.0
(right). The temporal difference∆t between thet0 of the FTLE field is 0.05 seconds (this is also
the time that was used for the advection of the ridges). One can see from thēδ plot that withT = 1
advection quality is getting sufficient for typical applications. Please refer to Fig. 8.

that are able to address noise, it is likely that a lower valuewould be obtained, more
consistent with our observation of a value ofT = 1. As in our other experiments, the
advection discrepancy first decays rapidly asT increases and once it has reached a
certain quality, the decay slows down. However, due to the high LCS complexity in
this flow, our chosen FTLE sampling grid resolution does not capture the intersec-
tions very robustly. This is no surprise since it is known that such flows exhibit very
complex, i.e., massively folded LCS, and hence are very difficult to investigate (the
ridges in Figure 9 (right) are folded, i.e., the line features consist of several ridges).
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4 Conclusion

We presented a technique for measuring the advection property of FTLE ridge in-
tersections in 2D vector fields. Our approach can be seen as dual to the flux-based
approach by Shadden et al. By analyzing the temporal behavior of the ridge intersec-
tions, not only flow discrepancy orthogonal to the ridges, but also tangential to the
ridges can be revealed. Our measurements support the theoretical behavior stated by
Theorem 4.4 in [12], i.e., that the error in the advection property tends to decrease
with increasingT. We also have observed that the advection property is bettersatis-
fied by sharp ridges. An apparent property of our approach is the noise in the order
of the size of a FTLE cell. As mentioned, this error is seemingly introduced by the
ridge extraction stage and hence related to the resolution of the FTLE sampling grid.
A thorough analysis is, however, subject to future work. It would also be interest-
ing to compare our approach with the flux-based approach by Shadden et al. and to
compare their accuracy. Further, it seems that both approaches could complement
each other, possibly leading to a more robust and more accurate technique.
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