

General Copyright Notice

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and
technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that
they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked
by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Postprint

M. Hlawatsch, F. Sadlo, and D. Weiskopf.
Hierarchical Line Integration.
IEEE Transactions on Visualization and Computer Graphics, 17(8):1148–1163, 2011.
DOI: 10.1109/TVCG.2010.227
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5611509

This is the author's "personal copy" of the final, accepted version of the paper,
which slightly differs from the version published in
IEEE Transactions on Visualization and Computer Graphics (TVCG).

IEEE COPYRIGHT NOTICE. Copyright © 2011 IEEE.

Request permissions from:

IEEE Intellectual Property Rights Office
445 Hoes Lane Piscataway
NJ 08855-1331

Phone: +1 732 562 3966
Fax: +1 732 981 8062
Mail: copyrights@ieee.org.

http://www.ieee.org/publications_standards/publications/rights/reqperm.html

1

Hierarchical Line Integration
Marcel Hlawatsch, Filip Sadlo, Member, IEEE, and Daniel Weiskopf, Member, IEEE Computer Society

Abstract— This paper presents an acceleration scheme for the
numerical computation of sets of trajectories in vector fields or
iterated solutions in maps, possibly with simultaneous evaluation
of quantities along the curves such as integrals or extrema.
It addresses cases with a dense evaluation on the domain,
where straightforward approaches are subject to redundant
calculations. These are avoided by first calculating short solu-
tions for the whole domain. From these, longer solutions are
then constructed in a hierarchical manner until the designated
length is achieved. While the computational complexity of the
straightforward approach depends linearly on the length of the
solutions, the computational cost with the proposed scheme grows
only logarithmically with increasing length. Due to independence
of subtasks and memory locality, our algorithm is suitable for
parallel execution on many-core architectures like GPUs. The
trade-offs of the method—lower accuracy and increased memory
consumption—are analyzed, including error order as well as
numerical error for discrete computation grids. The usefulness
and flexibility of the scheme is demonstrated with two example
applications: line integral convolution and the computation of the
finite-time Lyapunov exponent. Finally, results and performance
measurements of our GPU implementation are presented for both
synthetic and simulated vector fields from computational fluid
dynamics.

Index Terms— Flow visualization, integral curves, hierarchical
computation, FTLE, LIC, GPU.

I. INTRODUCTION

VECTOR fields are involved in a wide range of fields in en-
gineering and science. The spectrum includes mathematics,

physics, engineering, and bio-sciences. Visualization is critical
for investigating and understanding the intricacy of their spatio-
temporal structure, and is subject to extensive, ongoing research.

This paper focuses on techniques that use integral curves,
such as streamlines or path lines, to visualize vector fields.
Integral curves have the advantage of representing important
aspects like flow direction, transport mechanisms, and spatio-
temporal relationships. Some of the integral-curve methods such
as those related to line integral convolution (LIC) [3] or finite-
time Lyapunov exponents (FTLE) [10] require computation of
an integral curve for each point inside the domain, covering the
domain densely by curves. A trajectory is seeded at each pixel
or sampling point and constructed by particle tracing, possibly
in both downstream and upstream directions. In addition to
particle tracing, further computations along the trajectories may
be required. For example, in the case of LIC and its variants,
an additional noise texture is filtered by convolution along each
trajectory.

The computational complexity of all these methods with dense
coverage is O(NmK) for an m-dimensional spatial domain of
resolution N. A factor of Nm is due to the dense sampling of
the domain. The factor K represents the number of traditional

The authors are with the Visualisierungsinstitut der Universität
Stuttgart (VISUS), Allmandring 19, 70569 Stuttgart, Germany. E-mail:
{hlawatsch,sadlo,weiskopf}@visus.uni-stuttgart.de.

integration steps along each curve, which is often proportional to
the image resolution, in particular for LIC. Especially for (time
series of) 3D data and long integration times, common for FTLE
computation, this complexity behavior leads to long computation
times and sometimes even restricts the user to inappropriately low
resolutions.

The motivation for this paper is the observation that, due to
coherence, many integral curves partially follow trajectories of
different seed points. Our goal is to lower the computational
complexity of dense curve integration by reusing parts of the
trajectories in the spatio-temporal neighborhood of a solution. To
this end, we introduce a new computation scheme for integral
curves, or solutions in generic maps, which results in logarithmic
effort instead of linear, as for the straightforward approach. In
this way, the overall complexity is reduced to O(Nm logK). Our
approach relies on hierarchical construction of the integral curves
to allow reuse of already calculated parts; each level of the
hierarchy doubles the length of the previously computed curves.
We will show that our scheme may be applied to time-independent
and time-dependent vector fields alike.

Besides improving the computational complexity, we take
into account implementation aspects as well. The algorithm is
designed for high intrinsic parallelism performing well on many-
core hardware architectures like GPUs. The performance charac-
teristics are documented by scalability experiments with a CUDA
implementation. Since discretization on grids is employed for
each hierarchy level of the computation, numerical approximation
is an issue. The numerical error is analyzed by quantitative error
measurements and by deriving the error order with respect to the
discretization resolution. We detail how hierarchical computation
can be applied to LIC and the FTLE as two typical examples of
dense curve integration. For both LIC and the FTLE, extensive
performance measurements and several example visualizations
are provided. The main benefit of our approach is that dense
visualization, e.g., using LIC or the the FTLE, can be generated
faster or at higher resolution with the same computation time.
Although this comes with increased memory consumption and
reduced accuracy, we show that the advantages outweigh the
disadvantages in typical applications.

II. RELATED WORK

In general, algorithms in computer science often rely on
hierarchical structures or schemes to reduce computational com-
plexity. Typical examples include divide-and-conquer algorithms
or dynamic programming. Our approach particularly resembles
the acceleration strategy of pyramid algorithms known from
digital image processing. Pyramid algorithms were introduced by
Burt [2] for image filtering. The idea behind pyramid algorithms
is to iteratively construct a pyramid of images with decreasing
resolution. For example, Gaussian blur can be efficiently im-
plemented by repeated application of Gaussian filters. Similarly,
image operations for computer graphics can be accelerated by

Author's personal copy

2

pyramid techniques [23]. The filter principle relies on repeated
application of filter operations, which can also be used in the form
of general repeated integration according to Heckbert [12]. Due
to the direct mapping of regular image grids to textures, pyramid
filters lend themselves to efficient GPU implementations; a recent
summary of GPU filters is presented by Kraus and Strengert [17].
An application of hierarchical computation in visualization is
described by Lum et al. [21], who use a hierarchical method for
calculating pre-integration tables for direct volume rendering with
O(N2) complexity, instead of O(N3) for naive implementations.
Although we adopt the acceleration strategy of pyramid and hier-
archical methods, our approach exhibits the following structural
differences. First, we have to consider filtering along curved 1D
trajectories, leading to a more demanding filter process. Second,
to increase accuracy, we do not decrease the resolution while
progressing to higher levels of the compute hierarchy.

As example applications, we focus on the FTLE and LIC. The
FTLE has been known in fluid dynamics literature for a couple
of decades [9], [10], [20]. However, most previous work on the
FTLE focuses on aspects other than computational complexity.
The most prominent examples of FTLE acceleration strategies
are due to Garth et al. [7] and Sadlo and Peikert [25], who use
adaptive refinement of the computational grids. However, their
approach is still subject to linear complexity with respect to
integration range, whereas we achieve logarithmic complexity. For
the special case of FTLE time series, Brunton and Rowley sketch
in a conference abstract [1] that computations from previous time
steps can be reused. Our method is more general and allows also
the accelerated evaluation of quantities along trajectories, which
is demonstrated with LIC in this paper.

LIC is a typical example of texture-based flow visualization. We
refer to Laramee et al. [18] for a survey on that topic. Most pre-
vious work in that field targets acceleration by mapping to GPUs
[14], [16], [33], [36], which does not improve computational
complexity. Fast LIC by Stalling and Hege [13], [29] is to our
knowledge the only example that reduces the number of LIC filter
operations. Similar to our approach, they avoid multiple com-
putation of similar streamlines. However, they scatter streamline
information across the grid, whereas we gather that information
from lower hierarchy levels. Gathering methods are much more
suited for parallel and cache-friendly execution as required by
multi-core hardware architectures. Additionally, atomic operations
are required for Fast LIC to avoid race conditions between
parallel threads. Therefore, Fast LIC is efficient on traditional
CPUs, but our hierarchically computed LIC also on GPUs and
multi-core CPUs. Furthermore, we support computations beyond
LIC, integration of further quantities, time-dependent data, and
higher-dimensional domains. Li and Shen [19] use so-called trace
slices to accelerate view-dependent texture advection. Similar
to our concept of coordinate maps (Section III-A), their trace
slices provide a mapping from starting positions to positions on
reverse-time path lines. Instead of building a hierarchy with fixed
resolution and increasing trajectory length as in our case, Li and
Shen create a set with different resolutions similar to mipmapping
for multi-resolution texture advection.

III. HIERARCHICAL SCHEME

In this paper, we address cases where the computation of
densely seeded trajectories, or solutions, is required. The mo-
tivation for the proposed acceleration scheme is to exploit the

coherence of spatio-temporally proximate portions of these tra-
jectories. In contrast to straightforward approaches, we avoid
the computation of similar parts by reusing previously computed
partial solutions.

A. Hierarchical Advection

Advection is performed in a hierarchical manner for all points
in parallel. Figure 1 (left) illustrates the concept for some seeds
contributing to the same solution. In the initial step, a short
solution is computed for each seed and the corresponding end
point is stored at the seed, possibly together with additional
quantities evaluated along the trajectory (Section III-B). This
provides a mapping from initial points to their partial solutions,
denoted coordinate map in this paper. The coordinate map can
be seen as a function φi(x) : D→D, with i defining the hierarchy
level and typically D ⊆ Rn. Next, a new solution is computed
for each point by following this map s≥ 2 times, combining the
quantities and storing it in the next level of the hierarchy. Sub-
sequent levels are generated by repeating this procedure until the
solutions match the prescribed integration range. The construction
of the coordinate map for the ith level of hierarchy can therefore
be described as φi(x) = φ s

i−1(x) = (φi−1 ◦ φi−1... ◦ φi−1)(x), e.g.,
φi(x) = φi−1(φi−1(x)) for s = 2. From this follows that it is
sufficient to store only the current level and to overwrite it
with the next level to avoid increasing memory consumption. Of
course, the zeroth level, φ0(x), has to be derived directly from
the underlying problem. In the case of vector fields, φ0(x) is
computed by integration, i.e., by solving the corresponding initial
value problem.

The exponential growth of the integration range with the
number of levels in the hierarchy results in logarithmic complexity
(see Section III-C), leading to a considerable acceleration of line
integration. Additionally, it lends itself to parallel execution on
multi-core and many-core architectures like GPUs, due to memory
locality and independence of subtasks. In contrast to pyramid
methods, which build up hierarchical structures with decreasing
resolution from bottom to top, we use hierarchical levels of
constant resolution to increase the accuracy of our method and to
obtain results of high spatial resolution.

The proposed scheme is applicable to any mapping D→ D.
In the case of discrete mappings (e.g., arising from graphs), no
interpolation is required for following partial solutions; hence the
obtained results are exact. If continuous maps, or vector fields,
are subject to integration, the coordinate map is discretized by
our scheme. In this case, each hierarchical level generally intro-
duces error due to interpolation (Section III-D). Time-dependent

. .
 .

0

1

2

Fig. 1. Left: three levels of the hierarchical computation scheme (with s =
2) for points contributing to the same solution. In step 0, short solutions
(arrows) are computed from every point. These solutions are stored at their
respective starting point. The stored solutions are then used in the next level
to construct longer solutions, which are then stored again. This procedure
is repeated in the following levels until solutions of designated length are
obtained. Right: hierarchical evaluation of quantities—the quantity along a
trajectory is computed from the quantities of shorter parts.

Author's personal copy

3

mappings, e.g., by path lines in time-dependent vector fields, can
easily be handled by our scheme by adding time as a further
dimension (Section IV-A).

B. Hierarchical Evaluation of Quantities

This section addresses methods that require not only the
computation of end points of trajectories but in addition the
evaluation of quantities (performing operations) along them. An
example is LIC, where a texture is convolved with a filter whose
support spans the trajectory. Our proposed acceleration scheme
allows for simultaneous evaluation of such quantities during the
hierarchical integration procedure and hence also accelerates their
evaluation. Thereby, the quantities are stored with each point in
the hierarchical scheme, i.e., in the coordinate map. However,
only quantities that can be evaluated in a hierarchical manner
lend themselves to acceleration by our scheme. In other words,
it must be possible to decompose the operation into subtasks
and to hierarchically merge the partial results for the final result
(see Figure 1, right). This includes: integration, convolution
with specific kernels, computation of extrema (i.e., minimum or
maximum values) and average, and distance computation. There,
the same operation is applied to the subparts and as merge
operation. For the example of maximum values, the maximum of
each subsegment of the trajectory is determined first. The merge
operation then yields their combined maximum.

Convolution plays a special role. It relies on a signal along
the trajectory, which has to be sampled. Our scheme increases
the sampling distance and necessarily the size of the convolution
kernel with every level of hierarchy. Thus, high spatial frequen-
cies must be suppressed by the kernel to avoid aliasing from
undersampling. Direct application of the scheme to perform the
convolution would imply a sampling distance in the next level
that equals to the size of the filter kernel in the current level.
This might result in a too coarse sampling for the convolution.
We address this issue by performing the integration of end points
and the computation of quantities in a decoupled manner. The
quantities are computed by applying the scheme with increased
s, i.e., including more samples than for end point computation.
This allows for sufficiently large kernel sizes, assuring a proper
sampling of the signal (see Section V-B). Another requirement is
that the convolution can be decomposed into multiple subsequent
convolutions with appropriate filter kernels. These requirements
are met by the Gaussian kernel.

Depending on the quantities and the underlying operations,
interpolation has to be performed. Accuracy issues resulting from
this are addressed in Section III-D.

C. Complexity

The computation of the end point of a trajectory of integration
range r and constant integration step size l requires in = r/l
integration steps in a straightforward approach. In this case,
the computational cost depends linearly on r. The number of
computation steps in our scheme depends on the number of levels
h in the hierarchy and the number of concatenation steps s in each
level. Assuming constant s and l leads to

r = lsh⇒ h =
log r

l
logs

.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 13 25 50 100 200
0

200

400

600

800

1000

1200

45
46
47
48
49
50
51
52
53
54
55

direct
hierarchical
logarithmic

integration range

tim
e

in
 m

s

tim
e

in
 m

s

Fig. 2. Execution time in dependency on an exponentially growing integration
range with the straightforward (blue, left axis) and the hierarchical (red, right
axis) methods (resolution 5122 and s = 2). As a reference, 0.5log2 is plotted
(green, right axis). The straightforward method exhibits exponential growth
whereas the time for the hierarchical method grows linearly.

Then, the total number of concatenation steps ih of the hierarchical
method is

ih = sh =
s

logs
log

r
l
.

Using the constant ch = s/ logs, we obtain

ih = ch log in.

Therefore, the number of computation steps in the hierarchical
scheme grows only logarithmically with increasing integration
range. It also follows that s has to be chosen larger than one.
Furthermore, in and ih have to be rounded up to the next integer
value. Hence, the minimum number of computation steps with
the hierarchical scheme is achieved for s = 2.

This analysis shows that the hierarchical method already
performs only half of the computation steps compared to the
straightforward approach when in = 16. Furthermore, doubling
the integration range, i.e., adding another level in the hierarchy,
causes only a small constant additional computational cost. Of
course in practice, a speed-up of the overall procedure of a factor
of 2 is achieved only for considerably larger in, due to the setup
time required for both methods, e.g., for memory allocation.
Figure 2 documents the computation times for a typical example
measured with our implementation (see Section VI for imple-
mentation details). This performance plot shows that, besides the
setup time, the straightforward and hierarchical approaches indeed
exhibit the predicted performance characteristics. The plot uses
an exponentially scaled x-axis to expose the logarithmic growth
of the hierarchical method. Hence, the straightforward method
shows exponential and the hierarchical method linear behavior in
this plot. Because of a setup time of around 45 milliseconds in
this example, a speed-up of two is reached at an integration range
around 13, where 128 computation steps are performed with the
straightforward and 14 steps with the hierarchical method.

It has to be noted that the theoretical view that both methods
perform the same computation steps does not strictly apply (see
Figure 3). For the zeroth level, the hierarchical method uses
computation steps identical to the straightforward approach, a
fourth-order Runge-Kutta integration scheme in this example. All
additional levels need only access to single positions for following
the coordinate map, necessitating one interpolation operation only.
In contrast, fourth-order Runge-Kutta integration, like most other
solvers, needs access to several locations within the vector field,
involving respective interpolation operations. This means that the
acceleration by the hierarchical scheme can benefit not only from
a reduced number of computation steps, but also, depending on
the hardware and interpolation scheme used, from reduced effort
for the computations in higher levels of the hierarchy.

Author's personal copy

4

in

h−1

follow coord. map:
access 1 position

save position

s

RK4 integration:
access 4 positions;

computations

save position

setup

RK4 integration:
access 4 positions;

computations

save position

setup

Fig. 3. Flow chart of the straightforward (left) and hierarchical (right) meth-
ods with fourth-order Runge-Kutta integration. The straightforward method
repeats the same step for the entire computation. Identical steps are executed
by the hierarchical method only for the zeroth level of hierarchy. The
remaining levels access only single positions in the coordinate map.

If the integration range does not align with powers of s, the
integration range can be matched by adding an additional level of
hierarchy together with a reduced step size in the lowest level. The
additional level adds only a small overhead in computation time
and the smaller step size increases the accuracy of the hierarchical
integration.

D. Accuracy

In the general continuous setting, it is unlikely that partial
solutions exactly hit nodes of the computational grid. This makes
interpolation of the coordinate map necessary (Figure 4). We use
tensor-product linear interpolation [6], i.e., bi-linear in 2D and tri-
linear in 3D. Unfortunately, interpolation introduces aberration to
the solutions computed by the hierarchical method. Therefore, we
analyze the introduced error analytically and by measurements for
representative datasets.

As derived in the Appendix, the error of our integration scheme
is asymptotically bounded by

|gn(xl)|<
c2M
2L

en2L, (1)

with gn(xl) being the global error at node xl using n levels of
hierarchy, L a Lipschitz constant related to the continuity of the
flow map, and M the maximum second derivative of the flow
maps over all levels of hierarchy. The relevant result of Eq. 1 is
that the error is second order in the cell size c.

This asymptotic, analytical discussion is backed by a couple
of exemplary experimental results. We use 2D vector fields: three
synthetic and one dataset from CFD. Motivated by the Helmholtz-
Hodge decomposition, two of the synthetic fields are a single
whirl and a single source, representing its extreme cases. The
third synthetic dataset is the so-called quad-gyre described in
[26]. Finally, the buoyancy dataset (Section VI) is a typical
CFD example. To restrict the analysis to the error introduced by
repeated interpolation of the coordinate maps, the reference end
points for the first two synthetic fields are computed analytically
as ground truth, and the initial integration in the zeroth level of
hierarchy is also performed analytically for these cases.

Figure 5 shows the error distribution for these vector fields.
The error is measured as the Euclidean distance between each
reference end point and the corresponding hierarchically com-
puted end point. The vector field domain has unit size so that the
Euclidean distance can be directly interpreted as distance relative
to the extents of the domain. Since the errors of hierarchical
integration are small, the error values are scaled in each plot

A0

A1
A2

B0 C0

D0 E0

B1

C1

E1

D1

Fig. 4. Linear interpolation inside the coordinate map. The coordinate map
is defined on nodes of the sampling grid (blue dots). Position A0 is mapped
to A1 and likewise B0..E0 to B1..E1. Because A1 does not match a grid point,
A2 is determined by linear interpolation of B1..E1.

independently for appropriate visualization: the color coding is
normalized so that its minimum and maximum colors cover the
error values from 0 to the 95th percentile. The maximum error for
the whirl example (Figure 5(a)) is located at the center, which can
be explained by the increasing curvature of streamlines toward
the center. The error for the source vector field (Figure 5(b))
is much more angle-dependent, but also with highest error at
the center. This results from sampling issues with the sampling
grid: streamlines are crossing more grid nodes for certain angles,
reducing the error introduced by interpolation. In the quad-gyre
example (Figure 5(c)), high errors are originating at the borders
around the four whirls. The error distribution of the buoyancy
dataset (Figure 5(d)) looks similar to the forward FTLE field
(Figure 12(d)) of the same dataset, presented in Section VI-B.
This can be explained by the fact that the FTLE is a measure
for the growth of perturbations (see Section V-A), in our case
induced by the hierarchical method through interpolation.

Figure 6 shows a visual comparison of the integration with
the straightforward and the hierarchical methods. To avoid visual
clutter, only a few results for areas where high deviations occur
are visualized. The images show that at most positions with
high error, only the last hierarchically computed point deviates
substantially from the end point of the reference curve. Still,
these end points tend to lie on the reference curves or their
continuations. The hierarchical method approximates the direction
of the curves accurately in these cases; however, the velocities
along the curves tend to be strongly non-linear and are hence
approximated with increased error.

In addition to the error images, we provide a quantitative
analysis of the overall error by means of the root mean square
error (RMSE) and the 95th percentile of the Euclidean distance
error. Figure 7 shows the error with respect to the resolution of the
computational grid. According to this plot, doubling the resolution
in each dimension reduces the error approximately by a factor
of four. This means that hierarchical advection indeed converges
quadratically to the true solution with increasing grid resolution,
as predicted by the analytical error bound from Eq. 1. Therefore,
numerical accuracy can be balanced with computational and
memory costs by adjusting the resolution of the computational
grid. Figure 8 additionally shows the error with respect to the
integration range. The error depends almost linearly on the
integration range.

The computation of quantities along trajectories requires in-
terpolation as well, and thus accuracy issues also occur in this
context. An LIC example is shown in Figure 9. Here, the normal
LIC implementation produces aliasing artifacts caused by (for
this purpose intended) undersampling of the noise texture. These

Author's personal copy

5

(a) (b) (c) (d)

0.0

1.0

Fig. 5. Deviations in hierarchically computed end points (resolution 5122, 1024 integration steps) for whirl (a), source (b), quad-gyre (c), and buoyancy (d)
datasets. The error is normalized with its 95th percentile, which is 0.0023% for the whirl, 0.0012% for the source, 0.0149% for the quad-gyre, and 0.0983%
for the buoyancy dataset. A black–yellow color map is applied, with yellow corresponding to the 95th percentile of the error. End points lying outside the
dataset domain were rejected from the analysis and colored black. The maximum error is 1.2386% for the whirl, 0.0490% for the source, 0.1594% for the
quad-gyre, and 1.2320% for the buoyancy dataset. The average trajectory length (as percentage of the domain size) is 20.48% for the whirl (step size 0.0002),
20.48% for the source (step size 0.0002), 54.18% for the quad-gyre (step size 0.5), and 31.58% for the buoyancy dataset (step size 0.1).

(a) (b) (c)
Fig. 6. Visual comparison of integration in the buoyancy dataset. The zoomed areas ((b) and (c)) are marked in the overview image (a). The white curves
are generated with direct integration. The hierarchical method cannot generate a full curve, but only end points; hence, only the end points of every level in
the hierarchy are visualized as dots alternately colored red and green for better differentiation of neighboring curves. The lines and dots are seeded in areas
with high deviation to demonstrate how the high end point deviation is related to the complete curve geometry. The differential images in the background are
normalized with maximum error, which is 1.2320% in this dataset.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018
0

0.2

0.4

0.6

0.8

1

1.2 256B
1024B
95%B
256W
1024W
95%W
256S
1024S
95%S
256Q
1024Q
95%Q

1/resolution

sq
rt(

no
rm

al
iz

ed
 e

rr
or

)

Fig. 7. Square root of the normalized error in dependency on the reciprocal of
the resolution in one dimension, for the whirl (W), source (S), quad-gyre (Q),
and buoyancy (B) datasets. RMSE for an integration range of 256 and 1024
steps and the 95th percentile of the error for the 1024 case were measured.
The error was normalized to the error at reciprocal resolution 1/64.

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000 128B
512B
95%B
128W
512W
95%W
128S
512S
95%S
128Q
512Q
95%Q

integration range

no
rm

al
iz

ed
 e

rr
or

Fig. 8. Normalized error in dependency on integration range. The error
was normalized to the error of the shortest range. RMSE at resolutions of
1282 and 5122 were measured for the whirl (W), source (S), quad-gyre (Q),
and buoyancy (B) datasets. Additionally, the 95th percentile of the error for
a resolution of 1282 was measured.

artifacts are suppressed by the hierarchical LIC method due to
multiple resampling of the noise. However, high frequencies are
removed not only along the trajectories, but also perpendicular to
them, which reduces the detail level of the LIC image. In general,
LIC by means of our method is less sensitive to undersampling
artifacts of the noise image but at the cost of overall blurring.

As detailed in this section, tensor-product linear interpolation
acts as a low-pass filter that removes high frequencies in the
quantities and coordinates and thus decreases the accuracy of the
results. More accurate reconstruction schemes may be employed
to reduce this problem. For example, efficient higher-order B-
spline techniques [30], [31] could be used, like the fast third-order
interpolation proposed by Sigg and Hadwiger [28], or related pre-
filtering methods [4] could be applied.

IV. ALGORITHMIC DETAILS AND IMPLEMENTATION

To maximize the speed-up with the hierarchical method, a
working set of the involved data must be kept in the fastest
available memory, which is often limited in size. For exam-
ple, implementing the method on GPUs requires the data for
computation to be located in graphics memory. Due to space
limitations, this can be a particularly important problem for 3D
time-dependent data. This memory management issue is discussed
in the following together with interpolation accuracy and handling
of domain boundaries.

Author's personal copy

6

(a) (b)

Fig. 9. Two contrast-enhanced LIC images. Image (a) was computed with
the straightforward method. The hierarchical method (b) exhibits less aliasing
effects due to blurring caused by repeated resampling via interpolation.

A. Time-dependent Data

The application of our scheme to time-dependent data can
basically be done by treating time as a further dimension of
the vector field. Since path lines are equal to streamlines in
this space-time field, i.e., they represent solutions to the initial
value problem in the respective autonomous system of differential
equations, the accuracy of our method is not structurally affected
by time-dependency of the data. However, temporal coherence
offers the possibility to treat the temporal dimension differently
to the spatial dimension regarding memory management, which
will be discussed in the following.

We restrict the discussion in this section to the case s = 2
(following the coordinate map twice), where the highest speed-
up and the lowest memory consumption are achieved (Section
III-C). Cases with s > 2 can be treated analogously. Further, the
integration range is assumed to be an integer multiple of the
time span stored in a single time block of the coordinate map in
the zeroth level; d denotes the integer multiple. Piecewise linear
interpolation in time is additionally assumed.

Spatio-temporal coordinate maps can be mapped to a sequence
of spatial coordinate maps. Figure 10 shows how the hierarchy is
then built up for time-dependent data (with d = 8 in this example).
The coordinate map is divided into different time blocks. All
solutions saved in one time block belong to trajectories with the
same starting and integration time. The number of time blocks
determines the temporal resolution of the result computed. For
the zeroth level, traditional integration is performed for every
time block until the starting time of the following time block
is reached. This requirement allows us to follow the coordinate
map without temporal interpolation because the time blocks map
to temporal positions where another time block is defined. This
property is automatically preserved for all levels in the hierarchy.
As shown in Figure 10, the computation of a time block for the
next level in the hierarchy requires only access to two time blocks
of the previous level.

A two-layer streaming approach can be applied to reduce the
storage requirements of the hierarchical scheme. We assume two
types of memory: faster but smaller M1 memory (e.g., GPU
memory) and slower M2 memory (e.g., main memory).

The outer streaming layer handles the streaming of the dataset
and the coordinate maps into M2 memory (Figure 10). To
compute the first time step of the result, a “triangle” of time blocks
(marked green in the figure) has to be calculated. The blocks are
computed with increasing starting time (from left to right in the
figure). When one time block is computed, the corresponding
time span in the dataset can be deleted from memory. When all
required blocks of one level inside the “triangle” are completed,

t0 t1 t 2 t3 t 4 t5
Dataset

Level 0

Level 1

Level 2

Level 3

t6 t7 t8 t9

Fig. 10. Hierarchical scheme with time-dependent data: the zeroth level of
the hierarchy is derived from the dataset. The green blocks are needed to
compute the result (in level 3 in this example) for t1. The blocks with thick
outlines have to be kept in memory to compute the next time blocks (hatched
cubes), each overwriting then the block in the respective column. The number
of time blocks in memory depends only on the required integration range d.

blocks of the next level are computed. Every block can replace
the block with the same starting time of the previous level. The
number of blocks to be computed decreases with every level
because of their increasing time span covered. The time block in
the final level contains the result and can be streamed out from
memory. For the next time step of the result, only one block has
to be computed in every level, from the lowest to the highest.
With this scheme, only d time blocks (cubes with thick outline
in the figure) have to be kept in M2 memory simultaneously and
every time step of the dataset has to be streamed to M2 memory
only once. This can additionally speed-up computations in large
datasets, where only a subset of all time steps fits into memory.

The inner layer of the streaming applies to processing on the
faster M1 memory, e.g., computations on the GPU need data in
graphics memory. The memory requirements are illustrated in
Figure 11. Traditional integration requires to keep two time steps
of the dataset with size mdata in memory to perform temporal
interpolation. The results are stored in memory of size mresult.
The coordinate map has the same resolution as the result; thus,
in the hierarchical scheme, every time block requires mresult of
memory. Only two of these time blocks are needed for in-core
computation and the results can be saved back into the first
time block. Hence, the difference in M1 memory consumption
can be calculated as 2mresult− (2mdata +mresult) = mresult−2mdata.
Therefore, the hierarchical method is guaranteed to require less
than twice of the M1 memory of the direct method. Even more
importantly, the hierarchical computation of time-dependent data
needs just the same amount of M1 memory as the hierarchical
computation of time-independent data, because, as shown above,
time blocks can be overwritten in-place.

Regarding memory I/O operations, the hierarchical method
requires more transfer between M1 and M2 memory compared
to the straightforward approach. Depending on the hardware and
implementation, this might decrease the speed-up gained by the
hierarchical method.

The computational complexity for time-dependent data can be
derived from Figure 10. For the first time step of the result, the
green “triangle” of time blocks is computed. Its size depends on
the integer integration range d and it contains d(dlog2(d)e+1)−
∑
dlog2(d)e
n=0 (2n−1)= (d+1)dlog2(d)e+d−2(2dlog2(d)e−1) blocks.

Every further time step requires the computation of additional
dlog2(d)e+ 1 time blocks (hatched cubes in the figure). Thus,

Author's personal copy

7

 A B A B
C

A
C

(c) (d)

V 0

V 1

(a) (b)

C 0 C1 C 0

Fig. 11. M1 memory consumption: the direct method must keep two time
blocks (V0 and V1) of the dataset in memory for temporal interpolation (a).
Results are saved in an additional buffer (b). The hierarchical method requires
two time blocks (C0 and C1) of the coordinate map in memory. Temporal
interpolation is not required when following the coordinate map (c). The
results are saved back into the first time block C0 (d).

the computational complexity grows linearly with the number
of time steps and approximately logarithmically with the integer
integration range d, whereas the direct method grows linearly
with both. Because of the overhead for the initial “triangle” in
the hierarchical scheme, the method is only faster when several
time steps are computed, which is typically the case for time-
dependent data. In summary, hierarchical computation is designed
for dense computation in space and time.

B. Interpolation

The error introduced by the hierarchical method is caused by
the interpolation of the coordinate map; hence the accuracy of
the method depends directly on the accuracy of interpolation.
This subsection considers the effects of number representation
and cancellation [8].

Using relative positions (between end and starting positions)
instead of absolute positions in the coordinate map improves the
accuracy because then the number representation is not wasted for
storing the absolute part of the position, and hence cancellation
issues are reduced.

Typical GPUs provide no hardware interpolation with full
floating-point precision. In the case of CUDA, hardware inter-
polation is nowadays only implemented with 9-bit fixed-point
precision for the interpolation parameters [22, page 135]. Soft-
ware interpolation, i.e., using shader or CUDA instructions instead
of dedicated hardware interpolation units, therefore additionally
improves accuracy.

All results presented in this paper are computed using relative
positions and software interpolation. To provide comparisons at
full accuracy, the vector field is also software-interpolated during
integration with the direct method and in the zeroth level of
the hierarchical method. Using software interpolation additionally
allows us to transfer the performance gain of the hierarchical
method to (parallel) CPU implementations, where interpolation
is not supported by dedicated hardware.

C. Domain Boundaries

We distinguish three different spatial domain types when ex-
amining trajectory behavior with respect to domain boundaries:
periodic, closed, and open domains.

In periodic domains, trajectories outside the domain behave
identically to trajectories inside the domain at corresponding
locations. This case can be handled by the hierarchical scheme
through the usage of relative positions in the coordinate map and
their repetition outside the domain. The relative positions include

relative periodicity and therefore preserve the correct periodicity
of the positions when they are followed. When implementing the
method on GPUs, this can be easily handled by using texture
wrapping for the coordinate maps. The 3D time-dependent ABC
dataset in Section VI is processed with this method.

In closed domains, trajectories always stay inside the domain as
in the buoyancy dataset in this paper. This case does not require
any dedicated treatment by the hierarchical scheme.

In open domains, trajectories can leave the domain and their
behavior outside the domain is not defined by the underlying
dataset. This case is difficult to handle because it is not clear
how to treat trajectories that leave the domain. For the hierarchical
method, these trajectories can influence other trajectories that still
are inside the domain because of coordinate map interpolation.
A conservative approach is to discard all trajectories leaving
the domain as well as the ones influenced by them, similar to
the filtering approach in [25]. This can be achieved by adding
a border flag in the coordinate map. Trajectories leaving the
domain set this border flag; when their positions are used for
interpolation, the border flag is propagated. Another approach is
to add an additional border with zero vectors around the dataset
to approximate stopping trajectories at the domain boundary. The
latter approach was used for the overflowed cuboid dataset and
both approaches are compared for the breakdown bubble dataset
in Section VI.

V. APPLICATION

There are several methods requiring dense evaluation of integral
curves in vector fields that fulfill the requirements described in
Section III-B, and thus can benefit from our acceleration scheme.
Two common methods, the computation of the FTLE and LIC,
will be discussed in Sections V-A and V-B. Another example
is the method by Van Wijk [32], which uses backward tracing
of particles to implicitly construct stream surfaces: particles are
traced for every point on the domain and hence the method lends
itself to acceleration by our scheme. Similar to this, Westermann
et al. [37] describe a method for extracting time surfaces in
vector fields for visualizing steady flow. Additionally to the
backward tracing, their method determines the distances traveled
by the particles, which is a quantity suitable for acceleration by
our hierarchical scheme. The Mz-criterion [11] for objectively
detecting vortices in incompressible flow is another candidate for
acceleration.

A. Finite-Time Lyapunov Exponent

Developed for the analysis of the predictability of dynamical
systems (i.e., the growth of perturbations), the finite-time Lya-
punov exponent [10], [20] is increasingly used as an alternative
to the concept of vector field topology [15]. It is defined on
a sampling grid that is independent from the underlying vector
field and requires the computation of a trajectory for each grid
point. For time-dependent vector fields, the trajectories can be
streamlines, leading to an instantaneous analysis often similar to
that obtained by vector field topology, or path lines, allowing
for a time-dependent analysis. The position of the end point of
each trajectory is stored inside the coordinate map, also called
flow map in this context. The FTLE is then computed from the
gradient of the coordinate map.

Author's personal copy

8

An important property of the FTLE is that it usually requires
sampling grids of high resolution because the topologically rel-
evant features are immanent as ridges, which are often thin
and massively folded. Especially in the case of 3D domains,
integration of a huge number of trajectories is necessary. Ad-
ditionally, the trajectories are often required to be comparably
long to capture the spatio-temporal structure of the vector field.
These requirements make FTLE computation a perfect candidate
for acceleration by hierarchical integration.

As the scheme introduces interpolation error (discussed in
Section III-D), accuracy can become an issue when the FTLE
is used for predictability analysis. However, here we address the
usage of the FTLE in the context of a structural analysis of vector
fields, where the goal is to extract prominent ridges in the FTLE,
namely the identification of coherent regions, and therefore small
perturbations or offsets can typically be neglected. We refer the
reader to the error analysis in Section III-D and also to the work
by Garth et al. [7] for accuracy concerns. In Section VI, our
method is applied to the computation of the FTLE and results as
well as error analysis are provided.

B. Line Integral Convolution

LIC provides a dense vector field representation by convolving
a noise texture along streamlines of a vector field. Usually, box
or Gaussian filter kernels (for smoother results) are used. To
generate the resulting image, the convolution has to be carried
out for every pixel, leading to a dense evaluation of streamlines
and therefore qualifying it for acceleration by hierarchical com-
putation. However, as described in Section III-B, the convolution
has to be split up into multiple convolutions applied subsequently
in our scheme. This is possible if Gaussian filter kernels are
used because subsequent convolution with Gaussian filters with
widths σ1 and σ2 corresponds to a single convolution with a
Gaussian filter with width σ = (σ2

1 +σ2
2)

1/2. Hence, application
of the hierarchical scheme results in multiple convolution with
increasing width of the filter kernel.

In LIC, the convolution of the input noise poses sampling
issues. To avoid aliasing artifacts, the noise has to be sampled
at an appropriate sampling rate. The sampling rate for the zeroth
level of hierarchy depends directly on the input noise. The
sampling rate is lowered in subsequent levels by the concatenation
during integration with the hierarchical scheme, which requires
each convolution to accordingly suppress high frequencies to
avoid aliasing. This requirement is met by the Gaussian kernel.
With the Fourier transform of the Gaussian filter, σ

√
2πe−2π2 f 2σ2

,
with frequency f , an appropriate sampling can be determined.

Using the Nyquist sampling theorem, a sampling distance of σ

leads to a maximum sampled frequency of f = 1/(2σ), assuming
a band-limited signal. For the non-ideal low-pass characteristics
of Gaussian filtering, the sampling distance σ allows us to capture
more than 99.99% of the energy in the signal. This is sufficient
to avoid sampling artifacts in typical applications. The end points
stored in the coordinate map of the previous level of the hierarchy
prescribe the minimum sampling distance along a trajectory in
the current level. Since we determined σ to be an appropriate
sampling distance for convolution, the size of the filter kernel is
adapted such that σ of the current level matches this minimum
distance from the coordinate map. To get a good approximation
of the convolution integral, several samples with this distance
along the trajectory are necessary. In our experiments, we use, as

noted before, s = 2 for the integration of the end points, but for
the convolution we obtained good results by integrating until 3σ ,
i.e., using s = 6.

VI. RESULTS

Our implementation uses CUDA 1.0 to perform computations
on nVidia GPUs in order to test the suitability of the pro-
posed method for parallel execution. For reference purposes, the
implementation of the straightforward approach was also done
with CUDA to guarantee a fair comparison. The straightforward
implementation and the zeroth level of the hierarchical imple-
mentation employ fourth-order Runge-Kutta integration with fixed
step size. OpenGL was used for graphical output. All images and
measurements were performed with an Intel Core i7 CPU (2.67
GHz), 6 GB RAM, an nVidia GeForce GTX 260 GPU with 896
MB of graphics memory, and Windows 7 Professional.

Our method is evaluated using a time-dependent 2D CFD
simulation of buoyant flow, the 3D time-dependent variant of the
Arnold-Beltrami-Childress (ABC) analytic vector field from the
field of dynamical systems theory, and a time-dependent 3D CFD
simulation of a flow over a cuboid. Additionally, a 3D stationary
field is included to exemplify the problems with open domains
(Section IV-C).

The buoyant flow results from a simulation with a heated
boundary at the bottom, a cooled boundary at the top, sidewalls
with adiabatic boundary conditions, and gravity acting downward.
The container is partitioned by a horizontal divider that forces the
buoyant flow to pass on its right side (see Figure 12). The resulting
vector field is highly unsteady and exhibits moving vortices and
interesting features with respect to Lagrangian coherent structures.
The ABC vector field follows the common parametrization of A=√

3, B =
√

2, and C = 1. The second 3D time-dependent example
results from a 3D simulation that we call overflowed cuboid.
This vector field features a variant of the von Kármán vortex
street (Figure 13(e)). At the left end of the volume rendering,
there is a cuboid that faces a flow moving from left to right and
passing around and over the cuboid. Over time, the vortices of
this example tilt from their vertical orientation to horizontal, due
to the flow over the upper face of the cuboid. The 3D stationary
dataset contains a synthetic model of a vortex breakdown bubble
(Figure 14). It represents a perturbed version of Hill’s spherical
vortex [24].

A. Performance

To analyze the speed-up of real-world applications besides the
theoretical estimates from Section III-C, performance measure-
ments of the straightforward and the hierarchical approaches were
performed for LIC and FTLE computation. Tables I and II show
the corresponding results for the case of 2D time-independent vec-
tor fields. The choice of vector field does not affect computation
times due to the uniform step sizes. Therefore, the performance
numbers are valid for any dataset. We use a grid resolution
of 5122 as a medium-sized example. Computation times are
mostly linear in the number of computed texels; thus, timings
for other resolutions can be inferred from our measurements.
The presented number of steps applies to the straightforward
method; the hierarchical method achieves same integration ranges
with fewer steps (Section III-C). For both methods, forward and
backward advection has to be performed along the streamlines,

Author's personal copy

9

TABLE I
COMPUTATION TIMES (IN MILLISECONDS) OF THE STRAIGHTFORWARD

(DIRECT) AND HIERARCHICAL METHODS FOR FTLE IN

2D TIME-INDEPENDENT VECTOR FIELDS.

with setup time without setup time

steps direct hier. ratio direct hier. ratio

2 × 4 46.85 46.36 1.01 0.51 0.42 1.21
2 × 8 48.94 46.65 1.05 2.41 0.46 5.24

2 × 16 53.08 47.19 1.12 6.67 0.56 11.91
2 × 32 60.78 48.11 1.26 13.51 1.11 12.17
2 × 64 76.27 48.41 1.58 30.08 1.94 15.51

2 × 128 107.20 48.91 2.19 60.69 2.18 27.84
2 × 256 168.79 48.99 3.45 121.61 2.75 44.22
2 × 512 291.89 50.31 5.80 245.05 3.61 67.88

2 × 1024 538.29 50.10 10.74 491.64 3.99 123.22

doubling the number of computation steps (factor 2× in the
column “steps”). Computation times for both the straightforward
(direct) and hierarchical methods are given in milliseconds. In
addition, the ratio of direct vs. hierarchical methods is included
as a measure of speed-up. To compare the computation time alone,
values measured without setup time are also presented in the
tables. As a consequence, the speed-up by the hierarchical method
is much higher in this case.

The times measured for the computation of the FTLE (Table I)
can be compared with the measurements in Section III-C. Only
a small amount of time is additionally needed to compute the
FTLE from the end positions; therefore, FTLE computation and
sole construction of the coordinate map consume almost identical
computation time. Doubling of the performance is reached at
about 100 computation steps—a number of steps at the lower
limit for typical computation of FTLE fields. When excluding
the setup time, the hierarchical FTLE computation outperforms
the traditional computation by more than a factor of two already
for only 8 computation steps.

For LIC (Table II), a higher setup time and computation steps
with longer execution time can be observed. This is due to
additional operations for the convolution, like accessing the noise
texture and applying the filter kernel. The performance of LIC
is doubled at about 110 computation steps for each direction.
When excluding the setup time, hierarchical LIC is already more
than twice as fast (compared to traditional LIC) with only 27
computation steps for each direction.

In the case of time-dependent vector fields, the computation of
the FTLE is based on path lines. This can also be accelerated
with our method by treating time as a further dimension. The
memory requirements can be reduced with a streaming approach

TABLE II
COMPUTATION TIMES (IN MILLISECONDS) OF THE STRAIGHTFORWARD

(DIRECT) AND HIERARCHICAL METHODS FOR LIC.

with setup time without setup time

steps direct hier. ratio direct hier. ratio

2 × 13 63.91 57.08 1.11 12.03 6.26 1.92
2 × 27 78.13 59.53 1.31 26.01 8.11 3.21
2 × 55 107.07 61.50 1.74 55.05 8.97 6.14

2 × 110 163.71 63.04 2.60 112.01 10.69 10.48
2 × 221 278.42 64.38 4.32 226.76 12.23 18.54
2 × 443 507.70 66.39 7.65 455.82 14.38 31.70
2 × 886 966.85 67.77 14.27 914.62 15.83 57.78

for the dataset and the coordinate map (Section IV-A). Time
measurements (including setup time) for a 2D FTLE field with
a spatial resolution of 5122, 100 time slices, and 512 straight-
forward integration steps yield: 6.2 seconds for the hierarchical
computation compared to 376.5 seconds for the traditional com-
putation. Here, the hierarchical method is almost 61 times faster
than the straightforward approach.

Finally, the performance of 3D time-dependent FTLE compu-
tation was measured. The FTLE field has a spatial resolution of
1283, and 64 time steps were computed in all cases. Table III
shows the results for increasing integration range. The setup
time (around 4 seconds maximum) can be neglected considering
the total computation time. As explained in Section IV-A, the
hierarchical method has approximately logarithmic complexity
with increasing integration range. The direct method theoreti-
cally exhibits linear complexity with increasing integration range.
However, the results even show a slightly faster growth of the
computation time for this method. Our conjectured explanation
for this behavior is that the memory locality of nearby starting
curves is degrading with longer integration ranges and memory
access becomes more expensive due to increased cache misses.
The memory consumption measured for the longest integration
range corresponding to 64 discrete time steps was around 2500
MB for the hierarchical computation and 440 MB for the direct
method, which includes around 400 MB for the dataset. Less than
100 MB of GPU memory is required in both cases.

A comparison with FTLE computation acceleration methods
[7], [25] has been left out. In contrast to our method, their per-
formance is data-dependent, making a fair comparison difficult.

Since Image Based Flow Visualization (IBFV) [33] is most
popular for fast texture-based vector field visualization, we in-
clude a performance comparison between hierarchical LIC and
IBFV (see Section VI-B for a comparison of visualization qual-
ity). IBFV was implemented in CUDA with per-texel semi-
Lagrangian advection in order to obtain performance numbers for
the same software and hardware configuration as hierarchical LIC.
IBFV implicitly computes an LIC image with an exponential filter
kernel [5]. To achieve comparable visual lengths of line structures
both in IBFV and LIC, we adjust the exponential filter kernel of
IBFV (based on its alpha blending factor) and the width of the
Gaussian filter in LIC.

For the example of 2D texture-based visualization of the
buoyancy test dataset at an image resolution of 5122 (Figure 12),
we had 6 levels of hierarchical integration equaling 221 straight-
forward integration steps for LIC, and IBFV with 60 iterations and
an alpha blending factor of 0.03. Performance measurements for
this example are: 226.76 ms (278.42 ms with setup time) for the

TABLE III
COMPUTATION TIMES (IN SECONDS) OF THE STRAIGHTFORWARD

(DIRECT) AND HIERARCHICAL METHODS FOR FTLE IN

3D TIME-DEPENDENT VECTOR FIELDS.

integration direct hier. ratio
range

2 294 158 1.86
4 587 166 3.54
8 1 198 178 6.73

16 2 494 201 12.41
32 5 407 245 22.07
64 12 337 332 37.16

Author's personal copy

10

straightforward LIC method (Figure 12(a)), 12.23 ms (64.38 ms
with setup time) for hierarchical LIC (Figure 12(b)), and 40.02
ms (78.87 ms with setup time) for IBFV (Figure 12(c)). The
performance measurements show that hierarchical LIC is at least
in the same time range as IBFV.

A comparison with Fast LIC [13], [29] is not included because,
as stated in Section II, Fast LIC is not suitable for a fast GPU
implementation; hence, a fair comparison would not be possible.

B. Visual Results

Figure 12 shows results for the 2D buoyancy dataset. Results
for LIC (resolution 5122, 221 integration steps, step size 0.01),
and the computation of the FTLE, with streamlines (resolution
5122, 1024 integration steps, step size 0.1) and path lines (res-
olution 5122, integration range of 10 dataset time steps, step
size 0.4), are presented, comparing the reference and hierarchical
implementations. The visual quality of IBFV and LIC is also
compared. For both cases of the FTLE, two difference images
are presented, one comparing directly the FTLE values and one
comparing the extracted ridges by their distance. Figures 12(f) and
12(j) show the forward-time FTLE difference, normalized with
the 95th percentile of the error (0.47% and 1.16%, respectively).
They provide a visualization of the error distribution over the
complete dataset. Additionally, a region of interest was selected
and the corresponding close-up visualizes the error normalized by
the overall maximum (11.66% for the FTLE based on streamlines
and 47.33% in the case of path lines).

Compared to the difference of the end points (Section III-
D), the FTLE exhibits relatively high differences. This can be
explained by the fact that the FTLE is a differential measure
(including gradient estimation), and more importantly, it includes
a logarithm. Hence, low values are stretched to a larger range,
and so is the error. Additionally, the maximum value is decreased
and hence normalization accentuates the error. Since the FTLE
computed from flow maps (as opposed to evaluation based on
renormalization, see [25] for a discussion) is prominently used
for the interpretation of the space-time structure of vector fields
by means of Lagrangian coherent structures (Section V-A), we use
the distance between the resulting ridges as an appropriate error
measure, see Figures 12(g) and 12(k). In the first case, the average
error (0.014 cells) is far below the cell size, whereas in the second
case the maximum error is about half of the cell size. Both close-
up regions show the respective region of highest errors where the
ridges are consistent. It has to be noted that there are regions of
higher error due to inconsistent ridges, meaning that part of the
ridge passed the filtering step in one result but not in the other.
These cases represent filtering issues, i.e., slight variation of the
filtering criterion (here, the minimum required FTLE value) would
achieve consistent results locally. All in all, the ridge results are
highly consistent regarding the basic difficulty of ridge extraction
from noisy and aliased data.

In the hierarchically computed LIC image (Figure 12(b)), the
same structure of the vector field can be identified as with
the reference image (Figure 12(a)); there are almost no visible
differences between the two images. IBFV (Figure 12(c)) gen-
erates results of lower visual quality due to inferior low-pass
characteristics of the exponential filter kernel (see discussion in
[34]) and the repeated resampling (bi-linear interpolation) of the
advected image (see discussion in [35]). IBFV requires a number
of resampling steps linear with the integration length, whereas

hierarchical LIC performs only logarithmic number of resampling
steps, leading to much less numerical dissipation. Therefore,
hierarchical LIC leads to better visualization quality with at least
comparable visualization speed (see Section VI-A).

Furthermore, straightforward and hierarchical FTLE computa-
tions are compared for the two examples of 3D time-dependent
vector fields (Figure 13). The first row shows the resulting FTLE
field for the ABC dataset (straightforward (a), hierarchical (b),
resolution 1283, integration range of 64 dataset time steps, step
size 0.05). Spatial periodicity was exploited according to Sec-
tion IV-C. No differences can be observed by visual inspection
and the numerical comparison of the FTLE values reveals that the
results are very similar, with a maximum error of 0.86% and a 95th

percentile error of 0.18%. Figure 13(c) shows the FTLE difference
mapped to the ridge surface of the straightforward result, whereas
Figure 13(d) shows the corresponding distance between the ridge
surfaces. The aliasing artifacts are due to sharp and high-valued
FTLE ridges with respect to the used spatial resolution and appear
in both the straightforward and hierarchical computations. Again,
the ridges are highly consistent regarding the distance measure.

The results for the overflowed cuboid dataset are presented
in the second row. Figure 13(e) shows the straightforward and
Figure 13(f) the hierarchically computed FTLE field (resolution
1283, integration range of 32 dataset time steps, step size 0.05).
For this dataset, the maximum difference of the FTLE values is
58.08%, the 95th percentile is 0.79%. Despite the comparably high
maximum FTLE differences, the FTLE error is low in the relevant
areas—on the ridge surfaces(Figure 13(g)); the spatial deviation
of the ridges is negligible in the significant regions (Figure 13(h)).

In Figure 14, problems caused by open domains are shown with
the breakdown bubble dataset (resolution 2563, 1024 integration
steps, step size 0.05). As described in Section IV-C, a zero border
was added around the dataset. Directly applying the hierarchical
method results in a maximum FTLE error of 93.8% and a
95th percentile of 8.1%. The filtering method from Section IV-
C reduces the maximum error to 23.3% and the 95th percentile
to 0.95%. Although the interior of the bubble exhibits chaotic
dynamics, the deviation in terms of the FTLE is negligible there.
The apparent error at the axis of the bubble, where folds are
generated by thinning and folding, relates to resolution issues
due to the finely folded manifold and boundary effects.

VII. CONCLUSION

We have presented an acceleration scheme for the computation
of iterated solutions—or integral curves—for a large field of
applications. Additionally, our method can accelerate a certain
class of computations of quantities along integral curves. Perfor-
mance measurements of our implementation confirm the loga-
rithmic computational complexity of the scheme. Since practical
implementations are subject to some computational overhead,
substantial acceleration can only be expected for medium to
long trajectories. In contrast to other acceleration techniques for
the computation of integral curves, our method is well suited
for modern multi-core or many-core architectures like GPUs.
Because every hierarchical computation yields an intermediate
result, the user can be provided with a preview at no additional
cost. Furthermore, advanced and costly integration methods can
be readily integrated in hierarchical computation and affect only
the construction of the zeroth level of hierarchy. Therefore, our
scheme is particularly efficient for higher-order integration in

Author's personal copy

11

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 12. Results for a single time step of the buoyancy vector field. The first row shows straightforward LIC (a), hierarchical LIC (b), and IBFV (c).
Histogram equalization was applied to these images. The remaining images show straightforward ((d) and (h)) and hierarchical ((e) and (i)) FTLE (green
forward, red backward). The FTLE in the second row applies to the streamlines in this time step. For the FTLE in the third row, path lines starting at this time
step were used. Images (f) and (j) show the forward FTLE error normalized with its 95th percentile. The close-up images of the marked area are normalized
with the maximum error. The distance between the ridges from straightforward and hierarchical FTLE computation are presented in (g) and (k) together with
a close-up view on the regions of maximum deviation. The red/blue colors in the close-up are used to distinguish FTLE ridges from straightforward and
hierarchical computations, respectively; shades of green indicate the FTLE values.

higher-order data. In summary, our method enables the analysis
of datasets based on trajectories at a reduced amount of time com-
pared to straightforward methods, especially in the case of high
resolutions together with large integration ranges. Considering the
gain of computational speed, the drawbacks, loss of accuracy and
increased memory consumption, are acceptable for many typical
applications.

The reason for reduced accuracy is the interpolation of the
coordinates when constructing longer trajectory segments from
shorter ones. In future work, tensor-product linear interpolation
could be replaced by higher-order schemes with better recon-
struction quality. We believe that higher-order reconstruction of
the coordinate and quantity maps will lead to an integration

scheme with better error order. Unfortunately, it is not possible
to use adaptive refinement directly with our hierarchical scheme,
but a hybrid approach seems promising, where the hierarchical
method is used as a first step before adaptive refinement with
a direct integration method is applied. The reduced computation
time would allow us to compute intermediate results at higher
resolutions that then can be adaptively refined. Future research
could also investigate applications beyond LIC and the FTLE.
For example, stream surfaces, flow level-sets, or the Mz-criterion
are expected to benefit from hierarchical computation, and further
applications are conceivable. Finally, accelerating the integration
in a subarea of the dataset, e.g., for region-of-interest methods or
out-of-core computations, is another target of future work.

Author's personal copy

12

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Results of the 3D time-dependent FTLE computation for two different vector fields. Only the forward FTLE is shown. First row: ABC dataset.
The FTLE from straightforward (a) and hierarchical (b) computation is shown using direct volume rendering together with a black-body radiation color map.
Image (c) shows the FTLE difference on the ridge surfaces of the straightforward version and image (d) depicts the spatial deviation of the ridge surfaces.
Second row: corresponding visualizations of the overflowed cuboid dataset.

(a) (b) (c) (d) (e)

Fig. 14. Results for the breakdown bubble dataset. The left three images show volume renderings of the forward FTLE field obtained with straightforward
(a) and hierarchical computation ((b) and (c)). The FTLE field in (c) was filtered so that all FTLE values influenced by the domain boundary are discarded
(see Section IV-C). The right two images show the FTLE difference on the ridge surfaces of the straightforward version (d) and the spatial deviation of the
ridge surfaces (e).

ACKNOWLEDGMENTS

The authors would like to thank the German Research Foun-
dation (DFG) for financial support of the project within the
Cluster of Excellence in Simulation Technology (EXC 310/1)
at Universität Stuttgart. Many thanks go to Katrin Bidmon for
reviewing the appendix.

REFERENCES

[1] S. Brunton and C. Rowley. A method for fast computation of FTLE
fields. In 61st Annual Meeting of the APS Division of Fluid Dynamics,
2008. Electronic reference: http://meetings.aps.org/link/
BAPS.2008.DFD.BR.10.

[2] P. J. Burt. Fast filter transform for image processing. Computer Graphics
and Image Processing, 16(1):20 – 51, 1981.

[3] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of SIGGRAPH 1993, pages 263–270, 1993.

[4] B. Csébfalvi. An evaluation of prefiltered reconstruction schemes for
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 14(2):289–301, 2008.

[5] G. Erlebacher, B. Jobard, and D. Weiskopf. Flow textures: High-
resolution flow visualization. In C. Hansen and C. Johnson, editors,
The Visualization Handbook, pages 279–293. Elsevier, Burlington, USA,
2005.

[6] G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Morgan
Kaufmann Publishers, San Francisco, USA, 2002.

[7] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient computation
and visualization of coherent structures in fluid flow applications. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1464–
1471, 2007.

[8] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[9] I. Goldhirsch, P.-L. Sulem, and S. A. Orszag. Stability and Lyapunov
stability of dynamical systems: A differential approach and a numerical
method. Physica D, 27(3):311–337, 1987.

[10] G. Haller. Distinguished material surfaces and coherent structures in
three-dimensional fluid flows. Physica D, 149(4):248–277, 2001.

[11] G. Haller. An objective definition of a vortex. Journal of Fluid
Mechanics, 525:1–26, 2005.

[12] P. S. Heckbert. Filtering by repeated integration. Computer Graphics
(Proceedings of SIGGRAPH 1986), 20(4):315–321, 1986.

[13] H.-C. Hege and D. Stalling. Fast LIC with piecewise polynomial
filter kernels. In H.-C. Hege and K. Polthier, editors, Mathematical

Author's personal copy

13

Visualization – Algorithms and Applications, pages 295–314. Springer,
Heidelberg, Germany, 1998.

[14] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl. Applications
of pixel textures in visualization and realistic image synthesis. In
Proceedings of ACM Symposium on Interactive 3D Graphics 1999, pages
127–134, 1999.

[15] J. Helman and L. Hesselink. Representation and display of vector field
topology in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.

[16] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Hardware-accelerated
texture advection for unsteady flow visualization. In Proceedings of
IEEE Visualization 2000, pages 155–162, 2000.

[17] M. Kraus and M. Strengert. Pyramid filters based on bilinear interpola-
tion. In Proceedings of GRAPP 2007, pages 21–28, 2007.

[18] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and
D. Weiskopf. The state of the art in flow visualization: Dense and
texture-based techniques. Computer Graphics Forum, 23(2):203–221,
2004.

[19] L. Li and H.-W. Shen. View-dependent multi-resolutional flow texture
advection. Proceedings of IS&T/SPIE Visualization and Data Analysis
2004, 6060:24–34, 2006.

[20] E. N. Lorenz. A study of the predictability of a 28-variable atmospheric
model. Tellus, 17:321–333, 1965.

[21] E. Lum, B. Wilson, and K.-L. Ma. High-quality lighting and efficient
pre-integration for volume rendering. In Proceedings of Eurograph-
ics/IEEE VGTC Symposium on Visualization, pages 25–34, 2004.

[22] nVidia. CUDA Programming Guide 2.3.1. 2009. Electronic reference:
http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_
Guide_2.3.pdf.

[23] J. Ogden, E. Adelson, J. Bergen, and P. Burt. Pyramid-based computer
graphics. RCA Engineer, 30(5):4–15, 1985.

[24] R. Peikert and F. Sadlo. Flow topology beyond skeletons: Visualization
of features in recirculating flow. In H.-C. Hege, K. Polthier, and
G. Scheuermann, editors, Topology-Based Methods in Visualization II,
pages 145–160. Springer, Heidelberg, Germany, 2009.

[25] F. Sadlo and R. Peikert. Efficient visualization of Lagrangian coherent
structures by filtered AMR ridge extraction. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1456–1463, 2007.

[26] F. Sadlo and D. Weiskopf. Time-dependent 2-D vector field topology:
An approach inspired by Lagrangian coherent structures. Computer
Graphics Forum, 29(1):88–100, 2010.

[27] H. R. Schwarz. Numerische Mathematik. B. G. Teubner, Stuttgart,
Germany, 1997.

[28] C. Sigg and M. Hadwiger. Fast third-order texture filtering. In M. Pharr
and R. Fernando, editors, GPU Gems 2, pages 313–329. Addison-
Wesley, Reading, USA, 2005.

[29] D. Stalling and H.-C. Hege. Fast and resolution independent line integral
convolution. In Proceedings of SIGGRAPH 1995, pages 249–256, 1995.

[30] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing: Part I–
Theory. IEEE Transactions on Signal Processing, 41(2):821–833, 1993.

[31] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing:
Part II–Efficient design and applications. IEEE Transactions on Signal
Processing, 41(2):834–848, 1993.

[32] J. J. van Wijk. Implicit stream surfaces. In Proceedings of IEEE
Visualization 1993, pages 245–252, 1993.

[33] J. J. van Wijk. Image based flow visualization. ACM Transactions on
Graphics, 21(3):745–754, 2002.

[34] D. Weiskopf. Iterative twofold line integral convolution for texture-based
vector field visualization. In T. Möller, B. Hamann, and R. Russell,
editors, Mathematical Foundations of Scientific Visualization, Computer
Graphics, and Massive Data Exploration, pages 191–211. Springer,
Heidelberg, Germany, 2009.

[35] D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework
for spacetime-coherent visualization of time-dependent vector fields. In
Proceedings of IEEE Visualization 2003, pages 107–114, 2003.

[36] D. Weiskopf, M. Hopf, and T. Ertl. Hardware-accelerated visualization
of time-varying 2D and 3D vector fields by texture advection via
programmable per-pixel operations. In Proceedings of Vision, Modeling,
and Visualization 2001, pages 439–446, 2001.

[37] R. Westermann, C. Johnson, and T. Ertl. A level-set method for flow
visualization. In Proceedings of IEEE Visualization 2000, pages 147–
154, 2000.

APPENDIX

ERROR ORDER

The error order of our integration scheme is derived according
to the typical approach for analyzing explicit single-step inte-
gration schemes for ordinary differential equations. We follow
the discussion by Schwarz [27]. In our case, iteration over
levels of hierarchy is performed in place of integration steps and
the error originates from interpolation of the coordinate maps
instead of finite integration. We start with the concatenation
of the coordinate map φi+1(x) = φi(φi(x)) (Section III-A). We
derive the error order for s = 2 (following the map twice) and
linear interpolation in 1D space. The extension to n-D space is
straightforward by n-D tensor-product linear interpolation. We
have chosen linear interpolation because it is a common choice
in scientific visualization and presumably results in conservative
error bounds as compared to higher order interpolation schemes.
We denote error affected coordinate map values by φ̃(·) as
opposed to exact values φ(·).

The coordinate map for level i+ 1 at node x j is obtained by
linear interpolation of the coordinate map at level i between the
nodes xl and xl + c with l = b(φ̃i(x j)− x0)/cc, x0 < xk for (k =
1, . . .), and cell size c:

φ̃i+1(x j) = (1− t)φ̃i(xl)+ tφ̃i(xl + c)

= φ̃i(xl)+(φ̃i(xl + c)− φ̃i(xl))t

with interpolation parameter t = (φ̃i(x j)− xl)/c.
To simplify the notation, we assume that, for all levels i, φ̃i(x j)

maps to the same cell consisting of its left node xl and right node
xl +c, i.e. j≡ l. This does not affect the analysis of error because
the error order is the same for all nodes. This leads to

φ̃i+1(xl) = φ̃i(xl)+(φ̃i(xl + c)− φ̃i(xl))
φ̃i(xl)− xl

c
= φ̃i(xl)+Φ(xl , φ̃i(xl), φ̃i(xl + c),c) (2)

with Φ(x,y,z,c) = (z−y) y−x
c . Using Eq. 2, the local discretization

error di+1(xl) (based on exact values φ(·)) is defined as

di+1(xl) = φi+1(xl)−φi(xl)−Φ(xl ,φi(xl),φi(xl + c),c) (3)

and the global error is

gi(xl) = φi(xl)− φ̃i(xl). (4)

From Eq. 3, the exact coordinate map entry φi+1(xl) can be
formulated as

φi+1(xl) = φi(xl)+Φ(xl ,φi(xl),φi(xl + c),c)+di+1(xl). (5)

Subtracting Eq. 2 from Eq. 5 using Eq. 4 gives

gi+1(xl) =gi(xl)+Φ(xl ,φi(xl),φi(xl + c),c)

−Φ(xl , φ̃i(xl), φ̃i(xl + c),c)+di+1(xl)

and extension by Φ(xl , φ̃i(xl),φi(xl + c),c) leads to

gi+1(xl) =gi(xl)

+Φ(xl ,φi(xl),φi(xl + c),c)−Φ(xl , φ̃i(xl),φi(xl + c),c)

+Φ(xl , φ̃i(xl),φi(xl + c),c)−Φ(xl , φ̃i(xl), φ̃i(xl + c),c)

+di+1(xl). (6)

To bound the global error gi(xl) using the local discretization
error di(xl) we have to make sure that Φ(x,y,z,c) satisfies the

Author's personal copy

14

Lipschitz continuity conditions: there is an L such that

|Φ(x,y,z,c)−Φ(x,y∗,z,c)| ≤ L|y− y∗|
|Φ(x,y,z,c)−Φ(x,y,z∗,c)| ≤ L|z− z∗|

}
x,y,y∗,z,z∗,c ∈ B (7)

inside an appropriate range B for all levels i. We assume the initial
coordinate map φ0 to be Lipschitz continuous, a property directly
resulting if φ0 is obtained by integration in a linearly interpolated
vector field. Then, the first condition in Eq. 7 holds for

Φ(xl ,φi(xl),φi(xl + c),c)−Φ(xl , φ̃i(xl),φi(xl + c),c)

because with y = φi(xl)

∂Φ(xl ,y,φi(xl + c),c)
∂y

=
φi(xl + c)−2φi(xl)+ xl

c

=
φi(xl + c)−φi(xl)

c
− φi(xl)− xl

c

and |φi(xl +c)−φi(x j)|/|c| ≤ L
′

due to the continuity assumption
on φ0 and because linearly interpolated data (and hence φi) are
Lipschitz continuous, and because 0 ≤ (φi(x j)− xl)/c < 1, also
for j 6= l. The second condition in Eq. 7 holds for

Φ(xl , φ̃i(xl),φi(xl + c),c)−Φ(xl , φ̃i(xl), φ̃i(xl + c),c)

because with z = φi(xl + c)

∂Φ(xl , φ̃i(xl),z,c)
∂ z

=
φ̃i(xl)− xl

c

and 0 ≤ (φ̃i(x j)− xl)/c < 1 also for j 6= l. Using Eq. 7 inside
Eq. 6 leads to

|gi+1(xl)| ≤|gi(xl)|
+L|φi(xl)− φ̃i(xl)|
+L|φi(xl + c)− φ̃i(xl + c)|
+ |di+1(xl)|

=|gi(xl)|+L|gi(xl)|+L|gi(xl + c)|+ |di+1(xl)|.

Using the fact that the error order must be uniform over all nodes
(i.e., nodes xl and xl + c), we obtain

|gi+1(xl)| ≤ (1+2L)|gi(xl)|+ |di+1(xl)|.

Choosing appropriate constants a and b, the global error satisfies

|gi+1(xl)| ≤ (1+a)|gi(xl)|+b, (i = 0,1,2, . . .). (8)

If gi(xl) satisfy Eq. 8, then

|gn(xl)| ≤
(1+a)n−1

a
b+(1+a)n|g0(xl)| (9)

≤ b
a
(ena−1)+ ena|g0(xl)|. (10)

Proof. Here, we repeat the proof by Schwarz [27] for the
reader’s convenience. Repeated application of Eq. 8 gives the first
inequality (Eq. 9)

|gn(xl)| ≤(1+a)|gn−1(xl)|+b

≤(1+a)2|gn−2(xl)|+[(1+a)+1]b
...

≤(1+a)n|g0(xl)|+[(1+a)n−1 + · · ·+(1+a)+1]b

=
(1+a)n−1

a
b+(1+a)n|g0(xl)|.

The second inequality (Eq. 10) comes from the fact that et is
convex and therefore for the tangent at t = 0 the inequality (1+
t)≤ et holds for all t. From this, it follows that (1+a)n ≤ ena.

�

Using Eq. 10 and assuming1 g0(xl) = φ0(xl)− φ̃0(xl) = 0 gives

|gn(xl)| ≤
D(xl)

2L
(en2L−1)≤ D(xl)

2L
en2L (11)

with the maximum local error D(xl) over all levels i.
In order to determine a bound on D(xl), we will first derive a

bound for di+1(xl). The idea is to apply the Taylor theorem to φi+1
inside Eq. 3 and to determine the remainder. The observation that
(φi(xl + c)−φi(xl))/c inside Φ(xl ,φi(xl),φi(xl + c),c) represents
a discrete derivative with respect to x motivates the reformulation
of this term using a true derivative and to bring it into relation
with the Taylor expansion.

By the mean value theorem, assuming φi is differentiable inside
[xl ,xl + c], there is a ξ ∈]xl ,xl + c[satisfying

φi(xl + c)−φi(xl)

c
=

dφi(ξ)

dx
,

resulting in

Φ(xl ,φi(xl),φi(xl + c),c) =
dφi(ξ)

dx
(φi(xl)− xl). (12)

Substituting φi+1(xl) inside Eq. 3 by the Taylor expansion of φi
at ξ (note that φi is expanded, not φi+1, and the composition
φi(φi(xl)) is achieved by evaluating the expansion at φi(xl))
including the remainder term with τ = φi(xl)−ξ and 0 < θ < 1
gives

di+1(xl) =φi(ξ)+ τ
dφi(ξ)

dx
+

τ2

2
d2φi(ξ +θτ)

dx2

−φi(xl)−Φ(xl ,φi(xl),φi(xl + c),c).

Using Eq. 12 leads to

di+1(xl) =φi(ξ)+ τ
dφi(ξ)

dx
+

τ2

2
d2φi(ξ +θτ)

dx2

−φi(xl)− (φi(xl)− xl)
dφi(ξ)

dx

and using τ = φi(xl)−ξ results in

di+1(xl) =φi(ξ)+(xl−ξ)
dφi(ξ)

dx
−φi(xl)

+
τ2

2
d2φi(ξ +θτ)

dx2 . (13)

Neglecting the last term on the right hand side of Eq. 13, we
can identify a first-order Taylor expansion of φi at ξ with φi(xl)
subtracted. This can be interpreted as the remainder at xl . The
Taylor expansion of φi at ξ including the remainder term using
ζ = xl−ξ and 0 < γ < 1 gives

φi(xl) = φi(ξ)+(xl−ξ)
dφi(ξ)

dx
+

ζ 2

2
d2φi(ξ + γζ)

dx2

φi(ξ)+(xl−ξ)
dφi(ξ)

dx
−φi(xl) =−

ζ 2

2
d2φi(ξ + γζ)

dx2 . (14)

1We assume the initial coordinate map to be exact because we aim at
analyzing the error introduced by our scheme. However, if |g0(xl)| 6= 0, the
resulting error bound only differs by a constant (Eq. 10).

Author's personal copy

15

Substituting Eq. 14 inside Eq. 13 leads to

di+1(xl) =�
ζ 2

2
d2φi(ξ + γζ)

dx2 +
τ2

2
d2φi(ξ +θτ)

dx2 .

From ξ ∈]xl ,xl +c[it follows that |ζ |< c, and additionally from
xl ≤ φi(x j)< xl + c that |τ|< c, leading to

|di+1(xl)|<
c2

2

(∣∣∣∣d2φi(ξ + γζ)

dx2

∣∣∣∣+ ∣∣∣∣d2φi(ξ +θτ)

dx2

∣∣∣∣)
|di+1(xl)|< c2 max

xl≤x<xl+c

∣∣∣∣d2φi(x)
dx2

∣∣∣∣ .
This allows us to bound the maximum local error:

D(xl) := max
i=0,...,n�1

|di+1(xl)|< c2 max
i=0,...,n�1
xl≤x<xl+c

∣∣∣∣d2φi(x)
dx2

∣∣∣∣=: c2M,

M being the maximum second derivative inside [xl ,xl +c[over all
levels of hierarchy. From this follows together with Eq. 11 that

|gn(xl)|<
c2M
2L

en2L.

Hence, the proposed integration scheme is second order in the
cell size c.

Marcel Hlawatsch received the Diplom (MSc) de-
gree in computer science from Universität Stuttgart,
Germany. Since 2008, he has been a PhD student
at the Visualization Research Center, Universität
Stuttgart (VISUS). His research interests include
scientific visualization, GPU methods, and visual-
ization workflows.

Filip Sadlo received the Diplom (MSc) degree in
computer science from ETH Zurich in 2003 where
he also did his PhD at the Computer Graphics Lab-
oratory. Since 2008 he has been a research associate
at the Visualization Research Center, Universität
Stuttgart (VISUS). His research interests include sci-
entific visualization, 3D reconstruction, and imaging.

Daniel Weiskopf received the Diplom (MSc) degree
in physics and the PhD degree in physics, both from
Eberhard-Karls-Universität Tübingen, Germany, and
he received the Habilitation degree in computer
science at Universität Stuttgart, Germany. From 2005
to 2007, Dr. Weiskopf was an assistant professor
of computing science at Simon Fraser University,
Canada. Since 2007, he has been a professor of
computer science at the Visualization Research Cen-
ter, Universität Stuttgart (VISUS) and at the Vi-
sualization and Interactive Systems Institute (VIS),

Universität Stuttgart. His research interests include scientific visualization,
GPU methods, real-time computer graphics, mixed realities, ubiquitous vi-
sualization, perception-oriented computer graphics, and special and general
relativity. He is member of ACM SIGGRAPH, the Gesellschaft für Informatik,
and the IEEE Computer Society.

Author's personal copy

