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(a) VDI generation, 280ms overhead (b) Raycasting takes 950ms (c) VDI rendering takes 110ms (d) VDI frustums (low res.)

Fig. 1: (a) Generation of a 5122 Volumetric Depth Image (VDI) of the Mouse data set (1024×1024×975 at 16 bit), resulting in
approximately 2M supersegments, at small overhead w.r.t. the original raycasting. (b) Raycasting from different view. (c) Same
view as (b) using VDI rendering is faster and requires less memory. (d) Illustration of frustum-based VDI rendering.

Abstract—View-dependent image-based rendering techniques
have become increasingly popular as they combine the high
quality of images with the explorability of interactive techniques.
However, in the context of volume rendering, previous approaches
suffer from various shortcomings, including the limitation to
surfaces, expensive generation, and insufficient occlusion and
motion parallax impairing depth perception. In this paper, we
propose Volumetric Depth Images (VDI) to overcome these issues
for view-dependent volume visualization by an extension of the
Layered Depth Image (LDI) approach. Instead of only saving
for each view ray of one camera configuration the depth and
color values for a set of surfaces, as in LDIs, VDIs store so-
called supersegments, each consisting of a depth range as well
as composited color and opacity. This compact representation
is independent from the structure of the original data and can
be generated by slight modification of raycasters with very low
overhead. VDIs can be rendered efficiently at high quality with
arbitrary camera configurations by means of proxy frustum
geometry and an efficient depth ordering scheme. When viewing
the scene from the initial view point, VDIs produce results
identical to the original raycasting. As demonstrated by means
of a prototype implementation and data from different fields,
our approach can be useful for preview rendering and a-priori
analysis in in-situ contexts among others.

Keywords-Volume Raycasting; Explorable Image; Preview and
Offline Techniques;

I. INTRODUCTION

An explorable image is a compact intermediate view-
dependent representation of data that allows for deferred
interaction. It has many different applications, like providing
preview rendering in a local or remote rendering setting in the
context of an expensive rendering process or low bandwidth,

or lowering the overall load on a render server. In contrast to
one plain image, an explorable image (e.g., a Layered Depth
Image (LDI) [1]) allows for interaction until the next image
is available. Another area of application stems from large-
scale, high-fidelity simulations by making use of the high-
performance facilities at a supercomputing center to transform
the data into a compact explorable image. For instance, this
could be used in combination with techniques suggesting
informative views in volume visualization (e.g., [2]).

In this work, we propose Volumetric Depth Images (VDI),
a generalization of LDIs for volume data. It allows one to
capture a volume from a certain camera configuration in a
fast and efficient way for subsequent rendering (see Fig. 2
for an overview). A VDI can easily be generated during
volumetric raycasting by partitioning the samples along rays
(Fig. 2a) according to their similarity, providing the additional
possibility to skip “empty” regions. These partitions can then
be stored as lists of so-called supersegments containing the
bounding depth pair (sf , sb) and partial color accumulation
values (Fig. 2b). Each (quadrilateral) pixel in the image
plane with the used camera parameters forms a pyramid. The
supersegments can then be rendered as frustums of these
pyramids (Fig. 2c). Frustums generated by the same ray are
conceptually grouped into a frustum list. Color and opacity
are modeled constant within a frustum, and determined during
VDI-generation. During rendering, frustum lists are depth-
ordered and composited (Fig. 2d). For this, the length l a ray
passes through each frustum needs to be considered in order
to correctly adjust its opacity contribution.

In particular, we contribute the following:
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Fig. 2: (a),(b) VDI generation and (c),(d) rendering. (b) Supersegments are tuples that are organized in a 2D array of lists.
(c) Frustums constitute the 3D representations of supersegments. (d) These are eventually used to generate new views.

• Volumetric Depth Image representation extending Layered
Depth Images to continuous instead of a discrete depth.

• A technique to generate Volumetric Depth Images that
is easy to integrate with existing raycasting codes and
introduces only minor overhead.

• An efficient rendering of VDIs allowing for interactive
viewpoint changes with fast and efficient depth sorting
and opacity correction.

The paper is structured as follows. Sec. II discusses related
work, while Sec. III explains basic fundamentals. Secs. IV
and V elaborate on the generation and the rendering of
Volumetric Depth Images, respectively. Sec. VI discusses the
implementation and Sec. VII the results of our approach.
Sec. VIII concludes the paper.

II. RELATED WORK

Direct volume rendering techniques can roughly be classified
as image-based, most notably ray-casting, and object-based,
such as cell projection, shear-warp, or splatting. Nowadays,
GPU-based raycasting [3] is the state-of-the art technique
for interactive volume rendering [4] and we use it in our
approach. Our supersegment generation exhibits some similarity
to adaptive object-space importance sampling techniques in
that entropy needs to be taken into account. However, in
contrast to our approach, these techniques typically rely
on distinguished data structures (e.g., LOD volumes [5]).
Ament et al. [6] introduce a unified model for generalized
isosurfaces allowing for scale-invariant opacity. Viola et al. [7]
present an importance-driven automatic focus and context
display technique. As an alternative to raycasting, texture-
based rendering via 3D textures slices the texture block in
back-to-front order with planes oriented parallel to the view
plane [8]. Similarly, our implementation for rendering VDIs
utilizes the rasteriziation pipeline and blending, but we use
frustums instead of planes and do not require the original data
during rendering. In contrast, splatting [9] accumulates data
points by projecting flat disc-like kernels for each voxel to
the image plane. Many adjustments have been proposed to
improve its quality and speed (e.g., [10][11]). The projected

tetrahedra approach renders partially transparent polygons to
render volume data [12][13], based on the projected profile of
tetrahedral cells.

Image-based rendering infers new images from existing ones,
e.g., with changed lighting or camera configuration [14]. A
number of techniques has been proposed to construct different
representations from multiple views, like view-dependent
texture maps [15], warping [16][17], light fields [18], or
Lumigraphs [19]. Meyer et al. [20] use opacity light fields for
image-based volume rendering based on multiple renderings by
means of proxy surfaces. Rezk-Salama et al. [21] employ depth
layers to generate high quality light field representations from
volumetric data. Further techniques using multiple images to
synthesize new surface-based views of volume data include the
works of Choi et al. [22] and Chen et al. [23]. Such techniques
allow the adaptation of color and lighting parameters [24], or
transfer functions [25]. In contrast, our technique only uses
a single view, thus minimizing the generation overhead, and
employs a volumetric instead of a surface-based representation.

Shade et al. [1] introduced LDIs representing one camera
view with multiple pixels along each line of sight. Multi-layered
representations have since been popularized in commercial
rendering software to simulate complex materials like skin
on synthetic objects [26]. In volume rendering, layer-based
representations have been used to defer operations such
as lighting and classification [27][28]. This has also been
proven effective to cache results [29][30] or certain volumetric
properties along the view rays [31], which can be later reused
for efficient transfer function exploration. Tikhonova et al. [32]
convert a small number of volume renderings to a multi-
layered image representation, enabling interactive exploration in
transfer function space. In another work, Tikhonova et al. [33]
use an intermediate volume data representation based on Ray
Attenuation Functions, which encode the distribution of samples
along each ray. Shareef et al. [34] use image-based modeling
to allow for efficient GPU-based rendering of unstructured
grids based on parallel sampling rays and 2D texture slicing.
In contrast to VDIs, LDIs and related techniques are targeted
toward surfaces (with specific depth values and “vacuum” in



between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

∫ D

0

c(s)e
−
∫ D

s
τ(t) dt

ds,

with c(s) := C(s)τ(s) representing the premultiplied color
where C(s) depicts the radiance or color and τ(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ≈ J(D) :=
N∑
i=1

c(i)
N∏

j=i+1

T (j), (1)

where c(i) := C(i)ω(α(i), δ(i)) represents the discretized
premultiplied color of segment i, with ω(α(i), δ(i)) represent-
ing the corrected opacity α(i), accounting for the potentially
varying segment (or step) size δ(i), defined as follows [36]:

ω(α(i), δ(i)) := 1−
(
1− α(i)

)δ(i)
, (2)

with T (j) := 1 − ω(α(j), δ(j)) standing for the corrected
transmittance of segment j along the view direction, and∏N
j=i+1 T (j) is the attenuation due to all segments in front of

segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =
P∑
p=1

 sf (p)∑
i=sb(p)

c(i)

sf (p)∏
j=i+1

T (j)

 N∏
k=sf (p)+1

T (k)

 . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T fb :

cfb :=

f∑
i=b

c(i)

f∏
j=i+1

T (j),

T fb :=

f∏
j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =
P∑
p=1

c
sf (p)

sb(p)

P∏
q=p+1

T
sf (q)

sb(q)
. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by ω(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images

Our Volumetric Depth Image representation saves a 2D
array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.

1: function SUPERSEGMENTGENERATION
2: c← (0, 0, 0), T ← 1, p← −1
3: for i = 1→ N + 1 do . step along ray
4: g ← Γ(γ,C, α,C(i), α(i)) . new supersegment?

(Eq. 5)
5: e← (α(i) = 0 ∧ α(i− 1) 6= 0)
6: if p 6= −1 ∧ (g ∨ e ∨ i = N + 1) then . close old

supersegment
7: sb(p)← min(i,N)

8: α
sf (p)

sb(p)
← 1− T

9: C
sf (p)

sb(p)
← c/α

sf (p)

sb(p)

10: if (g ∨α(i− 1) = 0)∧ i 6= N + 1∧α(i) > 0 then
. start new supersegment

11: p← p+ 1, sf (p)← i
12: c← (0, 0, 0), T ← 1

13: c← T · α(i)c(i), T ← T · (1− α(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion Γ (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized



when entering a transparent segment (Line 5), and a new
supersegment is started when leaving a transparent segment
(Line 10). Finally, a supersegment is closed before terminating
the ray (the last iteration i = N + 1 solely has this purpose).

When a new supersegment is started, the color and opacity
values are reset (Line 12). As c represents a premultiplied
color value after compositing, it is divided by the opacity of
the supersegment to make it non-premultiplied (Line 9) as a
preparation for the subsequent over-operator type blending in
the rendering stage (Sec. V).

B. Supersegment Merging Criterion

Segments are created and composited in a front-to-back
procedure into supersegments during raycasting. Mostly ho-
mogeneous supersegments are desirable to achieve good
results, particularly for large view parameter changes in VDI
rendering. There is a trade-off between quality and both storage
requirements and rendering speed: the more supersegments,
the higher the quality but also the higher the memory usage.
Our criterion Γ is based on premultiplied color values and the
correction of opacity with respect to integration lengths:

Γ : γ > |(ci−1
sf

, αi−1
sf

)− (α̂(sf , i)C(i), α̂(sf , i))| (5)

with γ being the sensitivity parameter, sf is the starting index
of the supersegment, (ci−1

sf
, αi−1

sf
) represent color and opacity

of the supersegment respectively, and i depicts the current
segment. The opacity is length-corrected

α̂(sf , i) = ω(α(i), µ(sf , i− 1)),

with µ being the length of the supersegment:

µ(f, b) =
b∑

j=f

δ(j). (6)

This means that a raycaster segment is merged into the
supersegment if the adjusted color and opacity difference is
below the user-provided sensitivity parameter γ. Otherwise,
a new supersegment is started. This greedy criterion is fast
and simple to compute, can easily be integrated with existing
raycasting codes, and proved to deliver good results during our
experiments. Many other (more complex) schemes are possible
and could easily be used with our flexible approach to meet
different demands of a specific application at hand.

V. RENDERING VOLUMETRIC DEPTH IMAGES

A VDI is rendered by using quadrilateral frustums as a proxy
to represent supersegments (Fig. 3, Sec. V-A). These frustums
are composited using the over-operator, and thus require depth
sorting (Sec. V-B). Finally, during rendering, the correct opacity
contribution of every frustum needs to be computed (Sec. V-C).

A. Frustum Geometry

Each supersegment is represented by a frustum for rendering.
For every supersegment list of a VDI, four rays are casted
from the initial camera position through the corners of the
respective pixel. For this purpose, the original modelview and

(a) VDI generation view (b) Rotated and zoomed

Fig. 3: The engine data set (see Sec. VII for details) with
very low resolution settings shows the geometry of frustums
(Sec. V-A), and the results of both depth sorting (Sec. V-B)
and opacity determination (Sec. V-C).

projection matrices are used. The “bottom left” ray defines
a perpendicular front and a back plane by using its direction
vector as well as the two depth values marking the beginning
and end of the respective supersegment. The front and back
planes are then intersected by the other three rays, thus defining
a quadrilateral frustum belonging to each supersegment.

B. Depth Sorting

For rendering our frustums, we employ alpha compositing
with the over operator-according to Eq. 7: a over b (i.e., a is
“in front of” b) computes the resulting color C as follows [35]:

C = Caαa + Cb(1− αb) (7)

where Ca and Cb are the colors, and αa and αb are the opacities
belonging to a and b, respectively. This requires depth ordering
for correct results. We use a back-to-front ordering using
Painter’s algorithm [38] due to its simplicity and suitability to
our problem. All polygons in a scene are ordered by their depth
and painted in this order, farthest to closest. The algorithm
can fail in some cases, including cyclic overlap or piercing
polygons. This, however, cannot happen in our case, as there
are only convex frustums that cannot exhibit cyclic overlaps.
Numerous other ordering algorithms would be applicable. For
instance, Shade et al. [1] use McMillans [17] ordering algorithm
in their original LDI paper.

However, due to the way our frustums are constructed, we
can do sorting in O(L log(L)) in contrast to O(S log(S)) that
would be required when sorting every polygon or frustum on
its own (L being the number of supersegment lists while S
is the number of supersegments). For this, we exploit that
frustums belonging to the same supersegment list are already
implicitly sorted. This significantly decreases the sorting cost
and makes it invariant with respect to γ.

Each frustum list is represented according to the view ray
that was used originally to create the respective supersegment
list. They are then reversely ordered with respect to their
Euclidean distance to the new camera position (Fig. 2d). Note
that the ordering within a frustum list needs to be inverted if a



Algorithm 2 Opacity correction of supersegments in a fragment
shader, with ow denoting the camera position in world space
and Pw being the list of the six planes defining the frustum,
respectively. FC stands for fragment coordinates, VP for
viewport, and DR for depth range.

1: function OPACITYCONTRIBUTION
2: fc ← (((2 · FC.xy) − (2 · VP.xy))/(VP.zw) − 1, (2 ·

FC.z−DR.near−DR.far)/(DR.far−DR.near), 1)/FC.w
3: fe ← gl_ProjectionMatrixInverse · fc
4: fw ← gl_ModelViewMatrixInverse · fe .

Convert fragment position world space fw
5: dw ← (fw − ow)/|(fw − ow)| . Construct view ray
6: l←∞
7: for all pw ∈ Pw do . Determine length l in frustum
8: v ← pw.xyz · dw
9: if v > 0 then . Only consider back planes

10: l← min(l,−(pw.xyz · ow) + pw.w)/v)

11: l← l − |(fw − ow)| . view ray length in frustum
12: return κ(sb, sf , l) . Compute opacity (Eq. 8)

supersegment list is viewed in opposite direction with respect
to its generating view ray.

C. Opacity Determination

The length l of a new view ray in a frustum (Fig. 2d)
is used to adjust the opacity contribution of the respective
part of a supersegment. In the same way as for segments
(to Eq. 4, Eq. 2), the opacity contribution of supersegments
can be adjusted with respect to the step size δ. This can be
computed for an arbitrary length l in relation to the original
length µ(sb, sf ) of the supersegment (Eq. 6) as follows:

κ(sf , sb, l) = ω(αsbsf , l/µ(sf , sb)), (8)

where l is determined by intersecting the view ray belonging
to the current pixel with the frustum belonging to the super-
segment. This is discussed in more detail in the next section
by means of Alg. 2.

VI. IMPLEMENTATION

Our prototypical system uses a CUDA-based front-to-back
volume raycaster for VDI generation employing one GPU
thread per ray. We reserve a fixed-size supersegment list per
pixel. If this size limit is reached, the last supersegment has
to contain all remaining segments until ray termination (see
Alg. 1), potentially leading to a “smearing” artifact. Storing
32 supersegments per pixel proved to be a good compromise
between memory usage and rendering quality during the course
of our experiments, and this problem was only encountered
rarely for very low values of γ.

A VDI is rendered using rasterization as directly supported
by commodity graphics hardware using OpenGL and GLSL.
Concerning the implementation, there is a significant trade-
off between graphics memory usage and the amount of work
that needs to be done on-the-fly by the GPU. For the most

Data set Resolution Size Raycast. Gen.
Engine 256× 256× 256 32 MB 23ms 11ms

Chameleon 1024× 1024× 1080 2160 MB 560ms 54ms
Vertebra 512× 512× 512 256 MB 48ms 18ms

Flow 2018× 220× 1085 919 MB 37ms 5ms

TABLE I: Data sets and respective raycasting time for results
in Fig. 4 for γ = 1. All data sets are given in 16-bit accuracy.

memory-saving approach, supersegments (depth bounds and
color/opacity) could be rendered directly using a geometry
shader or a raycasting approach computing the intersections
with an (implicit) frustum in a GPU shader. While this is
efficient memory-wise, it generates a lot of work per frame that,
technically speaking, only needs to be computed once directly
after VDI-generation. On the opposite, the whole frustum
geometry could be generated and uploaded to the GPU enriched
with precomputed information to minimize the runtime cost.
Amongst others, this includes uploading the six planes defining
a frustum for computing the length that a view ray spends
inside the frustum, for opacity correction in the shader. Doing
that in a straightforward manner with indexed vertex buffer
objects (VBOs) would lead to a massive memory footprint,
as for every frustum there are eight vertices, each of which
needs to store color and plane information (amongst others)
redundantly. This would be fast as it minimizes the work that
needs to be done on-the-fly, but occupies a large amount of
GPU memory. In our prototype implementation, we strive for
a trade-off and generate the frustum geometry (Sec. V-A) used
for rasterization once on the CPU and upload it to GPU using
VBOs, but compute the planes required for opacity correction
(Sec. V-C) on-the-fly in the vertex shader. Backface culling
ensures that only one face of the frustum geometry is hit such
that the frustum only contributes once.

A fragment shader determines the opacity contribution of a
frustum for a specific fragment or view ray (Alg. 2). First, the
fragment coordinates are converted to world space (Lines 2–4)
to determine the first point of intersection of the view ray with
the frustum. Then the view ray dw is reconstructed (Line 5)
to compute the ray length inside the frustum (Lines 6–11) and
finally calculate the corrected opacity (Line 12). The depth
ordering of series of frustums is done on the CPU using a
fast multi-core sorting algorithm. Our implementation only
requires OpenGL 2 (ES) capability and thus could efficiently
be implemented on almost all modern mobile devices.

VII. RESULTS

Our measurements were carried out on an Intel Core i7-2600k
and a NVIDIA GTX 580 with 3GB of video memory with a
default image resolution of 512× 512 unless otherwise noted.
The list of data sets we used in our experiments, including their
standard raycasting timings, is given in Table I. It also shows
the timing overhead for generating a VDI during raycasting,
which is relatively low, although varying depending on various
factors, most notably data set and transfer function complexity.

Fig. 4 shows VDIs rotated by 50◦ with respect to their
direction of generation, for different settings of γ. In general, as



(a) Engine Ref. (b) γ = 1.5 (c) γ = 1 (d) γ = 0.5 (e) γ = 0.15

(f) Vertebra Ref. (g) γ = 1.5 (h) γ = 1 (i) γ = 0.5 (j) γ = 0.15

(k) Flow Ref. (l) γ = 1.5 (m) γ = 1 (n) γ = 0.5 (o) γ = 0.15

(p) Chameleon Ref. (q) γ = 1.5 (r) γ = 1 (s) γ = 0.5 (t) γ = 0.15

Fig. 4: Comparison of ground-truth raycasting (leftmost) and the VDI renderings with decreasing γ from left to right and 50◦

rotation with respect to the original camera configuration. Closeups are given for the black rectangle. Fig. 5 provides respective
render times and further details.

expected, the rendering gets crisper and closer to the raycasting
reference the lower the value for γ is. This is due to the fact
that the supersegments exhibit a lower deviation in color and
opacity from the original underlying data, which leads to less
blur during rendering. The loss of detail due to too large
segments can clearly be seen by means of the almost opaque
bone structure of the chameleon data set (Fig. 4q). A similar
effect can be observed by the example of the vertebra in Fig. 4g.
Figs. 4j, 4o, and 4t show that particularly for low values of γ
the VDIs provide a good approximation of both the structure
and value with respect to the reference volume raycasting.

Fig. 5 depicts the corresponding timings and shows that
the influence of γ on the number of supersegments varies in

detail with each data set due to their differing complexity,
but all functions share an exponential decay behavior. A
deeper investigation of this behavior remains for future work.
The render time increases with an increasing number of
supersegments due to lower values for γ, yet at a much lower
rate. We attribute this to the circumstance that, rather than the
number of primitives, the number of generated fragments is
crucial for the performance, due to the comparably compute-
intense fragment shader for α-correction (Alg. 2). However,
all render times are below 50ms and thus highly interactive.

Table II shows that the number of supersegments increases
approximately linearly with the number of supersegment
lists across different resolutions, and so does the time for



(a) VDI, 0◦, 42ms (b) VDI, 5◦, 42ms (c) VDI, 10◦, 40ms (d) VDI, 45◦, 39ms (e) VDI, 90◦, 39ms

(f) Ref., 0◦, 560ms (g) Ref., 5◦, 592ms (h) Ref., 10◦, 604ms (i) Ref., 45◦, 558ms (j) Ref., 90◦, 542ms

Fig. 6: Comparison of ground-truth renderings with the raycaster and VDI-renderings with γ = 0.8 and 450k supersegments.
The geometry was generated at 0◦. Timings for VDI both include sorting and rendering.
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Fig. 5: Number of segments and render timings for different
data sets and different settings for γ.

Res. Lists SupSegs Geometry Sorting Rendering
Engine

2562 29k 67k 36ms 5ms 11ms
5122 118k 269k 142ms 6ms 33ms
7682 267k 606k 323ms 21ms 71ms

Chameleon
2562 29k 103k 48ms 5ms 10ms
5122 119k 415k 189ms 6ms 33ms
7682 268k 934k 428ms 20ms 67ms

Vertebra
2562 29k 94k 45ms 5ms 10ms
5122 118k 375k 175ms 8ms 33ms
7682 267k 846k 398ms 22ms 68ms

Flow
2562 15k 46k 28ms 4ms 11ms
5122 63k 186k 111ms 6ms 22ms
7682 113k 419k 250ms 8ms 40ms

TABLE II: Supersegment numbers and timings for γ = 1.
Respective raycasting times are given in Table I.

geometry creation and rendering. Sorting times are consistently
below rendering times and only depend on the number of
supersegment lists as expected. In our implementation, the
geometry generation step only needs to be carried out once
as a preprocessing step and is only executed on a single CPU
core with large potential for improvement.

Figure 6 shows the influence of the rotation angle away from
the original camera view on quality, as determined by means of
the images from VDI rendering and respective reference images
from raycasting. Except for unperceivable numerical deviations,
the rendered VDI match the raycasting image initially (Figs. 6a
and 6f). For small rotation angles, the visual difference is
minor, only becoming noticeably larger for large angles (e.g.,
Figs. 6d and 6e). Timings for VDI rendering are about one
order of magnitude faster in comparison to raycasting, leading
to a significant gain from less than 2 fps to over 20 fps.
This goes along with a much lower graphics memory usage,
enabling the rendering on more limited hardware. The reduction
in memory usage heavily depends on the implementation
as discussed in Sec. VI. With our prototype application, it
results in approximately 82MB: 450k supersegments times
eight vertices per frustum times 32 bit per channel RGBA and
64 bit for the supersegment bounds. This is more than one order
of magnitude lower than that of the original data set (2160MB),
and there is still substantial room for improvement if required
by a specific use case. For instance, by using 1 Byte instead
of 4 Bytes per color channel, by generating the geometry on-
the-fly on the GPU, or using lower 2 Byte precision to store
the supersegment bounds, the memory usage could be reduced
to 450k·(4 + 4) ≈ 3MB. Evaluating these possibilities in more
detail remains, however, for future work.



VIII. CONCLUSION

We introduced Volumetric Depth Images as a view-dependent
volume representation that allows for arbitrary camera view
changes and can both be generated and rendered at interactive
rates. It only requires a single view and can easily and quickly
be generated using slightly modified raycasters. Instead of
only saving depth and color values for surfaces as in the
LDI approach, supersegments covering a certain depth range
with composited color and opacity values are determined
from an initial view point and stored for later interaction. We
showed that even for large changes in the camera view good
quality images are generated from a VDI. There are numerous
possible applications, ranging from preview rendering in a
local or remote rendering setting, to offline scenarios with
VDIs being generated by a supercomputer and visualized at
a later stage on a workstation. Besides investigating these
scenarios more closely, we also plan to look into further degrees
of freedom for interactive exploration as proposed in other
works, e.g., adjustment of the transfer function. Attempting
to combine several VDIs for rendering, or merging similar
supersegments across supersegment lists (pixels) to exploit local
color coherence, also remains for future work. We would further
like to investigate more elaborate supersegment partitioning
criteria. Finally, we also plan to experimentally compare our
technique to other image-based volume rendering techniques.
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rendering,” in IEEE Visualization, 2004, pp. 139–146.

[8] J. Krüger and R. Westermann, “Acceleration techniques for gpu-based
volume rendering,” in IEEE Visualization, 2003, pp. 287–292.

[9] L. A. Westover, “Splatting: a parallel, feed-forward volume rendering
algorithm,” Ph.D. dissertation, 1991, uMI Order No. GAX92-08005.

[10] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “High-quality splatting
on rectilinear grids with efficient culling of occluded voxels,” IEEE Trans.
on Visualization and Computer Graphics, vol. 5, no. 2, pp. 116–134,
1999.

[11] F. Vega-Higuera, P. Hastreiter, R. Fahlbusch, and G. Greiner, “High
performance volume splatting for visualization of neurovascular data,”
in IEEE Visualization, 2005, pp. 271–278.

[12] P. Shirley and A. Tuchman, “A polygonal approximation to direct scalar
volume rendering,” in Computer Graphics, 1990, pp. 63–70.
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