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Abstract—We present a novel scheme for progressive rendering in interactive visualization. Static settings with respect to a certain
image quality or frame rate are inherently incapable of delivering both high frame rate for rapid changes and high image quality for
detailed investigation. Our technique flexibly adapts by steering the visualization process in three major degrees of freedom: when
to terminate the refinement of a frame in the background and start a new one, when to display a frame currently computed, and how
much resources to consume. We base these decisions on the correlation of the errors due to insufficient sampling and response
delay, which we estimate separately using fast yet expressive heuristics. To automate the configuration of the steering behavior, we
employ offline video quality analysis. We provide an efficient implementation of our scheme for the application of volume raycasting,
featuring integrated GPU-accelerated image reconstruction and error estimation. Our implementation performs an integral handling
of the changes due to camera transforms, transfer function adaptations, as well as the progression of the data to in time. Finally, the
overall technique is evaluated with an expert study.

Index Terms—Progressive visualization, error-based frame control, interactive volume raycasting.

1 INTRODUCTION

The complexity of phenomena that need to be analyzed using visu-
alization techniques increases at a rapid pace. Impressive advances
have been made in the last decades to deal with this by means of new
and improved visual representations as well as performance optimiza-
tion. However, in many cases, the demands for both responsiveness
and high quality rendering in interactive visualization can still not be
satisfied with the available compute resources. Since science and en-
gineering typically involve applications that are at the limit or even be-
yond the capabilities of available hardware, considerable effort is put
into the development of strategies that shift this limit with respect to
certain needs. One widely pursued approach is optimization “from the
problem side”, e.g., by making use of techniques that are able to effi-
ciently model desired aspects of the investigated phenomena. Despite
their wide success in graphics and visualization, these techniques have
the drawback that they are specific to the investigated problem, re-
ducing versatility, and potentially introducing significant preprocess-
ing overhead. Another approach is “from the observer side”, e.g., by
quantization and discretization with respect to image-space sampling.
As an example thereof, progressive rendering continuously enhances
a view when the exact rendering would take too long to compute.

Despite these efforts, achieving a fluent, interactive user experience
during exploration is challenging, as it needs to fulfill several require-
ments, like fast response to user input, and adequate rendering quality.
It should further avoid repeated manual parameter tuning, yet still pro-
vide degrees of freedom to accommodate user preferences. The tra-
ditional approach to handle the inherent trade-off by choosing a fixed
setting with respect to frame rate or quality has significant shortcom-
ings in many situations (Fig. 1). Choosing a good setting and main-
taining it during a visualization session can impede proper analysis.
This difficulty is not limited to image quality and frame rate—it also
applies to compute resource utilization, which is a major factor in a
variety of scenarios, e.g., due to its impact on power consumption in
mobile or supercomputing environments.

In this work, after reviewing related work (Sec. 2) and formulat-
ing a generic model of progressive visualization (Sec. 3), we propose
and evaluate a dynamic model to optimize the efficiency of flexible
progressive rendering in visualization. Our contributions include:
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• We introduce a model for dynamic minimization of spatio-
temporal error and resource utilization in progressive visualiza-
tion (Sec. 4), which can easily be integrated with existing sys-
tems.

• For this model, we present an approach for automatic parameter
optimization using video quality metrics (Sec. 4.4).

• We provide an efficient implementation of the model for progres-
sive volume raycasting that can handle different types of interac-
tive changes in an integral and expressive manner (Sec. 5).

• We systematically demonstrate the utility of dynamically adjust-
ing the rendering cost for good spatio-temporal behavior. The
evaluation employs a video metric and an expert study (Sec. 6).

Finally, Sec. 7 provides a conclusion and an outlook to future work.

2 RELATED WORK

The importance of frame rate and quality has been shown in several
studies for both video and interactive applications [9, 15]. In gen-
eral, both factors are equally significant for user experience and per-
formance, as concluded, for instance, by Claypool and Claypool [10]
from a user study featuring over 25 participants that evaluated the im-
pact of frame rate and resolution in the context of video games. In this
paper, we conduct a user study with visualization researchers to com-
pare the suitability of different methods and determine good parameter
settings for our dynamic steering. User studies in visualization have
recently been reviewed by Isenberg et al. [16]. Tory and Möller [33]
discuss human factors in user studies and visualization design. Ander-
son et al. [1] explore brain activity recorded using electroencephalog-
raphy (EEG) to compare different visualization techniques by means
of the impact on a viewer’s cognitive resources. Notable uses of user
studies in scientific visualization include the evaluation of perception
for common techniques in uncertainty visualization [29]. Laidlaw et
al. [20] compare visualization methods for two-dimensional vector
field data by means of simple yet representative tasks.

To achieve good results with our volume raycaster even with only
few samples, we employ an image-space sampling scheme based on
the capacity-constrained point distributions by Balzer et al. [4], and
Gaussian filters for reconstruction. Early image-space acceleration
techniques for volume raycasting were presented by Levoy (e.g., cast-
ing one ray for multiple pixels [21]). Kratz et al. [19] use an error
estimator from the field of finite element methods for adaptive screen-
space sampling. For unstructured volumes, Callahan and Silva [8]
propose to employ the combination of a low-resolution image of the
whole data set and a high-resolution image of the boundary geome-
try. In contrast to these techniques, which consider the current frame



Reference Fixed sampling rate (5%)

Fixed frame rate (30 fps) Our error-based frame control (ρ = 0.6)
(a) Slow movement: strong loss of detail for fixed frame rate (frame 1280 shown).
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(b) Rapid movement: severe lag for fixed sampling rate (e.g., at frame 450).

Fig. 1: In interactive visualization, different sampling rate or frame settings are desirable for different user actions (see Sec. 5.1 for our definition
of sampling rate). In contrast to static frame rate or static sampling rate settings, our error-based approach adjusts dynamically to optimize the
utility for a user. The frame numbers are given with respect to the video used for automatic evaluation in Sec. 6.2 (30 frames per second).

only, Qu et al. [25] and Shen and Johnson [32], among others, exploit
frame coherence by reutilizing pixel values from the previous frame
by warping positions to the current frame. Frey et al. [13] propose
volumetric depth images, a view-dependent representation that can be
generated quickly and allows the rendering of frames from arbitrary
camera configurations at low cost for computation and storage.

In contrast to the image-space acceleration techniques for raycast-
ing that are geared toward good quality for undersampling, Monte
Carlo techniques for photorealistic rendering mostly employ oversam-
pling that can also be steered adaptively. Overbeck et al. [22] dy-
namically adjust the distribution of samples to reduce the variance in
wavelet space. However, several key points of their algorithm require
separate tuning of quality and speed parameters. Also for global il-
lumination, Farrugia and Péroche [12] present a perceptually-based
approach for progressive rendering. Bolin and Meyer [7] employ
perceptually-based adaptive sampling based on an extended image
processing vision model. Rousselle et al. [28] present a greedy sam-
pling strategy for Monte Carlo rendering. Ramasubramanian et al. [26]
utilize a physical error metric in global illumination algorithms.

Automatic parameter tuning evaluates the performance of different
settings to find those with the best performance. For volume render-
ing on the GPU, Bethel and Howison [5] optimize the run time by
exploring different variations of raycasting kernels and their execu-
tion configuration. In this work, we use a video quality metric to as-
sess performance, both for the purpose of evaluation and automatic
parameter tuning. Video quality metrics are commonly employed to
monitor video quality, compare the performance of video processing
systems and algorithms, or optimize algorithms and parameter settings
for video processing systems. We use MOVIE (MOtion-based Video
Integrity Evaluation) by Seshadrinathan and Bovik [30], whose source
code is publicly available for research purposes. It is classified as a full
reference metric, i.e., it compares a video to its respective reference.
Other notable metrics include DRIVQM [3], and the software package
VQMT, which contains a variety of different metrics (e.g., [31]).

In our model, one of the considered factors is resource utilization
of the computation device (GPUs in our case). This aspect has been of
significantly rising interest in recent years not only for mobile devices
but also for supercomputers. Johnsson et al. [18] thoroughly evalu-
ate the relation between rendering algorithms and power consumption.
Pool et al. [24] influence the power consumption by adjusting the pre-
cision of computations in pixel shader cores. Ribble [27] suggests to
limit the frame rate to a minimum and emphasizes the importance of
continuing to optimize the code of an application even if the frame rate
goal has been reached. For scientific computing applications, Huang

et al. [14] evaluate the energy efficiency of GPUs against CPUs.
Rendering systems commonly fix either image quality or frame

rate during user interaction [2]. For real-time rendering, Wong and
Wang [35] model the image generation process by an open-loop ap-
proach underpinned by constraints and estimations of its constituents
with the goal to achieve as constant frame rates as possible. Their
heavy-weight approach describes different rendering processes in de-
tail with all their complexities involved to gain a nonlinear model to
relate inputs and outputs using neural networks and fuzzy models. In
contrast, Woolley et al. [36] use simple metrics based on image-space
distances to steer progressive raytracing. We also take a light-weight
approach, requiring only minimal knowledge about the underlying vi-
sualization approach, and only requiring minimal assumptions or pre-
dictions. In addition, we further concern ourselves with the question
of what actually describes an acceptable performance range by means
of a perceptual metric as well as a study with visualization researchers.

3 PROGRESSIVE VISUALIZATION MODEL

Our technique is based on an idealized model of interactive progres-
sive visualization. We derived it from a simple standard workstation
setup with a single display. Its extension to setups with more than one
camera like stereo rendering, more than one display like multiprojector
configurations, or limited display throughput like in remote rendering,
is beyond the scope of this paper and remains for future work.

Our model (Fig. 2a) consists of three basic processes: dynamic
change, progressive renderer, and frame control. Dynamic change
comprises the factors that alter a render configuration over time, like
user interaction or change due to time-varying data. In this work, we
address frame-based progressive visualization by means of a progres-
sive renderer. This is by far the most widespread variant, an alter-
native being frameless rendering techniques [6, 11]. The progressive
renderer continually refines the active frame, which reflects an indi-
vidual render configuration. In this sense, a frame consists of both an
(intermediate) rendering result of the active frame together with the
render configuration of the active frame.

The model follows the principle of double buffering (Fig. 2b). In
progressive visualization, a rendering result of the active frame is typ-
ically already shown while the active frame is further refined in the
background. In our model, this is triggered by the show control func-
tion, which copies the active frame to the shown frame including the
respective render configuration. If the active frame changes through
an issued restart control function, i.e., the active frame is supplied
with a new render configuration, the progressive renderer immediately
starts to render a new image of the active frame from scratch. How fast
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Fig. 2: (a) Progressive visualization model and (b) an illustrating example. Restart triggers when to stop the refinement of the active frame
(back buffer) and start computing a new one instead with the current render configuration. Show determines when to copy the active frame to
the shown frame (front buffer) for display. Resources controls the share of the compute capacity that is consumed by the progressive renderer.

the refinement advances can vary significantly, both depending on the
render configuration (e.g., data set or camera position) as well as the
compute resources allotted by the resources control function.

In total, our model requires three basic decisions: when to restart
an active frame, when to show it, and what share of resources to con-
sume in the progressive renderer. These three decisions are managed
by frame control, using the available information about the (previ-
ous states of the) interactive system, and based on the frame control
parameters. In these terms, (traditional) fixed-quality settings only
consider the quality of the rendered image of the active frame, while
(traditional) fixed-frame-rate settings take only into account the time
stamp of the last rendered image. As long as there are no changes
to the render configuration, i.e., dynamic change is idle, the image is
progressively refined beyond the quality or frame rate limits.

4 ERROR-BASED FRAME CONTROL

The fixed limits in typical progressive visualization systems cannot
adapt flexibly to dynamic change due to camera rotations, transfer
function changes, progressing time-dependent data, etc. As exempli-
fied in Fig. 1, this can lead to significant shortcomings in compute-
intense interactive visualization sessions. In this section, we introduce
a new dynamic frame control approach, based on sampling error and
response delay, to overcome these issues.

4.1 Motivation and Overview

The main goal of our error-based frame control is to minimize the
perceived error in the shown frame over the course of an interactive
visualization session. The error may additionally be balanced against
the utilization of resources, which, however, heavily depends on the
hardware-related setting, involving several questions. For instance, are
the resources shared with other processes or users in the context of a
remote visualization server? How are priorities determined? Is power
consumption above a certain threshold problematic in the context of
mobile devices? Under which circumstances may this threshold be
exceeded temporally? While our progressive visualization model can
cover these aspects, we use a simplified resource model in our exem-
plary implementation—a detailed consideration of these questions for
different scenarios has to remain for future work.

In this paper, we focus on optimizing frame control by minimiz-
ing the error during interaction. Hence, offline optimization, i.e., a
posteriori error evaluation by means of user studies or video quality
metrics [30, 3, 31] is not practicable. Instead, error minimization by
frame control has to take place online, during user interaction, and
introduce very low overhead to avoid delay. This means that neither
costly quality evaluation algorithms nor constant manual user adjust-
ment are affordable during interactive visualization.

As a consequence, we split the quality evaluation into an online
component (spatial error estimator and temporal error estimator) and
an offline component (frame control parameters optimization). Akin
to the notion of spatial and temporal errors from video encoders and

quality metrics (e.g., [30]), our online component consists of a spa-
tial error estimator and a temporal error estimator (Sec. 4.2), both
providing error estimates at very low overhead. These estimates are
then used by our heuristics to operate restart, show, and resources
(Sec. 4.3). The heuristics itself is steered by the frame control param-
eters, which are determined and optimized by means of user adjust-
ment, video quality analysis algorithms (Sec. 4.4), or user studies.

4.2 Space-Time Error Estimation
In an interactive visualization system, the temporal error τ shall reflect
delayed response to changes, while the spatial error ς reflects compro-
mises in image quality. Naturally, ς and τ are subject to a trade-off:
while ς is typically monotonically decreasing with the time spent for
rendering, τ is monotonically increasing. This partitioning into two
types of error is a good fit for the frame generation pipeline in interac-
tive visualization. The easiest way to implement the spatial error esti-
mator would be to directly use the sampling density (e.g., [36]). How-
ever, we take a more expressive, yet slightly more expensive content-
aware approach that considers color variance (Sec. 5.2). The temporal
error estimator can be derived directly from the difference between
subsequent images, or indirectly by measures operating on subsequent
render configurations. For instance, a simple indirect approach could
project a precomputed set of vertices surrounding a geometric model
to the screen, and then determine the largest difference to the previous
projection [36]. However, among other issues, this approach would
ignore the degree of detail in the data. In contrast, we use a direct ap-
proach and assess the error analogously to the spatial error estimator
directly from the images (Sec. 5.2). Inherently, this considers the spa-
tial complexity of the data set and allows, e.g., to account for render
configurations that are rich in detail by lowering the frame rate.

4.3 Control Heuristics
The temporal and spatial errors determined by the error estimators are
used to control restart, show, and resources. For this, we employ the
following heuristics. Restart strives to achieve the best-possible result
for the current active frame with respect to errors in time τ and errors
in space ς . This is based on the active frame and does not consider the
shown frame. For show, both the errors of the current shown frame as
well as those of the active frame are taken into account. The rationale
behind this is that the frame control parameters are used to determine
which combination of temporal and spatial error gives the lower over-
all error. For resources, as good settings highly depend on the use case,
no clear, objective metric exists to balance the power or computation
time consumed by the progressive renderer against the quality of the
output. Here, we utilize the spatial error of the active frame to deter-
mine a maximum spatial error that is acceptable during interaction. In
case the progressive renderer is capable of overachieving this value,
resource usage can be reduced.

While errors could be related directly (e.g., [36]), more flexible ap-
proaches are required to introduce a degree of freedom that allows
the consideration of advanced aspects in dynamic frame control, like



user preferences (Sec. 6.3). At the same time, parameters should be
intuitively adjustable for a user and enable efficient automatic opti-
mization. To achieve these goals, we introduce the frame control pa-
rameters consisting of a single parameter for each restart, show, and
resources, denoted as ρ,ϑ ,χ ∈ [0,1], respectively. These parameters
are defined by the user or by the automatic optimization process. The
frame control can be represented by a function φ as follows, with mul-
tiple actions possible (note that restart automatically triggers show in
our heuristics):

φ =


restart, if µ(ρ) · τa

t − ςa
t ≥ 0

show, if µ(ϑ) · (τa
t − τs

t )+(ςa
t − ς s

t )≥ 0
resources if χ > ςa

t ∨δ
χ

t > δ̂ χ

, (1)

where ςa
t and ς s

t denote the spatial error of the active and the shown
frame at time t, respectively, τa

t and τs
t the temporal error of the active

and the shown frame, and µ(·) maps the parameters from their original
range [0,1] to [0,∞): µ(s) = tan(s ·π/2), δ

χ

t gives the idle time of the
resource at time t, and δ̂ χ denotes the respective threshold. The ratio-
nale behind the triggering of restart, show, and resources is discussed
in detail next.

Restart. The temporal error τa
t of the active frame is weighted with

ρ against the spatial error ςa
t , thus defining the desired trade-off be-

tween these two quantities. Note that τa
t continuously increases with

t, while ςa
t is continuously decreasing.

Show. Similar to restart, we weight temporal against spatial error,
but this time with respect to the differences between the active frame
and the shown frame. Practically, the goal is to determine when the
decrease in temporal error compensates for the higher spatial error. For
all possible settings of ϑ , the active frame is shown as soon as ςa

t >
ς s

t , because (τa
t − τs

t ) should always be nonnegative for reasonable
implementations.

Resources. In our simple implementation, the resource usage is bi-
nary, i.e., either we are progressively refining a frame or idling. Here,
the parameter χ defines a static target error value. If the spatial er-
ror estimation ςa

t falls below χ during interaction, we pause rendering
until the frame is restarted. We also limit the pause time δ

χ

t to a max-
imum value δ̂ χ (we used δ̂ χ = 1 s), to ensure that the full (spatial)
sampling rate is achieved eventually.

For the purpose of comparison, we also implement an alternative
frame control φ for the commonly used fixed image quality ω settings
and fixed render time per frame δ settings:

φ =

{
restart, if (ωa

t ≥ ω ∨δ ≥ δ a
t )∧ τa > 0

show, if (ωa
t ≥ ω ∨δ ≥ δ a

t )∧ τa = 0
, (2)

where ωa
t gives the current sampling rate, and δ a

t denotes the time
since the rendering of the active frame has started. Practically, this
means that for fixed settings, the progressive renderer proceeds until
the target value is reached, and the shown frame is iteratively updated
toward the full quality beyond these restrictions only when the render
configuration is not modified (i.e., the temporal error τa is zero).

4.4 Parameter Optimization
The goal of the parameter optimization is to determine frame control
parameters such that frame control delivers the best result according to
a metric or user assessment. We distinguish between the following two
basic variants: user evaluation and automatic evaluation by means of
video quality metrics. In the former, a user simply assesses how well
settings for ρ,ϑ , and χ are suited for the scenarios he works on (i.e., a
data set, a task to accomplish, etc.) during an interactive session, and
chooses the parameters accordingly. In the latter, automatic evalua-
tion makes use of interaction logs recorded during previous interactive
visualization sessions. Each interaction log defines a render config-
uration sequence, that along with different hardware settings define
scenarios. Each scenario is rendered with a range of different frame
control parameters and evaluated by means of a video quality met-
ric. The output of the quality evaluation finally provides the basis for

(a) Scenarios
(data sets, hardware settings, etc.)

(b) Parameter Tuples
(restart    , show    , power    )

(d) Quality Evaluation 
User assessment or quality metrics (e.g., MOVIE)

(c) Render Con�guration Sequence
Interactive user input or interaction logs

(e) Parameter Evaluation 
User preference or error minimization (e.g., Eq. 3)

Scenario
Evaluation 1

1

Hardware Dynamic Change Parameters

Shown
Frame

[input for user evaluation] [input for automatic evaluation]1 One element from set

Progressive visualization model (Fig. 2a)

Fig. 3: Our optimization scheme for frame control parameters with
different variants for user-based (red) and automatic evaluation (blue).

parameter evaluation to determine the best setting over all scenarios
(Fig. 3). The respective components are implemented as follows.

(a) Scenarios. In our case, each scenario features a specific data set
that is explored by means of a sequence of render configurations. We
consider the exploration of different volumes in the following. A sce-
nario may include computationally weaker systems, which might be
simulated by virtually slowing down the test machine through differ-
ent hardware settings. Optimally, scenarios should be representative
in terms of the data sets, camera positioning, and so on, with respect
to the target field of application.

(b) Parameter Tuples. Numerous parameter setting tuples (ρ,ϑ ,χ)
are considered for evaluation. Previous experience with the system or
explicit pre-evaluation can help narrow down the considered range of
parameters, thus pruning clearly undesirable settings early for a more
efficient evaluation.

(c) Render Configuration Sequence. In the course of a user eval-
uation, the user may simply interact with the respective tool. For the
automatic evaluation of our implementation, we use timelined series
of changes to the camera setup and the transfer function. In our case,
they come from recorded user interaction logs from previous sessions.

(d) Quality Evaluation. When a user is evaluating the interactive
application, he or she may explicitly provide a score for the experi-
ence. Such a score could be determined automatically by measur-
ing the user’s performance for predefined tasks. In contrast, in our
evaluation in this paper, we do not assess such explicit performance
scores, but instead let the user provide his choice of parameters di-
rectly (Sec. 6.3). For automatic evaluation, algorithmic video metrics
have been used for many years to assess the perceived quality of a
video without the need for a user study. We use MOVIE [30] for the
evaluation of interactive visualization, due to its high quality results
and the availability of the source code. This gives us the possibility to
seamlessly integrate it within our parameter optimization pipeline in a
distributed environment. MOVIE is a full reference metric that com-
pares a candidate video against a reference, and delivers a single error
value as result. We generate these candidate videos by capturing the
image from the display buffer 30 times per second. After completing a
render configuration sequence for a certain parameter setting, we write
the respective image files to disk, convert them to the required YUV
video format using FFmpeg, and analyze it with the metric. The whole
process runs automatically for given parameter tuples and scenarios.
It also generates a script that can be used directly as input to the grid
engine of our compute cluster. This script file defines a job array that
invokes as many parallel instances of MOVIE as there are videos that
need to be evaluated. As output, among others, MOVIE writes a text
file containing a single overall scalar error value for each test, which
we use for parameter evaluation in the following. Although these
video metrics have been extensively researched and evaluated over the
past 20 years, they can only be an approximation to the ground truth,



Original sample from capacity-constrained points Sample from periodic boundary conditions
Selected pixel Link to sample used for reconstruction (width = weight)^Single tile

Fig. 4: Reconstruction of pixels from samples and their weight ac-
cording to a Gaussian filter kernel (Eq. 4), illustrated for colored pix-
els. Periodic boundary conditions of the sample distribution are ex-
plicitly considered. In our implementation, sample weights are pre-
computed for each tile resolution and stored in sampling table S.

the quality assessment by a human user. A detailed discussion of this
aspect can be found at the end of Sec. 6.3.

(e) Parameter Evaluation. As indicated above, in the case of man-
ual user evaluation, we simply let the user choose his favorite setting
according to his interactive experience (Sec. 6.3). For the automatic
evaluation, the error values are determined by the video quality metric
for the m scenarios and the n parameter tuples to find the most fa-
vorable setting. This is accomplished by minimizing the least-squares
relative error ε on the basis of the error measure γa

· (·, ·, ·) from the
video metric:

ε = min
0<i≤n

(
m−1

∑
j=0

(
γ

a
j (ρ i,ϑ i,χ i)/γ

a
j (ρb(m),ϑ b(m),χb(m))−1

)2
)
,

(3)
with b(m)∈ {0, . . . ,n} denoting the index of the parameter setting giv-
ing the lowest error for scenario m. We use relative errors to account
for the fact that the absolute error given by a metric can vary signifi-
cantly (e.g., with the length of an image sequence). In particular, this
allows us to avoid any bias toward scenarios with higher error values
overall, and to support the combination of different error metrics.

5 ERROR-BASED PROGRESSIVE VOLUME VISUALIZATION

Despite significant improvements in algorithms and hardware, volume
rendering is still computationally challenging for the data sets pro-
duced by up-to-date scanners and simulations. Thus, in this section,
we discuss the implementation of a progressive, multiresolution GPU
volume raycaster for illustrating and evaluating our error-based frame
control (Sec. 5.1). In particular, we provide an efficient integrated im-
plementation for the spatio-temporal error estimates (Sec. 5.2).

5.1 Progressive Volume Visualization
The main goals of our progressive volume rendering scheme are per-
formance, flexibility, and simplicity, both with respect to implementa-
tion and integration with existing renderers. By flexibility, we mean
both the capability to interrupt the renderer at virtually any time, and
the absence of any kind of preprocessing or assumptions of coherence
across frames. We utilize a multiresolution volume raycaster with op-
timized sample distribution in image space [4].

Sampling. The renderer uses multiple resolution levels in image
space, each of which is subdivided into tiles. The goal is to achieve
both flexible interruptability of the progressive renderer as well as ef-
ficient usage of the hardware. Thus, the granularity (i.e., the tile size)
needs to be chosen according to device characteristics. For our CUDA
implementation, we determined by experiment that 16K samples per

tile are sufficient to efficiently utilize the 512 stream processors of a
NVIDIA GTX580 without introducing significant overhead. For the
chosen aspect ratio, we generate sample points by means of capacity-
constrained point distributions with periodic boundary conditions [4]
(Fig. 4). Next, following a quad-tree approach, we subdivide the image
space into tiles of increasing resolution levels until there is more than
one sample point per pixel. For each resolution level, starting from
our original set of samples, we add the required periodic copies to the
list of samples. In our experiments, we use WXGA+ (1440× 900)
as the screen resolution for our renderer, because this constitutes a
good trade-off between screen space and the induced cost for auto-
matic video analysis. In total, this results in 5 resolution levels and 341
tiles in total (Fig. 5). In this paper, we measure the sampling rate by
means of the ratio of completed to total tiles. Akin to the image-space
sampling, the sampling distance along rays in object space is doubled,
starting from the highest, most detailed resolution level. To render
a frame, the tiles are processed from the lowest to highest resolution
level. Within each resolution level, they are ordered from the screen
center to the outside. Error estimation and frame control are carried
out between the computation of tiles. The achieved high, sub-frame
granularity is essential to be able to react quickly to sudden changes.
Our volume raycaster uses a simple local lighting model, making use
of gradients that are determined on-the-fly using central differences.
The raycaster further makes use of early ray termination, and lighting
computations are only executed in non-empty space.

Image Reconstruction and Blending. Pixel color values are re-
constructed from the sample points using a Gaussian filter kernel

f (d) = e−αd2
− e−αr2

, (4)

with d denoting the distance in image space, α controlling the falloff,
and the radius r ensuring that the filter goes to zero at the boundary of
its support [23]. On this basis, in a precomputation step, we generate
the sampling table S, that lists for each pixel (x,y) of a tile of sam-
pling resolution l which samples are required for its reconstruction
along with their respective weights (Fig. 4). S is then used at runtime
in a CUDA kernel to compute the color value of each pixel of a tile
(Alg. 1). Finally, for display, we use OpenGL to blend the boundary
between tiles of different levels to reduce visual disturbances occurring
from visible edges. This is implemented by employing precomputed
opacity maps which are generated with respect to the distance of the
pixels to the border between tiles of different resolution levels. Results
for different sampling rates are shown in Fig. 6.

5.2 Error Estimation
As the basis for frame control, fast yet expressive metrics are required
for the spatial and temporal error estimators to provide updated values
after the rendering of each tile.

Spatial Error Estimation. For each pixel, the estimation of spa-
tial error ς can be efficiently achieved along with image reconstruc-
tion such that it only induces marginal computational and no memory
lookup overhead (Alg. 1, green). In our implementation, the spatial er-
ror is determined by the magnitude of the weighted RGB variance vec-
tor over the considered RGB sample color values ~C(·) (Alg. 1, line 16).
The underlying incremental algorithm to compute the weighted vari-
ance is due to West [34]. Pixel error values are then summed up using
a hierarchical reduction scheme on the GPU that makes use of shared
memory. Finally, the average pixel error value serves as spatial error
estimation. Note that after the completion of each tile only a partial
update to the previous error value is required, as only the image region
covered by the respective tile needs to be considered. In our imple-
mentation, for each pixel covered by the tile, the difference between
the previous and the current error value is added to the total value.
When restart is issued, the spatial error of the active frame ςa is sim-
ply carried over to the shown frame error value ς s.

Temporal Error Estimation. For temporal error estimation, we
first generate a quick approximation of the frame with the current ren-
der configuration, i.e., the latest camera position, transfer function,
and data time step. In detail, we omit lighting, and sample the vol-
ume only sparsely during raycasting by using the lowest resolution
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Fig. 6: Different sampling rate settings and achieved frame rates with our renderer for the Chameleon data set.

Algorithm 1 Integrated image reconstruction and error estimation.
Spatial error estimation implementation is based on incremental vari-
ance computation and depicted in blue. Temporal error is simply com-
puted from the difference to the previous color as shown in green.

1: procedure RECONSTRUCTION(x,y, l) . pixel coordinates (x,y) in
tile with resolution level l

2: wΣ,~cΣ← 0 . initialize sum of weights and sum of colors
3: ~m,~m2← 0 . initialize mean and squared differences from mean
4: for all (i,w) ∈ S(x,y, l) do . fetch sample index i and weight

w from sampling table S
5: ~ct ← ~C(i) . lookup sample color from output of renderer
6: ~cΣ←~cΣ +w ·~ct . update weighted color sum
7: w′

Σ
← wΣ . back up sum of weights from previous iteration

8: wΣ← wΣ +w . update sum of weights
9: ~d←~ct −~m . deviation from current mean

10: ~dw← ~d · w
wΣ

. relative weighted deviation from current mean

11: ~m← ~m+ ~dw . update mean
12: ~m2← ~m2 +w′

Σ
· ~d · ~dT

w . update sum of squared dif-
ferences from current mean

13: end for
14: ~c←~cΣ/wΣ . output color for pixel (x,y)
15: ~σ2← (~m2/wΣ) · |S(x,y)|/(|S(x,y)|−1) . compute variance
16: ς ← |~σ2| . spatial error ς is length of variance vector
17: τ ′← |~c−~cprev| . τ ′ is difference between~c and prior color~cprev
18: return (~c,ς) or (~c,τ ′) . resulting pixel and respective error
19: end procedure

tile and significantly increase the step size along rays (we use a factor
of 50 with respect to the highest level). The respective temporal error
is computed by means of per-pixel color differences of the current to
the previous approximate rendering (Alg. 1, line 17). Next, the tem-
poral error values τ ′ of all pixels are summed up by employing the
hierarchical scheme that is also used for spatial error estimation. This
value is added to the total temporal error value τa of the active frame
and the shown frame τs, with τa = 0 after each restart. As with the
spatial error value, the temporal error value of the active frame τa is
carried over to the error of the shown frame τs in case of a show or
restart. Note that in contrast to the spatial error that is computed dur-
ing the reconstruction of every tile for display, the temporal error is
only evaluated in case of changes to the render configuration since the
last assessment.

6 APPLICATION AND EVALUATION

For running our measurements, we use a NVIDIA GTX580 and an
Intel Core i7 with 3.4 GHz. We employ four data sets from both
CT scans and simulations in our evaluation (references to renderings
and data set resolution are given in brackets): the Chameleon data
set (Fig. 6, 1024× 1024× 1080), the Jet data set (Figs. 8(a) and (b),
720×320×320), the Flower data set (Fig. 1, 1024×1024×1024), and
the time-dependent Vortex data set (Figs. 8(c)–(e), 529× 529× 529,
with 60 time steps). All compute-intense steps required for interactive
rendering are executed in parallel on the GPU using CUDA, particu-
larly including the volume raycaster and the reconstruction along with
the error estimation. For our 1440×900 screen resolution, the image
reconstruction takes 5 ms for the lowest level, 1.5 ms for the second-
lowest level, and below half a millisecond for all subsequent levels.
This decrease in reconstruction time exhibits a roughly linear depen-
dence on the decreasing number of pixels covered by a tile (Fig. 5). To
reduce this cost for higher levels, a hybrid reconstruction and upscal-
ing approach could be investigated for future work.

As discussed in Sec. 5.2, computing the spatial error through the
variance of the samples can be done without significant overhead, ba-
sically requiring only a couple of additional floating point operations.
Determining the temporal error basically consists of two steps, namely
the approximate rendering and the integrated reconstruction and dif-
ference computation to the previous approximation. In our measure-
ments, the approximate sampling was in the range of 1% to maximally
10% of the full render time of a tile, while the subsequent reconstruc-
tion and error computation always took around 0.5 ms (e.g., for refer-
ence, the sampling of tile 22 in Fig. 6 took 24 ms). This means that the
computational overhead for assessing the temporal error is fairly low,
particularly when considering that this is only done in case of changes
to the render configuration.

In the following, we first demonstrate the adaptive behavior of
error-based frame control by means of a specific example (Sec. 6.1).
Second, we perform automatic parameter optimization and evaluation
using the MOVIE video quality metric (Sec. 6.2). Third, we conduct
an expert study with visualization researchers to optimize the param-
eter settings, evaluate the utility of our approach against alternatives,
and compare the results to automatic evaluation (Sec. 6.3).

6.1 Practical Example of Error-Based Frame Control
We showcase the characteristics of error-based frame control at the ex-
ample of interactive exploration of the Chameleon data set (Fig. 7). In
the first 100 frames the data set is quickly rotated. This induces a high
temporal error and accordingly frame rates around 25 fps for more flu-
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Fig. 7: Camera path for the Chameleon data set. Top: Sampling rate
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ent navigation. From frame 110 to 140, no changes occur for almost
a second, which leads to a continuous refinement of the current frame,
as can also be seen from the increasing sampling rate. Then, there is
a sequence of slower camera movement (frames 150–250), followed
by another phase of no change (frames 250–300). Then, after slower
changes to the camera position (frames 300–380), a certain feature is
investigated in detail. This requires a high sampling rate to enable the
user to assess fine details. We refer the readers to the accompanying
video for further details.

6.2 Automatic Evaluation Using a Video Quality Metric

By means of automatic evaluation, we aim to optimize the parame-
ters ρ for restart and ϑ for show, and study the impact of the power
reduction parameter χ . We considered seven scenarios in total: the
Chameleon, Jet, and Flower data sets, each with one sequence adjust-
ing the camera and one adjusting the transfer function, and the Vortex
data set receiving a new time step every 100 ms. As input for MOVIE,
we compute a video for each parameter setting along with a reference
video that batch renders a full-quality image for every frame. The
videos are generated from transformations that were recorded from
user interaction. To be representative for a variety of user actions, they
contain both slow and fast-paced changes. These videos are only be-
tween six and twenty seconds long to keep computation time both for
generation and subsequent evaluation within reasonable limits.

In our experiments, the evaluation of a video with a resolution of
1440× 900 and 30 frames per second using MOVIE took twelve to
sixteen hours on an Intel Xeon processor running at 2.4 GHz. By
using a small cluster, we could process up to 64 videos in parallel.
However, considering variations of multiple parameter values in one
measurement series would still take a prohibitively long time. Thus,
we use a multi-stage process to significantly cut down the number of
evaluations. First, we optimize the restart parameter ρ , which has been
shown by our previous experiments to be of predominant impact in
comparison to the show parameter ϑ . Then, for the resulting optimal
setting for ρ , we evaluate different parameter settings for ϑ . On this
basis, we finally examine the impact of the resource parameter χ .

For the restart parameter ρ , we consider values from 0.1 to 0.9 in
steps of 0.1. We further include static frame rates with 10 fps and 30
fps as well as static sampling rates of 5% and 20% in our evaluation.
Fig. 9a shows the resulting least-squares relative error over all scenar-

(a) Jet (frame 40) (b) Jet (frame 300)

(c) Vortex (time step 10) (d) Vortex (time step 70) (e) Vortex (time step 100)

Fig. 8: Key frames of the videos from the simulation data sets that
were used for automatic evaluation. In the respective camera path, the
Jet data set was quickly rotated from the side view (a) to the tip of the
pressure advancement (b), which was then investigated in detail. The
Vortex series (c)–(e) shows the temporal development of the vortex
cascade, visualized with the λ2 criterion [17].

ios (as discussed in Sec. 4.4). According to this, error-based frame
control with ρ = 0.6 achieves the smallest error value overall. The
relatively high static sampling rate (20%) that delivers high-quality
renderings but frame rates below 1 fps delivers the worst result. Here,
low quality settings (5%) favoring higher frame rates improve the re-
sults significantly. For static frame rates, 10 fps delivers significantly
lower errors than 30 fps, meaning that it provides a better trade-off
between sampling rate and responsiveness for the considered cases.

As indicated by the low slope of error values for ρ across a wide
range of values in Fig. 9a, a variety of different settings are poten-
tial candidates for delivering the best result in one specific scenario
(Fig. 9b). However, it can be seen that the determined optimal setting
ρ = 0.6 is only marginally worse in any scenario, with respect to the
best result for each scenario individually. Our error-based control fur-
ther yields the lowest error for each scenario individually, except for
the Vortex series. Naturally, its discrete refreshes 10 times a second
yields good results with the 10 fps setting. In total, it can be seen that
error-based frame control with ρ = 0.6 can be used successfully across
all considered use cases without requiring further adjustment.

Based on ρ = 0.6, we then investigate the impact of the show
parameter for the same scenarios with the following settings: ϑ ∈
{0,0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.2,0.5}. Our results
indicate that the lowest overall error is achieved with ϑ = 0. This
means that show is only issued when a frame is restarted or when the
spatial error of the active frame is smaller than that of the shown frame.
While a more early show operation can reduce the visible temporal er-
ror and allow the frame to still refine further, we think this result is due
to the induced strong variation of displayed image quality, leading to
significant flickering.

Finally, Fig. 10 shows the impact of the power parameter χ on the
resource usage and the error determined by MOVIE. In our implemen-
tation, χ defines an error threshold with respect to our spatial error
estimation. Most prominently, it can be seen that a quite significant
reduction of resource usage can be achieved with only little increase
in error. This is due to the fact that an increasing sample count has
decreasing impact on the perceived image quality, i.e., the resource
usage can be lowered for sampling rates beyond a certain threshold
with merely sub-linear quality impact. The negative effect of trading
resource usage against sampling rate is further significantly dampened
by the adaptivity of our approach, i.e., resource utilization is only re-
duced in adequate situations as defined by the user. More elaborate
schemes and a more detailed evaluation of its effects, e.g., on explicit
power consumption, remain for future work.
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6.3 Expert Review

Scope and Structure. The primary goal of our expert review was to
evaluate the usefulness of our approach for volume rendering against
fixed settings for frame rate and quality (denoted as modes below).
Further objectives of the study were to identify preferred parameter
settings, and to assess similarities and differences to the automatic
evaluation from Sec. 6.2. Five visualization researchers evaluated our
implementation by interactively exploring the Chameleon and the Jet
data set. They are primarily concerned with the development of new
visualization techniques, but also use their own and other interactive
tools for analysis on a regular basis. Each participant spent 45 minutes
to 1 hour interacting with our implementation.

The procedure was loosely structured into three phases. First, we
asked the participants to make themselves familiar with the volume
rendering tool and the different modes of the program. Second, we
gave them a number of exploration tasks to accomplish and asked them
to evaluate the usefulness of our tool along the way. In this phase, the
parameter values of the different modes were fixed as follows: the
static frame rate was set to 30 fps, while the sampling rate was at 20%,
and the restart parameter ρ was set to 0.6. For simplicity and time
constraints, the show and power parameters were set to 0 and ignored
throughout the study. A task consisted either of matching a certain
camera view or transfer function to a precomputed visualization result.
Twenty randomly distributed and uniformly colored marker crosses
were added to the volume to support the matching. Tasks were struc-
tured into groups of three (one for each mode), and the order in which
the modes had to be used was shuffled quasi-randomly. Finally, there
was a free exploration phase in which we asked the participants to ex-
plore different parameter settings, and compare the different modes
freely to determine the one they like best. After phase two, the partic-
ipants were handed a small questionnaire. They were asked to com-
plete the part about their experience so far right away, and fill in the
remaining parts during the final phase three. The questionnaire con-
tained both multiple choice fields regarding the preferred modes as
well as text fields for providing comments regarding different aspects.
In brief, we asked them to answer the following questions (answers
given to quantitative questions are listed in Table 1):

• Order of suitability of the modes for the assigned tasks for the
fixed parameter settings (Table 1, O Tasks)?

• Best parameter setting for each mode for the free exploration of
the Chameleon (P Cham.) and Jet data set (P Jet)?

• Remarks regarding the parameter choice?

• Order of suitability of the modes to gain a fast overview of the
data set (O Overv.), a detailed analysis of certain features (O
Det.), and overall (O Tot.)?

• Justification for the preference ratings?

• Miscellaneous comments regarding this study?
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User Comments. First, the participants were asked to assess the
usefulness of the different modes with respect to the camera configu-
ration and transfer function matching tasks. Overall, all participants
found the fast response time of the static frame rate very helpful, par-
ticularly for quick camera rotations. However, Participants 2 and 4
noted that this also loses a significant amount of detail in the data set.
With respect to the provided static sampling rate, all participants com-
plained that while providing detailed renderings, its significant delays
impede precise navigation. Our error-based frame control was rated as
being a good compromise between responsiveness and detail (Partici-
pant 4), which adaptively allows for a high enough frame rate but also
provides detail (Participants 0 and 3). Participants 0 and 1 addition-
ally noted that they found it particularly helpful for matching transfer
functions. However, also for transfer function matching, Participant 2
perceived the delays for small changes to be a little too long with our
error-based control. In summary, error-based frame control was cho-
sen over static frame rate or quality as the overall preferred method
for the task phase. However, there were some remarks that the tasks
were not emphasizing the properties and characteristics of the differ-
ent modes strongly enough. For instance, Participant 0 noted that the
disadvantage of low quality for static frame rate did not affect the tasks
that much because the provided orientation markers were still visible.
For future work, we would like to more closely emulate real world
tasks in a more extensive study.

Next, in the exploration phase, the participants were asked to nav-
igate freely, i.e., to explore the data set on their own and determine
their personal preferences this way. We summarize their comments in
the following. It was noted that the required sampling rate in general
strongly depends on the data set and that it is thus hard to set for gen-
eral purposes (Participants 0, 3, and 4). According to Participant 3, it
also always bears the potential of sudden drops in frame rate should
the rendering cost change quickly. Thus, the parameter setting highly



depends on what the goal of the exploration is (Participant 0). As a
result, Participant 2 found the static sampling rate unpleasant to use,
particularly for longer sessions. Most of the time during interactive
exploration, the effects of static sampling rate are either choppy move-
ment or low rendering quality that misses important features (Partici-
pant 1). While static frame rate delivers better results more indepen-
dently from the underlying data set (Participant 4), the strong loss of
quality that occurs even for only slight changes was found unpleas-
ant, particularly for cases in which details are of importance (Partici-
pant 3). Error-based frame control was generally found to be “a good
compromise between static frame rate and static sampling rate” (Par-
ticipant 3). Participant 1 stated that error-based frame control is most
appropriate for adjusting transfer functions and the camera position,
both when it comes to slow and fast movement. Participant 0 par-
ticularly preferred error-based frame control for detailed adjustments
of the transfer function because more detailed and thus more helpful
renderings were available during interaction.

Ratings and Parameter Settings. Like the participant’s comments
discussed above, the order of suitability selected by the participants
in the questionnaire clearly reflect a preference toward error-based
frame control (Table 1). They favored it four to one for detailed in-
vestigation of the data set as well as for overall usage, with the other
one being static frame rate. While a static frame rate delivering high
quality would be great for detailed investigation once an interesting
spot has been reached, getting there is cumbersome due to the in-
volved sluggishness. For just getting a quick, rough overview of the
data sets, comments and selected preferences suggest that both a high
static frame rate and error-based frame control are well suited for this
use case. This could be expected, as for faster movement, error-based
frame control leads to high fps as well. However, the parameter set-
tings vary in a certain range with specific settings depending on gen-
eral user preferences toward high quality or responsiveness. For the
static sampling rate, parameter settings in the low range between 2%
and 7.5% were chosen, despite the significant visual disturbances asso-
ciated with that (e.g., Fig. 6b). For static frame rate settings, preferred
settings vary between 10 fps or 30 fps, with a slight preference overall
toward the lower end for higher visual quality. Parameter settings for
the restart parameter ρ range between 0.3 and 0.7, with a preference
toward the higher end, i.e., toward higher frame rates. Furthermore,
preferred settings may vary with the data set, with lower values for
the both more expensive to render and complex structured Chameleon
in comparison to the Jet data set. Relating to this, Participant 1 stated
that the Jet data set contains less detail, and thus different settings seem
adequate as compared to the Chameleon data set.

Comparison to Automatic Evaluation. In essence, the results
from the user study confirm the basic trend from the automatic evalu-
ation (Sec. 6.2 and Fig. 9). For the static sampling rate, relatively low
quality settings are preferred by the users, as they allow for fluid inter-
action for a wide range of camera and transfer function configurations.
In the automatic evaluation, this is reflected by the much lower rela-
tive least-squares error ε for the lower sampling rate setting in Fig. 9a.
For static frame rate, user preferences range approximately between
10 fps or 30 fps, i.e., varying in its trend toward image quality or re-
sponsiveness. Automatic evaluation exhibits basically the same trend,
yet a lot more distinctively (Fig. 9a). For error-based frame control,
the restart parameter ρ = 0.6 was determined as the best setting by the
automatic evaluation, with lower values exhibiting only slightly, yet
continuously worse results. Similar settings were also popular with
the participants.

Regarding the chosen preferences with respect to the mode, both
the user study and the automatic evaluation clearly favored our error-
based frame control. However, while user preferences lean toward
fixed frame rate when compared to fixed sampling rate, they perform
about equally well with their optimal parameter setting according to
automatic evaluation (Fig. 9a). Note that for the results in Sec. 6.2,
four different data sets were used, while only two were part of the ex-
pert study here. More definite qualitative and quantitative statements
would require an automatic evaluation with a wider range of data sets
and performed interactions, a more extensive expert study with more

Table 1: Ratings given by the visualization experts in the following
order: fixed frame rate, fixed sampling rate, error-based frame control.
O stands for the order of preference, 1 being the most preferable to 3
being the least preferable. P stands for the selection of the best-suited
parameter value for each of these. Tasks denotes the rating of the task
phase of our evaluation. Overv. denotes the suitability for getting a
quick overview of the data set, while Det. stands for the suitability for
the detailed analysis of a certain feature. Tot. gives the overall rating.

Id O Tasks P Cham. P Jet O Overv. O Det. O Tot.
0 2 3 1 5 5 0.2 5 6 0.07 1 3 2 2 3 1 2 3 1
1 1 3 2 28 2 0.3 25 2 0.7 1 3 2 2 3 1 2 3 1
2 1 3 2 9 2 0.7 9 4 0.6 2 3 1 1 3 2 1 3 2
3 2 3 1 10 3 0.3 25 5 0.6 2 3 1 2 3 1 2 3 1
4 2 3 1 10 2 0.15 10 7.5 0.2 1 3 2 2 3 1 2 3 1

participants, and possibly additional video metrics. In particular, while
video metrics have the important advantage of allowing for automatic
evaluation and optimization, they are optimized for determining the
quality of videos, which might differ from the user experience of an
interactive visualization tool. Here, we believe that more research is
required to better quantify these differences.

7 CONCLUSION

We presented a novel scheme for progressive rendering in interactive
visualization that is capable to dynamically adapt to the different sit-
uations that occur during data exploration. For this error-based frame
control model, we provided an efficient implementation of a volume
raycaster, featuring integrated GPU-accelerated image reconstruction
and error estimation. Our implementation uniformly handles changes
due to camera transforms, transfer function adaptations, as well as the
progression of volume data to new time steps. We further demon-
strated an automatic parameter optimization scheme using a video
metric to optimize our frame control, and finally showed its practical
utility by means of an expert study with visualization researchers.

For future work, we plan to significantly expand the aspect of re-
source utilization and study the possibilities of intelligently decreasing
power consumption in more detail. We would further like to extend our
evaluation by means of other video metrics (like DRIVQM [3]) and a
more extensive user study. This user study should incorporate a more
diverse group of users, particularly featuring application domain scien-
tists, and consider the experiences of users utilizing it in their everyday
work. In this context, taking the characteristics of human interaction
into account more comprehensively could also be a promising direc-
tion. We would further like to implement and evaluate our error-based
control scheme for an extended raycaster (featuring other data types
and out-of-core rendering), as well as other visualization techniques
beyond volume rendering. In addition, limiting ourselves to one tech-
nique for generating frames, like to raycasting in this paper, cannot
avoid significant (temporal and/or spatial) artifacts in cases in which
the gap is too large between the cost of this technique and the power of
the available compute resources. The extension to hybrid approaches
that switch to other, computationally cheaper techniques (like warp-
ing [25, 32]) when required could help handling these cases in a more
suitable way for the user. Finally, considering additional information
like the rate of incoming data (e.g., with simulations running in par-
allel), or outgoing images over the network in remote rendering could
allow for more efficient frame control in such scenarios, too.
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