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Coherent Structures of Characteristic Curves in
Symmetric Second Order Tensor Fields

Marcel Hlawatsch, Joachim E. Vollrath, Filip Sadlo, Member, IEEE,
and Daniel Weiskopf, Member, IEEE Computer Society

Abstract—This paper generalizes the concept of Lagrangian
coherent structures, which is known for its potential to visualize
coherent regions in vector fields and to distinguish them from
each other. In particular, we extend the concept of the flow map
to generic mappings of coordinates. As the major application
of this generalization, we present a semi-global method for
visualizing coherent structures in symmetric second order tensor
fields. We demonstrate the usefulness by examples from DT-MRI,
uncovering anatomical structures in linearly anisotropic regions
not amenable to local feature criteria. To further exemplify
the suitability of our concept, we also present its application
to stress tensor fields. Lastly, an accelerated implementation
utilizing GPUs is presented.

Index Terms—Lagrangian coherent structures, feature extrac-
tion, tensor field visualization, tensor field topology, general-
purpose computation using graphics hardware

I. INTRODUCTION

MANY phenomena in science and engineering are
amenable to an analysis by inherent tensors. Large parts

in fluid dynamics and flow visualization build on the velocity
gradient tensor, Maxwell’s equations for electromagnetism can
be described in special-relativistic covariant (form) tensors,
local shape is often analyzed with the Hessian matrix, and
material science and simulation often make use of tensors
describing phenomena such as stress, strain, deformation, or
diffusion. This work concentrates on symmetric second order
tensors.

In visualization, symmetric second order tensor fields have
received much attention since they are generated with the
medical imaging technique known as diffusion tensor magnetic
resonance imaging (DT-MRI). DT-MRI facilitates in-vivo
measurements of the rate and orientation of water molecule
diffusion within tissue. This technique is therefore particularly
well suited for the analysis of fibrous tissue that displays
a distinctly oriented organization as in the brain or within
muscles. The visualization of symmetric second order tensors
also plays an important role in other disciplines, e.g. they can
be used to describe mechanical stress.

The goal of this research is to separate the domain of
the tensor field into qualitatively different regions and to
further structure regions perceived as coherent on a local
scale by means of a scalable semi-global analysis. To this
end, we contribute a formal definition and an evaluation of a
method that allows one to visualize the analog of Lagrangian

The authors are with the Visualization Research Center, Universität
Stuttgart (VISUS), Allmandring 19, 70569 Stuttgart, Germany. E-mail:
{hlawatsch,vollrath,sadlo,weiskopf}@visus.uni-stuttgart.de

coherent structures in symmetric second order tensor fields.
This method is derived from a generalization of the Lyapunov
exponent from dynamical systems theory, the concept of flow
maps, their gradients, and of Lagrangian coherent structures.
We present results for diffusion tensor fields and a stress tensor
field, and sketch a fully GPU-based implementation.

II. RELATED WORK

In the past, different methods were developed that aim
at providing meaningful visualizations of multivariate tensor
data. A diffusion tensor can be visualized geometrically with
a diffusion ellipsoid [37], [30], where the axes and radii
correspond directly to the eigenvectors and eigenvalues of the
tensor. Similarly, boxes [56] or composite shapes [54] can be
used, while Kindlmann [24] proposes the use of superquadrics
to combine the benefits of both the ellipsoid and box glyphs.
Another common practice is to visualize properties derived
from diffusion tensor fields on cross sections of the dataset.
Widely used are local scalar measures such as mean diffusivity,
fractional anisotropy [1], as well as the coefficients for linear
anisotropy, planar anisotropy, and spherical isotropy [55],
which can also be visualized by direct volume rendering [28].
For the visualization of fiber structure, methods from classical
vector field visualization have been adapted. Characteristic
lines of a tensor field can be traced by following its eigen-
vector fields and strategies to reduce resulting visual clutter
are available [50]. Hyperstreamlines [5] additionally include
the other eigenvectors as thickness transversal to the chosen
eigenvector. Tensorlines [53] incorporate a notion of artificial
inertia to the line tracing process in order to apply some
control on the direction of tracing when areas of insufficient
linear anisotropy are crossed. The HyperLIC approach [58],
where a noise field is filtered using primitives deformed by
the tensor field, provides a dense tensor field visualization in
the style of line integral convolution [4]. Further references
to DT-MRI visualization techniques are given in the survey
article by Vilanova et al. [51].

Tractography in diffusion tensor fields deals with the
methodology of (in-vivo) reconstruction of fiber tracts in or-
ganized tissue. A technical review is given by Mori et al. [34].
Concerning cerebral tissue, the greater goal of tractographical
methods is to uncover the organization of the brain, e.g.
in order to understand its functional architecture [31] or to
construct atlases [52]. Concerning muscle tissue, the discus-
sion on its organization is in parts still ongoing [14], and
tractographical methods based on DT-MRI [61], [36], [39] can
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aid its uncovering. An effective way to gain such insight in the
case of cerebral tissue is to group extracted fibers according to
similarity and to connectivity with different functional areas.
Brun et al. [2] propose a mapping of each fiber to an Euclidean
feature space and interpret the pairwise distance of fibers in
this space as a similarity measure that they represent as a
weighted undirected graph. Subsequent normalized cuts in this
similarity graph allow for an unsupervised segmentation of
fiber bundles. Ding et al. [8] propose a different fiber similarity
measure based on the ratio of fiber lengths and the average
Euclidean distance of overlapping fiber segments. A k-most-
similar-fibers algorithm then allows them to identify bundles
of fibers and to classify them.

In visualization, topological analysis of tensor fields was
first performed by Delmarcelle and Hesselink [6]. Such meth-
ods extract the essential structure and properties of the multi-
variate tensor field, thus leading to a significant reduction of in-
formation to be assessed. This is done by extracting two basic
types of characteristic features: critical or degenerate points,
which represent singularities in the field, and separatrices,
which connect to some of these points and separate regions
of different behavior. Scheuermann and Tricoche [42] provide
an overview of topological analysis of both vector and tensor
fields, and a thorough treatment is given by Tricoche [46]. The
topology of 3D tensor fields is analyzed by Zheng and Pang
[59] and Zheng et al. [60]. Tricoche et al. [48] use invariants
for the extraction of topological features from 3D tensor fields.

Other approaches aim at extracting essential information
from tensor fields by means of general feature extraction, such
as interfaces [35], creases [26], [27], edges [57], and changes
in tensor shape and orientation [25].

The focus of this work is the visualization of structural or-
ganization within symmetric second order tensor fields. In this
respect, it can be stated that there exist certain aspects that pre-
vious approaches do not solve satisfactorily: in classical tensor
field visualization (i.e. direct visualizations of scalar measures
derived from tensors, or characteristic line visualization), the
structure of a tensor field can only be implicitly deduced.
Methods from the area of feature extraction are mostly based
on local criteria (i.e. based on some kind of local gradient
measure), which only capture local and distinct variation but
cannot extract further structural information from regions of
coherent behavior. Approaches from tensor field topology are
particularly sensitive to noise, which makes them suffer from
a lack of robustness. Tractographical methods successfully
extract structural information from diffusion tensor fields, but
require to first extract a great number of fiber trajectories and
then to perform fiber similarity comparisons.

The concept of Lagrangian coherent structures (LCS) rep-
resents an alternative to vector field topology that is also well
applicable and interpretable for transient vector fields because
it is based on true advection (pathlines) instead of instan-
taneous streamlines. Coherent structures have been roughly
defined as regions of coherent motion or where a flow variable
exhibits significant correlation with itself or another variable
[38]. More recently, Haller has defined LCS to be a time-
dependent analog of separatrices [17], [15] (hence separating
regions of coherent motion) and has shown that they can be

obtained using the so-called finite-time Lyapunov exponent
(FTLE). This definition of LCS is getting increasingly popular
and is also the basis for our work. A detailed analysis of LCS
in n-dimensional systems is presented by Lekien et al. [32].
In visualization, Garth et al. [13] introduce direct visualization
of the FTLE whereas Sadlo and Peikert [41] extract height
ridges from FTLE and compare them to vector field topology
for the case of stationary vector fields. An advantage of LCS
is their robustness under the effects of noise, as analyzed by
Haller [16] for approximate velocity data.

In the unpublished workshop talk by Tricoche et al. [47], the
concept of a structural coherence measure for DT-MRI data
based on neighboring fiber pathways is sketched. A bidirec-
tional flow map is roughly described for which neighboring
fibers must be oriented consistently. The maximum spectral
norm of the two Jacobians for both directions saved in the
flow map is suggested for quantifying the coherence of the
fibers. Our paper shares the same basic ideas; it is based
on the thesis of one of us (Hlawatsch) [19], in which the
application of FTLE to diffusion tensor fields is analyzed
in detail. Simultaneously to our work, similar research was
independently done by Hlawitschka in his thesis [20]. His local
coherence measure was later published, after submission of
this paper, as a journal paper [21], detailing a brief workshop
abstract [22]. The coherence measure is based on the spectral
norm of a derivative of fiber trajectories passing through a
small region, a locally consistent orientation of these fibers
is also necessary. Additionally, a GPU implementation is
described to speed up the computation of this coherence
measure. Only the application to diffusion tensor fields is
presented, whereas we apply our concept also to stress tensor
fields in this paper. We further present a formal definition of
an adapted gradient tensor for a consistent treatment of 1-to-m
mappings (see Section IV).

III. COHERENT STRUCTURES IN VECTOR FIELDS

In the following, a short introduction to the theoretical basis
of coherent structure visualization and the Lyapunov exponent
shall be given. The Lyapunov exponent (LE) is a concept
from dynamical systems theory that measures the exponential
rate of divergence of two close orbits (trajectories in phase
space) of the system. An alternative interpretation of the LE
is that it measures the exponential growth of an infinitesimal
perturbation. For an n-dimensional dynamical system, there
exists a spectrum of n LEs, of which the largest, σ1(x), is
defined as

σ1(x) = lim
T→∞

lim
‖δ(t0)‖→0

1

|T |
ln
‖δ(t0 + T )‖
‖δ(t0)‖

, (1)

where δ(t) is the perturbation at time t, having originated
at position x and time t0. Since this analysis considers
trajectories, it is referred to as Lagrangian to emphasize the
underlying transport process.

For the computation of the Lyapunov exponent, Haller [15]
uses an intermediate computation step, the flow map ξTt0(x) :
Rn → Rn, which is a mapping from the initial position x at
time t0 of a massless particle in a transient vector field to its
final position after advection for time T . In practice, the flow
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map is typically obtained by integration of trajectories seeded
on a regular grid. The direction of maximum expansion in
the domain of ξTt0 corresponds to the major eigenvector of the
right Cauchy-Green deformation tensor

CT
t0(x) = (∇ξTt0(x))>∇ξTt0(x).

The maximum stretching factor can be obtained as the spectral
norm of ∇ξTt0(x), defined as the square root of the major
eigenvalue λmax of CT

t0(x).
When computing the LE for practical data, one issue

arises: integration of infinite length is usually not applicable.
Furthermore, the spatio-temporal domain of real world data is
often finite. This led to the idea of replacing the infinite time
range in Equation 1 by a finite one.

Called direct Lyapunov exponent by Haller [15], it is nowa-
days commonly denoted finite-time Lyapunov exponent. The
maximum FTLE, subsequently simply referred to as FTLE, at
position x, time t0, with advection time T , is computed as:

σTt0(x) =
1

|T |
ln
√
λmax(CT

t0(x)). (2)

Haller has shown that it allows one to infer the existence and
position of finite-time repelling and attracting manifolds in a
transient system: the Lagrangian coherent structures. These
structures are immanent in the form of ridges of the scalar
field defined by the FTLE [15].

IV. GENERALIZED LAGRANGIAN COHERENT STRUCTURES

In this section, we generalize the concept of map-based
extraction and visualization of Lagrangian coherent structures.
Due to the fact that the computation of the FTLE is solely
based on the flow map, we propose the following generaliza-
tion: instead of restricting the derivation of the map to a vector
field or dynamical system, it should be possible to extract
and visualize coherent structures using the right Cauchy-Green
deformation tensor from any map, irrespectively of its origin.
To account for this, the general term coordinate map shall
be used in this paper. Regarding the gradient computation on
the coordinate map, the only requirement is that the map is
spatially C1 continuous, except for isolated points or null sets
that may be excluded from the analysis. In the case of discrete
coordinate maps, it is beneficial to require a regular sampling
to account for the sampling dependency of the FTLE and to
prevent artifacts from gradient estimation.

Our generalization also addresses mechanisms where a
starting point corresponds to more than one end point. This
is the case for undirected correspondences and for eigenvector
fields, where two possible end points exist. This generalization
is even more important when applying it to data from medical
imaging methods with high angular resolution [49], [45], [10],
where characteristic lines could be extracted e.g. with methods
by Schultz and Seidel [43] or by Hlawitschka et al. [23].
There, in contrast to diffusion tensors, crossing fibers can be
represented with multiple discriminable directions, which may
lead to more than two end points for a given starting point.

To simplify the computation of LCS, gradient computations
of such 1-to-m correspondences are avoided. Instead, these
situations are modeled by a set of m maps. The generalized

map that maps a point x at time t0 to one of its m possible
positions at time t0 + T shall be defined as ξk,Tt0 (x), with
k ∈ {k1, . . . , km}. If m equals to 1, k is omitted for clarity.
Care has to be taken if local operators are applied to ξk,Tt0 (x),
since the choice of equal k at different positions within the
support of the operator may not ensure consistent selection of
corresponding mappings. The consistency of mappings must
be established through an appropriate choice of k.

Since the gradient of the coordinate map is the basis
for the extraction of LCS, it shall be derived here. Other
local operators can be derived similarly. The adapted gradient
tensor operator ∇̃ of the coordinate map is formulated as the
following limit process

(
∇̃ξk,Tt0 (x)

)
ij

=
∂̃
(
ξk,Tt0 (x)

)
i

∂xj

= lim
h→0

∆j,h

(
ξk,Tt0 (x)

)
i

h
(3)

using index notation, with

∆j,h

(
ξk,Tt0 (x)

)
i

=
(
ξη,Tt0 (x + hej)

)
i
−
(
ξk,Tt0 (x)

)
i
(4)

where ej is the j-th basis vector and η ensures that the
previously formulated continuity requirement of the coordinate
map is satisfied by a selection of the mapped position at
location x + hej such that the limit in Equation 3 exists.
An explicit choice of η for the case of coordinate maps
extracted from eigenvector fields of symmetric tensors is given
in Section V-C.

The parameters representing time require further considera-
tion. For datasets that consist of a single time step (stationary
data), t0 is constant and is therefore omitted in the notation.
Also, there are cases where the underlying mechanism does
not represent a temporal evolution. If the map is the product
of a tracing procedure, T can be interpreted as “tracing time”.
Otherwise T is also omitted in the notation. The normalization
by tracing time T in Equation 2 was originally motivated
by the growth rate of a perturbation. If T is uniform over
the domain, normalization only results in a scaling and hence
does not change resulting features (ridges). On the other hand,
if trajectories are stopped earlier, e.g. because they leave the
domain, this normalization can change features. Furthermore,
many maps may not reflect a temporal process. Therefore, we
propose to generally leave this step out and to decide on its
application depending on the respective use case.

The logarithm was introduced in Equation 2 because pertur-
bations grow exponentially in linear vector fields or dynamical
systems and the resulting measure captures the underlying
linear behavior. However, since our generalization allows for
the analysis of arbitrary maps, a logarithmic measure should
generally not be enforced. Furthermore, since the logarithm is
a monotonic function, it cannot change existing features (i.e.
ridges), it only changes the level at which they are expressed.
Therefore, this step is left optional and should only be applied
if the goal of the analysis is the measurement of exponential
growth. If the resulting data is visualized directly, it can still
be beneficial to compute the logarithm in terms of a transfer
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function for better exploitation of the available color map
range.

All in all, the right Cauchy-Green deformation tensor of the
generic coordinate map is

Ck,T
t0 (x) = (∇̃ξk,Tt0 (x))>∇̃ξk,Tt0 (x). (5)

From this we define the generalized counterpart to the FTLE
as

σ̃Tt0(x) = max
k∈{k1,...,km}

(√
λmax(Ck,T

t0 (x))

)
, (6)

which we call the maximum finite separation ratio, short FSR
in the remainder of this paper, for which the following equality
holds: σTt0 = 1/|T | · ln σ̃Tt0 , for the special case m = 1.
The formulation of Equation 6 contains a selection of the
maximum separation over all k, in analogy to the previous
definition of the Lyapunov exponent as a measure of maximum
separation. Furthermore, we omit the logarithm, which has
benefits in many applications where exponential growth has
no significance. It is a direct measure of the maximum change
of an initial distance under the considered mechanism. For
the example of cerebral anatomy, this allows for a direct
measurement of the maximum distance of two axonal fibers
after tracing from proximate starting points in relation to their
initial distance.

Also conceivable, but not applied in this work, is an FSR
maximum in analogy to the FTLE maximum according to
Sadlo and Peikert [40], which measures the maximum separa-
tion along an entire trajectory instead of measuring it from the
final flow map for a fixed advection time T . This is equivalent
to the maximum FSR over a range of advection times T , and
can easily be modeled with our method by including the maps
for different advection times in the set of k from which the
definition of Equation 6 already selects the maximum.

The generalized counterpart to LCS are the ridges in the
FSR, which we propose to call separatrices of coherent
regions (SCR). In this new nomenclature we drop the term
“Lagrangian” because our maps do not necessarily describe
transport phenomena and we introduce the term “separatrix”
in order to disambiguate the term LCS with respect to coherent
regions and the structures that separate them from each other.

One reason why LCS got widely accepted in the last
years is that they give an appropriate view to transient vector
fields: as opposed to vector field topology, they allow an
intuitive interpretation with respect to transient advection and
come in the form of time series (of varying t0) that allow
for this interpretation at each instant of time. One question
is to what extent these properties of LCS transfer to the
concept of SCR. If the time steps of the data represent a
process that is temporally consistent with the progression of
the seeding moment t0 and advection time T , the coordinate
map can be extracted in a time-dependent way, e.g. by tracing
pathlines in the case of vector fields. In this case, SCR analyze
transient advection and hence lead to a transient view of the
problem in question, just as LCS. However, if the mechanism
represented by the coordinate maps is instantaneous, if T is
not consistent with t0 of different coordinate maps, or if the
scope of the analysis is purely structural, the coordinate map
should be extracted in an instantaneous manner, e.g. by tracing

streamlines in the case of vector fields. The SCR for each t0
have then to be primarily examined on their own.

V. COHERENT STRUCTURES IN SYMMETRIC TENSOR
FIELDS

We apply the computation of the FSR to symmetric second
order tensor fields, in particular to diffusion tensor fields from
DT-MRI and to stress tensor fields. Beside the definition of
integral curves, which are required to build the coordinate map,
the orientation ambiguity of eigenvectors in tensor fields has
to be considered.

A. Diffusion Tensor Fields

One of the most prominent sources of symmetric second
order tensor fields are medical diffusion tensor images. Since
these describe the dominant direction of diffusion of water
molecules in tissue, it is reasonable to base a structural analysis
of such data on sets of characteristic lines, in analogy to
stream- and pathlines in vector fields. In medical applications,
such as tractography, it is common to use integral curves of
the tensor field’s major eigenvector. We will denote these
as eigenvector lines in the rest of this paper. Because the
major eigenvector is only significant in anisotropic regions,
these lines are commonly stopped when leaving such areas.
In our examples, we use these lines for the computation of
the FSR from diffusion tensors and use fractional anisotropy
[1] as stopping criterion. However, our concept is indepen-
dent of these choices, other definitions for eigenvector-based
lines are possible just as well, e.g. tensorlines introduced by
Weinstein et al. [53].

In medical data, the geometric structure of tissue is likely to
be independent of the actual rate of diffusivity, which is why
the major eigenvalue is not incorporated in the propagation
of a eigenvector line. For cases where the absolute rate of
diffusivity contributes to the understanding of a diffusion
tensor field, and for applications from general physics, we
optionally include a step size control that scales the obtained
direction vector with a factor δ = λ1/λmax, where λ1 is the
local major eigenvalue and λmax is the maximum major eigen-
value throughout the entire dataset. Regarding neighboring
eigenvector lines, this variation can create shearing (differ-
ing propagation velocities along eigenvector lines), provoking
separation of their end points, which becomes visible in the
FSR. Section VII-A includes an example demonstrating the
utility of this variation.

B. Stress Tensor Fields

Another class of symmetric second order tensors are tensors
describing mechanical stress [33]. In contrast to diffusion
tensors, stress tensors can exhibit negative eigenvalues. Their
eigenvalues correspond to the principal stress magnitudes and
their eigenvectors to the principal stress directions. The sign
of the eigenvalue classifies the stress as tension (positive
eigenvalue) or compression (negative eigenvalue). In contrast
to diffusion tensors, a classification into different types of
anisotropy (linear, planar, spherical) is often not useful and
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(a) (b)

Fig. 1. Accounting for the ambiguity of eigenvector orientation for
differential operators. In (a) and its symmetric counterpart, limh→0 d/h = 0
exists, whereas in (b) this is not the case, requiring local orientation of the
eigenvectors.

there is typically no case of linear anisotropy, where only
a single direction along the major eigenvector would be
sufficient. The analysis of stress tensor fields can be based
on lines following the principal stress directions as described
by Dick et al. [7]. We extract coordinate maps from these
lines and use them for the calculation of the FSR for all
principal stress directions, resulting in three different FSR
fields (Section VIII).

C. Orientation Ambiguity in Tensor Fields

Because of the orientation ambiguity of eigenvectors, there
are for each starting position two end points of eigenvector-
based lines. Therefore, the resulting mapping can be rep-
resented by two coordinate maps ξk,T (x) (k ∈ {−1,+1})
(Section IV), where k selects the final position according to
the initial propagation direction v0(x) = kε(x) depending on
the eigenvector ε(x). Applying Haller’s approach of FTLE
computation [15] to these coordinate maps directly would be
inappropriate, since misaligned (opposing) starting directions
can lead to overestimated separation of trajectories as well
as discontinuities. Therefore, local orientation (formally moti-
vated in Figure 1) is decided using

η = sgn1(v0(x) · ε(x + hej)),

with sgn1(x 6= 0) = sgn(x) and sgn1(0) = 1. This defini-
tion of η makes sure that trajectories consistent with v0(x)
are chosen for the evaluation of ∇̃ξk,T (x) (Equations 3–5).
Similarly, local alignment of eigenvectors is also performed
during line tracing. Following Equation 6, we define the FSR
for symmetric tensor fields as

σ̃T = max

(√
λmax(C+1,T ),

√
λmax(C−1,T )

)
.

VI. FSR VISUALIZATION

As noted by Haller [15], LCS correspond to ridges in
the FTLE field. The same relation holds for SCR in the
FSR field and such ridges can be obtained with appropriate
ridge extraction algorithms [9], [11]. However, due to the
noise sensitivity of these approaches, we preferably do not
extract the geometry of ridges in 3D FSR scalar field but
predominantly perform direct cross-sectional visualizations
with a linear gray scale color map, where low FSR values are
mapped to black and high values mapped to white. Regions
where no FSR was computed because the stopping criterion
(SectionV-A) was already met at the starting position are

marked turquoise. Additionally, if FSR values cover a high
dynamic range, one can resort to gray scale color mapping of
FSR values on a logarithmic scale. For the results of the stress
tensor field, high values are mapped to red or green, to allow
for a combined visualization of two FSR fields. As previously
shown by Garth et al. [13], a direct LCS visualization without
explicit ridge extraction is often sufficient to faithfully identify
coherent regions and their separating structures.

VII. RESULTS FOR DIFFUSION TENSOR FIELDS

In the following, the properties of our proposed method
for the visualization of SCR in diffusion tensor fields shall
be explored with a number of both synthetic and measured
datasets and compared to other visualization techniques for
diffusion tensor fields. The datasets are:

1) Alternating diffusivity: a synthetic 64 × 64 × 64 tensor
field consisting of unidirectional linear anisotropy with
total diffusivity alternating by a factor of two every four
slices. All tensors are thus linearly anisotropic and differ
only in scale (see Figures 2 and 3).

2) Synthetic fiber bundle: a synthetic 64× 64× 64 tensor
field that models a simplified bundle of fibers that
separates at one side (see Figures 2 and 4).

3) Canine heart: a measured 256×256×134 DT-MRI image
of an excised canine heart (see Figure 5).

4) Human brain: a measured 148 × 190 × 160 DT-MRI
image of a human brain (see Figure 6). Prior to fur-
ther processing, we have smoothed the dataset with a
Gaussian filter width σ of two thirds of the voxel size.

All FSR fields were computed in fourfold native dataset
resolution (except Figure 11, left), normalized with the 95th

percentile, and visualized with a linear gray scale color map.

A. Comparison to Other DT-MRI Visualization Methods

Due to its dependence on the major eigenvector and thus
on linear anisotropy, our approach is compared to established
methods for analysis of linear anisotropy in diffusion tensor
fields. In detail, these methods are:

1) Fractional anisotropy (FA) as introduced by
Basser and Pierpaoli [1].

2) The gradient magnitude of FA, ‖∇FA‖.
3) A ridge criterion based on fractional anisotropy,
|∇FA · ε3|1/3, as proposed by Kindlmann et al. [26],
where ε3 is the minor eigenvector of the Hessian of FA.

All methods used the same resolution as the FSR and gradients
were computed with central differences. Drawing analogies
from previous results in the visualization of LCS in vector
fields, our extensions for tensor fields can be expected to
be capable of highlighting or discriminating the following
features in tensor fields:
• Regions with locally deviating major eigenvector direc-

tions.
• Regions of locally varying diffusivity (if step size control

based on the local eigenvalue is used).
• Structuring of locally coherent regions according to semi-

global divergence of trajectories (i.e. separation in the
course of a fiber bundle).
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Fig. 2. Left: tensor glyph visualization of the alternating diffusivities dataset. Right: tensor glyph visualization of the synthetic fiber bundle dataset.

Section V-A introduced a variation of the eigenvector line
tracing model that adds sensitivity to tensor diffusivity by per-
forming propagation steps proportional to the major eigenvalue
for the extraction of eigenvector lines. Figure 3 demonstrates
results obtained by applying this variation to the alternating
diffusivities dataset. It is apparent that this variation makes
regions of changing diffusivity visible in the FSR field. Since
the change in total diffusivity does not influence the respective
ratios of eigenvalues, this feature cannot be detected with any
visualization method solely derived from fractional anisotropy.

Figure 4 presents results obtained with the synthetic fiber
bundle dataset. All methods delimit the fiber bundle against
the background. Separating line trajectories form ridge features
in the FSR, as expected. Additionally, features visible in the
FSR appear to not only coincide with structures visible in
the other methods, but to form a superset of features that
grows with increasing integration length. The possibility to
perform such a semi-global analysis is one of the major
advantages of the FSR, since it allows one to structure coherent
regions in accordance to distant separation in the progression
of trajectories (see also Section VII-B).

In Figure 5 of the canine heart dataset and Figure 6 of the
human brain, the FSR distinguish coherent regions of uniform
fiber orientation (separated by ridges of high gray scale value).
The myocardium of the mammalian heart consists of several
layers of helical muscle fiber tracts. The angles of these fibers
are changing from the epicardium to the endocardium (e.g.
described and visualized in [44]). This layer structure of the
myocardium is apparent in the FSR field of the heart dataset.
Thin ridges appear where the angle of neighboring fiber layers
is changing. The different angles of the layers are also visible
in the right image of Figure 12, where eigenvector lines in
the heart dataset are directly visualized. In the brain dataset,
coherent structures are visible in the FSR field inside the
white matter areas of the brain. The corpus callosum (with
the lateral ventricles appearing in the center of the shown
slice) consists of a huge number of fibers connecting the
two cerebral hemispheres and is clearly visible as a region of
coherent fiber structure in the FSR. Coherent fiber structures
in the corona radiata and the internal capsule are visible in
the FSR as well. To some extent, these structures are likewise
visible with the FA-based approaches, but altogether, the FSR

field tends to represent these structures in a more coherent
and robust manner. An overlay of an RGB encoding of the
major eigenvector with the FSR field (Figure 7) also shows
that abrupt changes of the major eigenvector direction correlate
with distinct structures in the FSR field.

B. Varying Integration Length

A major benefit of our approach is that it allows for a
gradual transition from local to global analysis by increasing
the length of the integral curves. In doing so, propagation
length effectively represents a scale space parameter that
determines the scale at which separation of trajectories is
analyzed. The effect is illustrated in Figure 8 with the canine
heart dataset, where structures in the FSR grow and noise is
suppressed with increasing line length. This effect of growing
structures in the FSR also becomes apparent when comparing
the respective first images of Figures 4 and 9, which were
obtained with different propagation lengths.

C. Susceptibility to Noise

As already indicated in Figure 8, a semi-global analysis
by means of increasing the propagation length helps reducing
the impact of noise, as discussed by Haller in the context of
vector fields [16]. Here, we leave the propagation length fixed
and demonstrate the effect of different levels of noise to the
FSR field of the synthetic fiber bundle dataset compared to
the gradient magnitude of fractional anisotropy in Figure 9.
As a semi-global measure, one would expect the FSR to
degrade strongly due to accumulation of error along trajec-
tories. However, while the quality of both FSR and ||∇FA||
does degrade, the overall structure within the FSR remains
comparatively intact. Obviously, these results can only give an
initial qualitative impression. A detailed quantitative analysis
is subject of future work.

VIII. RESULTS FOR STRESS TENSOR FIELDS

We applied the FSR to medical stress tensor fields by using
integral curves following the principal stress directions (see
Section V-B). The presented results base on a stress tensor
field at a resolution of 86 × 81 × 226 that resulted from
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FSR FA ||∇FA|| |∇FA · ε3|1/3

Fig. 3. A comparison of the finite separation ratio, fractional anisotropy, the gradient magnitude of fractional anisotropy, and the fractional anisotropy ridge
criterion applied to the synthetic alternating diffusivity dataset. The FSR computed with eigenvalue-based step size control discriminates regions with differing
total diffusivity, which cannot be extracted with the other methods.

FSR FA ||∇FA|| |∇FA · ε3|1/3

Fig. 4. A comparison of the finite separation ratio, fractional anisotropy, the gradient magnitude of fractional anisotropy, and the fractional anisotropy ridge
criterion applied to the synthetic fiber bundle dataset. Features visible in the FSR form a superset of those visible in the gradient magnitude of FA and the
FA ridge criterion.

simulation of a human femur under load; the tensor field is
only defined inside the bone. A similar dataset is used in [7],
hence we were able to confirm the resulting FSR structures.
Figure 10 shows the results for the interesting area in the upper
part of the bone. The upper left image shows a combined
visualization of two FSR fields: green colored is the FSR
for lines that follow the principal stress with highest positive
eigenvalue, which corresponds to tension, red colored is the
FSR for lines that follow the principal stress with highest
negative eigenvalue, which corresponds to compression. The
two images in the lower row, where lines along one principal
stress direction are shown together with the corresponding
FSR, confirm that ridges in the FSR field show the separation
of the lines following the principal stress direction. In the
presented images, lines can still visually cross the ridges in the
FSR field or leave the dataset domain because a 2D slice of the
FSR field was combined with 3D lines in this visualization.
The structures indicated by the FSR field can be validated
according to medical literature as shown in the illustration
on the upper right. The typical distribution of principal stress
directions in a human femur can be recognized in the FSR
field. For example, a ridge in the tension FSR field can be
found where the green lines separate on the left side in the
illustration.

These results show that the FSR can help interpreting stress
tensor fields. Depending on the length of the underlying lines,
the FSR can be seen as a semi-global measure for coherent

principal stress regions, with low FSR values indicating areas
of coherent stress directions and high FSR values separating
different regions of coherent stress.

IX. IMPLEMENTATION

In practice, LCS in vector fields are visualized by defining
a grid of seeding positions for the computation of the flow
map. Since a full 3D flow map may easily require the
costly computations of hundred thousands or even millions
of stream- or pathlines, adaptive acceleration methods have
been proposed [12], [40]. With tensor fields, the issue of
computational complexity is even aggravated. Firstly, because
the coordinate map for diffusion tensor fields requires the
computation of two integral curves at each of its nodes (one
parallel to the local major eigenvector and another antiparallel
to it). In the case of stress tensor fields, the number of
computed curves per node even increases to six if the FSR
is computed for all three principal stresses. Secondly, because
for each of its integration steps, the propagation of these lines
requires the local solution of the eigensystem of the tensor
field. To make the analysis of tensor fields feasible at all, we
accelerate our method using modern programmable graphics
hardware inspired by the approach of Kondratieva et al. [29].
The FSR computation and visualization is implemented in C++
using OpenGL and its shading language. As in other general
purpose GPU computations, we make use of the highly parallel
processing in the fragment stage of modern graphics cards
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FSR FA

||∇FA|| |∇FA · ε3|1/3

Fig. 5. A comparison of the finite separation ratio, fractional anisotropy, the gradient magnitude of fractional anisotropy, and the fractional anisotropy ridge
criterion applied to the measured canine heart dataset. Although computed at the same resolution as the other approaches, the FSR reveals extensive coherent
structures that are far less sensitive to noise.

by assigning rasterized fragments to the seeding positions of
eigenvector lines, respectively stress lines, and propagating
them in shader loops. Two 3D textures are used to store the six
relevant entries of symmetric tensors and to efficiently retrieve
interpolated samples of the tensor field at any position within
its domain. An analytical algorithm [18] is used for computing
the eigensystem of the tensors on the GPU. Similarly, both the
gradient of the coordinate map and the FSR are computed
with the GPU for subsequent visualization. Comparing an
unoptimized single-threaded CPU reference implementation of

FSR computation to our GPU implementation, we observed an
acceleration factor of around 1000. A thorough performance
comparison is beyond the scope of this work. However,
due to the highly parallel organization of GPUs, an average
acceleration factor of 10 to 100 can be regarded as realistic.

Despite its benefits, there are also downsides to a GPU-
based implementation of the FSR computation. First, the
hardware accelerated interpolation of current GPUs utilizes
reduced floating point precision. A rough analysis of the
computational error involved with our GPU implementation
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FSR FA ||∇FA|| |∇FA · ε3|1/3

Fig. 6. A comparison of the finite separation ratio, fractional anisotropy, the gradient magnitude of fractional anisotropy, and the fractional anisotropy ridge
criterion applied to the measured human brain dataset. Structures visible with the other methods coincide in parts with those in the FSR. Other structures are
likewise visible, due to the semi-global nature of the FSR.

Fig. 7. Visualizations of the measured human brain dataset. Left: the major eigenvector direction mapped to RGB color values. Right: an overlay with the
computed FSR field. Visible structures correlate with abrupt changes in major eigenvector direction.

5 voxels 25 voxels 75 voxels

Fig. 8. Demonstration of the effect of increasing propagation length (measured in multiples of the voxel edge length) on the finite separation ratio using the
measured canine heart dataset. With increasing propagation length, structures become more coherent and noise artifacts are averaged.
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FSR, A = 0.2% FSR, A = 2% FSR, A = 20%

||∇FA||, A = 0.2% ||∇FA||, A = 2% ||∇FA||, A = 20%

Fig. 9. Comparing the FSR and the gradient magnitude of fractional anisotropy under the effect of noise. The images are labeled with the maximum amplitude
A (relative to the maximum tensor component throughout the entire dataset) of white noise with uniform distribution that has been added to all entries of
the tensor. The quality of structures visible with both approaches degrades with increasing level of noise. However, even though the FSR is a semi-global
measure that might potentially accumulate errors, the overall structure persists even at high noise levels.

indicates that the median of the deviation of end points of
particle traces is typically at about 0.005% and the median
of the deviation of the FSR at about 0.01%. Considering the
speedup of three orders of magnitude obtained by our GPU
implementation, this deviation may be regarded tolerable. The
second limitation of the GPU-based method is that storage
requirements for the tensor field, the coordinate map, the
resulting FSR field, and intermediate buffers may exceed
available texture memory. We follow two strategies to deal
with this storage issue. The first strategy is to compute the
FSR without storing the coordinate map in texture memory,
since it is a mere intermediate computation step in the process
of FSR computation. Instead, for each position at which the
FSR should be evaluated, the two local gradient tensors ∇̃ξk,T
(see Section V-C) of the coordinate map are computed on the
fly, from which the FSR is calculated directly. This is done in
the FSR fragment shader by evaluating six integral curves at
a time for k = +1 and k = −1 respectively, at the cost of
repeated evaluations of identical curves between neighboring
fragments. Thus, for each FSR value, twelve instead of two
integral curves must be evaluated. Despite its obvious inef-
ficiency, this approach performs for example in roughly 21

seconds on an NVIDIA 8800 GPU for a 256 × 256 × 134
diffusion tensor field sampled at this native resolution with
20 propagation steps for each eigenvector line (about 100
million eigenvector lines in total), which we still consider
sufficiently fast for explorative visualization. Furthermore, by
computing the integral curves in the same call of the fragment
shader, the local synchronization of the two, respective twelve,
curves, e.g. regarding stopping criteria within the tensor field,
becomes far more easy. Our second strategy is closely related
to FTLE visualization on planar cross sections, as published by
Garth et al. [12]. Initially, we compute the 3D FSR field at the
same resolution as the tensor field and allow it to be navigated
through volume rendering or cross sections. Additionally, we
offer the possibility to perform the FSR computation on a
cross section at a higher resolution, which greatly leverages
the richness of details in the FSR field, as shown in Figure 11
with fourfold native resolution.

X. CONCLUSION AND FUTURE WORK

We have presented a method for the visualization of separa-
trices of coherent regions, a generalized analog of Lagrangian
coherent structures. The SCR are based on a generalized

Author's personal copy



11

Tension and compression Illustrated stress lines

Tension Compression

Fig. 10. Slice of stress tensor FSR in femur dataset. Upper left: combined visualization of the FSR for the principal stress direction with highest positive
eigenvalue (tension - green) and with highest negative eigenvalue (compression - red). Upper right: illustration of principal stress direction with lines from
medical literature ( c© 2009 IEEE, reprinted with permission from [7]). Lower row: tension FSR field combined with 3D line visualization of the principal
stress direction (left); compression FSR field combined with 3D line visualization of the principal stress direction (right). Ridges in the FSR field indicate
separating lines of principal stress direction. The revealed structures correspond to those presented in medical literature.

measure of separation, denoted as finite separation ratio, which
is defined as the spectral norm of the right Cauchy-Green
deformation tensor of coordinate maps, a generalization of
flow maps. As an application of this method, we have visual-
ized SCR in symmetric second order tensor fields: synthetic
datasets, measured diffusion tensor images, and simulated
stress tensor fields. Regarding DT-MRI data, the obtained
results have been compared to those of classical methods
such as fractional anisotropy as well as derived gradient
and ridge measures. We have been able to exemplify that
SCR tend to form a superset of the features visible with
the methods derived from fractional anisotropy, and that the
FSR serves for structuring areas of local linear anisotropy
by means of a scalable semi-global analysis, a possibility
that the other methods do not expose. Concerning measured

datasets, features in the FSR appear to be of histological
relevance. Our results indicate that for the measured canine
heart dataset, visible SCR correspond to interfaces between
sheets of differing fiber orientation. The results for the stress
tensor field prove that our method is not restricted to the
analysis of diffusion tensor fields. Ridges in the FSR field
can indicate separating principal stress organization and thus
support the analysis of stress tensor fields. In addition, we
have described a GPU-based implementation for tensor fields
that provides acceleration of up to three orders of magnitude
compared to a CPU implementation.

Certain aspects of our proposed generalized FSR method
and its application require some discussion. First, in Equa-
tion 6 we have introduced the FSR as the maximum separation
of all m possible mappings in analogy to the established
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definition of the Lyapunov exponent. Here, there also may
exist application-specific cases where a different measure such
as a minimum or average FSR may be desired. Second,
regarding diffusion tensor fields, we use eigenvector lines
as characteristic lines. This implies that the analysis has
highest significance in areas of predominant linear anisotropy
because these trajectories in regions with planar anisotropy
or spherical isotropy are likely to behave chaotically. An
equivalent analysis in areas of insufficiently linear anisotropy
is part of our plans for future work. In connection with this,
the application of our method to medical imaging methods
with high angular resolution is also of interest. They can
model multiple directions of diffusion, e.g. of crossing or
touching fibers, which could be handled by our generalized
model of coherent structures with multiple coordinate maps
(Section IV).

Besides its direct visualization and interpretation as a
scalar field, further applications for the FSR are conceivable.
Garth et al. [12] proposed to use the FTLE field as a probabil-
ity density function that controls seeding distributions, i.e. in
order to preferentially seed particles at positions of high FTLE
values. This approach was later presented by Bürger et al. [3].
For diffusion tensor fields we propose a complementary ap-
proach. As showcased in Figure 12, where eigenvector lines
were seeded at the positions of low FSR values in a slice,
this seeding strategy allows the extraction of coherent fiber
bundles. Another possible application is the use of the FSR
field for segmentation of regions with locally coherent fiber
orientation. With increased propagation lengths, it also appears
possible to detect anatomical correspondence of coherent fiber
bundles, in analogy to tractographical approaches. Also, the
application of our method to tensor fields different to those
presented here, as they for example arise in image processing
or surface modeling, appears promising. Lastly, this work
has restricted itself to the visualization of SCR in symmetric
tensor fields. Naturally, it appears worthwhile to extend our
method both to asymmetric tensors and to other generalized
interrelations.
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he received the Habilitation degree in computer
science at Universität Stuttgart, Germany. From 2005
to 2007, Dr. Weiskopf was an assistant professor
of computing science at Simon Fraser University,
Canada. Since 2007, he has been a professor of
computer science at the Visualization Research Cen-
ter, Universität Stuttgart (VISUS) and at the Vi-
sualization and Interactive Systems Institute (VIS),

Universität Stuttgart. His research interests include scientific visualization,
GPU methods, real-time computer graphics, mixed realities, ubiquitous vi-
sualization, perception-oriented computer graphics, and special and general
relativity. He is member of ACM SIGGRAPH, the Gesellschaft für Informatik,
and the IEEE Computer Society.

Author's personal copy

http://www.dagstuhl.de/Materials/Files/07/07022/07022.TricocheXavier.Slides.ppt
http://www.dagstuhl.de/Materials/Files/07/07022/07022.TricocheXavier.Slides.ppt
http://neuromorphometrics.org/papers/Worth/WorthMICCAI98reject.pdf
http://neuromorphometrics.org/papers/Worth/WorthMICCAI98reject.pdf

	Introduction
	Related Work
	Coherent Structures in Vector Fields
	Generalized Lagrangian Coherent Structures
	Coherent Structures in Symmetric Tensor Fields
	Diffusion Tensor Fields
	Stress Tensor Fields
	Orientation Ambiguity in Tensor Fields

	FSR Visualization
	Results for Diffusion Tensor Fields
	Comparison to Other DT-MRI Visualization Methods
	Varying Integration Length
	Susceptibility to Noise

	Results for Stress Tensor Fields
	Implementation
	Conclusion and Future Work
	References



