
Vision, Modeling, and Visualization (2013)
Michael Bronstein, Jean Favre, and Kai Hormann (Eds.)

Local Extraction of Bifurcation Lines

Gustavo M. Machado, Filip Sadlo, and Thomas Ertl

Visualization Research Center, University of Stuttgart, Germany
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Figure 1: Buoyant Flow data set. (a) Traditional visualization by means of 1D/2D manifolds (red, blue) of (spiral) saddle

critical points (green). (b) Our visualization by means of 2D manifolds (red, blue) of bifurcation lines (green curves) provides

insight in cases where only one or no critical point at all is involved. Note that in (a) there are also 2D manifolds not related to

bifurcation lines (e.g., those of spiral saddles at bottom right), but since those manifolds that are present in both (a) and (b) are

consistent, the union of both provides the full topological structure.

Abstract

We present local extraction of bifurcation lines together with extraction of their manifolds, a topological feature

that has not yet been sufficiently recognized in scientific visualization. The bifurcation lines are extracted by a

modification of the vortex core line extraction techniques due to Sujudi-Haimes, and Roth-Peikert, both formulated

using the parallel vectors operator. While the former provides acceptable results only in configurations with high

hyperbolicity and low curvature of the bifurcation lines, the latter operates only well in configurations with low

hyperbolicity but is able to perform well with strong curvature of the bifurcation lines, however, with the drawback

that it often fails to provide a solution. We present refinement of the solutions of the parallel vectors operator as

a means to improve both criteria and, in particular, to refine the solutions of the Sujudi-Haimes criterion in cases

where the Roth-Peikert criterion fails. We exemplify our technique on synthetic data, data from computational

fluid dynamics, and on magnetohydrodynamics data. As a particularly interesting application, we demonstrate

that our technique is able to extract saddle-type periodic orbits locally, and in case of high hyperbolicity at higher

accuracy than traditional techniques based on integral curves.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—; J.2 [Physical Sciences and Engineering]: Physics—

1. Introduction

Bifurcation lines, as proposed by Perry and Chong [PC87],
represent streamlines that exhibit one converging and one
diverging 2D manifold of streamlines (Fig. 2) and, surpris-
ingly, have not yet been sufficiently recognized in scientific
visualization. In his thesis [Rot00], Roth states that bifurca-
tion lines can be obtained by extending Kenwright’s local
criterion [KHL99], which was defined for attachment and
separation lines in 2D vector fields on surfaces, to 3D vec-
tor fields. Roth also mentions that the resulting 3D criterion
is identical to the vortex core line criterion by Sujudi and
Haimes [SH95], with the only difference that instead of re-

quiring complex eigenvalues of the velocity gradient, real
eigenvalues are required. Finally, he also notes that this tech-
nique would work only for sufficiently straight bifurcation
lines, for the same reasons that motivated his higher-order
extraction of vortex core lines [RP98]. As stated in that pa-
per, however, this technique for vortex core lines can provide
better results in some cases but may still fail in others.

In this paper we modify and examine both vortex core line
extraction techniques, that of Sujudi and Haimes [SH95],
and that by Roth and Peikert [RP98], for the extraction of
bifurcation lines. Beyond that, we introduce refinement of
the resulting curves toward the aimed bifurcation lines, mak-
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Figure 2: Bifurcation line (green, according to [PC87]),

with two 2D manifolds of streamlines, one converging to the

bifurcation line in forward, and one in reverse time.

ing use of the parallel vectors operator due to Peikert and
Roth [PR99], and present a technique to extract the 2D man-
ifolds of bifurcation lines. One of our results is that in our
experiments, as expected, modified [RP98] provided better
results (required less refinement) than modified [SH95], but
there were many cases where modified [RP98] failed to gen-
erate a result at all. In many of these cases modified [SH95]
still generated an inaccurate result, and applying our refine-
ment provided accurate results in these cases.

Bifurcation lines are closely related to the concept of
saddle connectors introduced by Theisel et al. [TWHS03],
which represent intersection curves of the 2D manifolds of
two saddle-type critical points (Fig. 3(a)). Critical points are
isolated zeros of a vector field and those of type saddle can
be identified by hyperbolic field behavior, i.e., the eigenval-
ues of the velocity gradient exhibit both positive and neg-
ative real parts. Manifolds that consist of streamlines con-
verging to the saddle in positive time are called stable while
those that converge in reverse time are called unstable. We
refer the reader to Asimov’s notes on topology [Asi93] for
a thorough introduction to vector field topology. Since 1D
and 2D manifolds consist of streamlines, their intersection
is again a streamline. Saddle connectors represent bifurca-
tion lines close to the respective critical points (Fig. 3(b))
since there they are part of the hyperbolic dynamics of the
saddle point. In other words, the 1D manifold of saddle-type
critical points is always part of the respective 2D manifold
of a bifurcation line (Fig. 3(b)).

A final observation is that saddle-type periodic orbits
(Fig. 5) resemble closed saddle connectors, however, without
a critical point along them. For this reason, saddle periodic
orbits cannot be obtained by intersecting 2D manifolds of
saddle-type critical points. Nevertheless, in analogy to sad-
dle connectors, at least a part of a saddle-type periodic orbit
has to represent a bifurcation line, too (Fig. 5). While one
might think that obtaining only parts of saddle connectors
and saddle-type periodic orbits represents a limitation, rather
the opposite is the case. Bifurcation lines provide insight into
the hyperbolic dynamics of a vector field with respect to its
topological structure, similar to saddles. Beyond that, bifur-
cation lines can be present in absence of critical points, sad-
dle connectors, or saddle-type periodic orbits, complement-
ing traditional vector field topology (Figs. 1 and 3).

(a) (b) (c)

Figure 3: Solar MHD data set. (a) Saddle connector (green)

represents intersection curve between stable 2D manifold

(blue) of left critical point (green) and unstable 2D manifold

(red) of right critical point. 2D manifolds are limited by the

respective 1D manifolds (dark red and dark blue lines) of the

other saddle-type critical point. (b) Same view but with man-

ifolds of bifurcation line (green). 1D manifolds of critical

points are consistent with 2D manifolds of bifurcation line.

Bifurcation line and thus also its 2D manifolds exhibits gaps

at the critical points. (c) Same as (b) but without seed curve

connection (Fig. 7(e)) would lead to unnecessary gaps.

(a) (b)

Figure 4: Solar MHD data set. (a) Traditional visualization.

Saddle-type critical point (green point) is close to domain

boundary (gray). The second saddle-type critical point that

would be needed for obtaining the saddle connector is not

available (located outside the domain). Hence, the 1D man-

ifold (blue) and the 2D manifold (red) of the saddle provide

only limited insight. (b) 2D manifolds (red and blue) of the

bifurcation line (green line in (a) and (b), touching boundary

at the bottom of the image) provide full topological insight.

All in all, in vector fields defined on unbounded domains,
parts of bifurcation lines could be determined by marking
each point of saddle connectors and periodic orbits that ex-
hibits hyperbolic behavior. Although this approach would re-
quire the costly extraction of periodic orbits and integration
of streamlines, it could work for such vector fields. How-
ever, it has to be noted that accurate numerical integration
of streamlines in hyperbolic regions, i.e., along bifurcation
lines (or hyperbolic trajectories [Hal00]), is often a very dif-
ficult undertaking because in either, forward or reverse, di-
rection of integration the curve is repelled from the bifurca-
tion line as integration errors are growing exponentially. The
white streamline in Fig. 5(a) exemplifies this problem with
a saddle-type periodic orbit with medium hyperbolicity. In
contrast, our locally extracted bifurcation line captures the
entire orbit. It has to be noted, however, that saddle orbits
with very low hyperbolicity can be integrated and are also
amenable to identification with Poincaré maps (Fig. 5(d)).

The situation is, however, different in vector fields on
bounded domains. There, one or both saddle points that are
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(a) (b) (c) (d)

Figure 5: Saddle Orbit data sets. (a) Slow orbit (I) (rotation 0.4) (cf. Fig. 6(a)). Periodic orbit is captured as a bifurcation line

with refined v‖a (green), providing stable (blue) and unstable (red) manifolds. Due to the substantial hyperbolicity, we did not

succeed in obtaining the periodic orbit by integration of a streamline (white curve). (b) Fast orbit (IV) (rotation 10.0). Periodic

orbit is captured as a bifurcation line with refined v‖b (green). (c) Orbit (VI) that exhibits high hyperbolicity at left but zero

hyperbolicity at right. Only the sufficiently hyperbolic (left) part of the bifurcation line is obtained with refined v‖a (v‖b failed).

Note, however, that the right end of the bifurcation line deviates, i.e., the refinement aligned it with a streamline different to

the bifurcation line. Nevertheless, this has negligible impact, since the 2D manifolds are obtained using “connected” seeding

curves (Fig. 7(e)), resulting in complete 2D manifolds. (d) Analysis of the periodic orbit (b) with a Poincaré map (gray).

necessary to extract a saddle connector, or part of a periodic
orbit, may be located outside the domain. In these cases, it
would be impossible to obtain the respective topological con-
structs based on streamline integration (Fig. 4(a)). Boundary
switch connectors [WTHS04] are an alternative to saddle
connectors in bounded domains but they depend on the do-
main boundary. Local extraction, in contrast, does not make
a difference if part of a bifurcation line, saddle connector, or
periodic orbit is located outside the domain (Fig. 4(b)).

2. Related Work

The works related most closely to this paper are the saddle
connectors due to Theisel et al. [TWHS03] and the concept
of saddle-type periodic orbits.

Similar to critical points, periodic orbits also represent
objects that are invariant under the action of the flow. Peri-
odic orbits represent isolated closed streamlines, i.e., closed
streamlines with no neighboring closed streamline. Similar
to critical points, periodic orbits can be classified into dif-
ferent types. This can be achieved by means of the Poincaré
map, a map that captures the neighborhood of the periodic
orbit with respect to a “full revolution” (Fig. 5(d)). The
Poincaré map is obtained by placing a planar disc such that
the periodic orbit intersects it at a single point p. By seeding
other streamlines in the vicinity of p and detecting the point
where they intersect the disc after one revolution, a 2D map
is obtained (arrows in Fig. 5(d)). The eigenvalues of the Ja-
cobian of this map at p define the type of the periodic orbit.
If both eigenvalues are positive and one of them smaller than
one while the other is larger than one, the orbit is of type sad-
dle (e.g., Figs. 5 and 9). If both eigenvalues are negative, the
orbit is of type twisted saddle (Fig. 9(b)). Both orbits give
rise to two 2D manifolds: one manifold converging to the
orbit in forward and one in reverse time. In case of twisted
saddle orbits, the 2D manifolds represent Möbius strips. Sim-
ilar to critical points, there are also source and sink types
of periodic orbits but these do not give rise to manifolds. A
recent technique [KRRS13] extracts saddle-type periodic or-
bits based on the finite-time Lyapunov exponent.

Closely related to vector field topology but usually not
considered topological constructs are vortex core lines.
These lines represent the “axis” of vortices and they provide
a concise representation of vortical flow. Various approaches
have been presented so far for their extraction. Sujudi and
Haimes [SH95] extract them as those loci where velocity is
parallel to the real eigenvector of the velocity gradient with
the additional requirement that the other two eigenvectors
are complex. In Roth’s formulation [Rot00] of the helicity-
based visualization approaches by Levy et al. [LDS90], vor-
tex core lines are defined as those locations where vorticity,
i.e., the curl of velocity, is parallel to velocity. Weinkauf et
al. [WSTH07] and Fuchs et al. [FPH∗08] extend [SH95] for
time-dependent flow. Peikert and Roth [PR99] identified the
framework of line-type feature extraction as the loci where
two vector fields are parallel. Roth and Peikert [RP98] ex-
tended the approach [SH95] to higher order. They identi-
fied that the approach [SH95] represents the locations where
streamlines are straight, reformulated it as the points where
acceleration is parallel to velocity, and based on this they
extended the approach to a higher order by formulating a cri-
terion that extracts those points of streamlines that exhibit
zero torsion. Sahner et al. [SWH05] define vortex core lines
as valley lines of λ2, a scalar field introduced by Jeong and
Hussain [JH95] indicating vortex regions, where negative.

In this paper we make use of modified versions of the ap-
proaches [SH95] and [RP98] for extracting bifurcation lines.
In this respect, the union of the respective vortex core lines,
bifurcation lines, and constructs from traditional vector field
topology represents an extended topological representation.

3. Extraction of Bifurcation Lines

3.1. Parallel Vectors Operator

Many line-type features can be formulated as the set of
loci where two (derived) vector fields are parallel (note that
throughout this paper we use the term parallel, denoted as ‖,
also for the antiparallel configuration). In their framework,
called the parallel vectors operator, Peikert and Roth [PR99]
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(a) (b) (c)

Figure 6: Saddle Orbit data sets. View on the planar 2D

manifold. (a) Slow orbit (I) (rotation 0.4) (cf. Fig. 5(a)). So-

lution of v‖a (purple) is close to refined v‖a (green), while

v‖b (yellow) deviates substantially due to strong hyperbolic-

ity. (b) Faster orbit (II) (rotation 1.3) (cf. Fig. 7(b)). Solution

of v‖a (purple) deviates substantially but v‖b provides no

solution at all, while refined v‖a (green) obtains correct so-

lution (cf. Fig. 7(b)). (c) Fast orbit (III) (rotation 3). v‖a fails

while v‖b (yellow) is very close to refined v‖b (green).

formulate different line-type features by means of this ap-
proach and provide an algorithm for their efficient extrac-
tion. The framework consists of two vector fields v and w

and solves for the set of points where v‖w, formulated as

v×w = 0 . (1)

In our implementation, we use the “analytic solution for
triangulated faces” approach from [PR99], i.e., we triangu-
late non-triangular faces and solve for the solutions of Eq. 1
thereon, as this approach is faster and typically provides the
same results as their approach based on Newton iterations.

Once these “raw” features are obtained, one typically
needs to suppress false positives (noise). We follow the ap-
proach from [PR99] and reject those parts of features where
the angle α(ϑϑϑ,v) := cos−1(|ϑϑϑ · v|/(‖ϑϑϑ‖ · ‖v‖)), defined as
the angle between the vector field v and the tangent ϑϑϑ of the
feature line, exceeds the user-defined threshold τα ≥ 0. The
rationale behind this is that many line-type features, includ-
ing bifurcation lines, conceptually represent streamlines of v

or w. Note that in typical data sets τα has to be chosen com-
parably large, because the criteria often have problems in de-
tecting the exact location of the feature. As a second filtering
approach, which is applied subsequently, we require a min-
imum length τµ of the features according to [PS08], to sup-
press short lines that represent erroneous or weak features.
The result of the procedure is a set of (closed) polylines.

3.2. Modification of Vortex Core Line Criteria

As described in Sec. 2, the criterion [SH95] identifies a vor-
tex core line in 3D flow where velocity v is parallel to the
real eigenvector of ∇v, or in other words, v is parallel to the
steady formulation of acceleration a := (∇v)v, resulting in

v‖a , (2)

with the additional requirement that the other two eigenvec-
tors (and hence also the other two eigenvalues) are complex.

Roth states in his thesis [Rot00] that if one instead re-
quires all eigenvalues to be real, the resulting curves would

include bifurcation lines, assuming that the bifurcation lines
are sufficiently straight. Since Eq. 2 in this case holds if any

of the three eigenvectors of ∇v is parallel to v, one needs
to test for bifurcation line behavior. As illustrated in Fig. 2,
a bifurcation line is characterized by hyperbolic behavior in
sections perpendicular to the line, i.e., there must be one di-
rection that converges toward the line in forward and one in
reverse time if the vector field is projected to that plane. Such
a hyperbolic behavior can be characterized in 2D flow by
det(∇v) < 0. Hence, besides rejecting feature points where
α(ϑϑϑ,v) exceeds τα, we additionally require a minimum fea-
ture strength τχ > 0, i.e., we project ∇v onto the plane per-
pendicular to v, compute its determinant d and reject the
feature point if d/‖v‖ > −τχ. Finally, we reject those lines
shorter than τµ. Please note that we denote this technique for
bifurcation line extraction also as v‖a or simply Eq. 2. An
example result is shown in Fig. 6(a) (purple).

The higher-order criterion for vortex core lines due to
Roth and Peikert [RP98] identifies vortex core lines as those
loci where velocity v is parallel to the steady formulation of
the jerk vector b := (∇a)v = (∇((∇v)v))v, resulting in

v‖b , (3)

with the additional requirement that ∇v exhibits one real and
two complex eigenvalues. While Eq. 2 identifies points with
zero streamline curvature as belonging to a vortex core line,
Eq. 3 extends the requirement to zero streamline torsion, i.e.,
locally planar streamlines. The motivation for this definition
is that the solutions of Eq. 2 are displaced from the aimed
vortex core line the more this core line is curved and the
slower the flow rotates around the core line compared to the
velocity along the core line. In other words, Eq. 2 fails for
bent vortices, in particular if they exhibit a large longitudinal
speed. Interestingly, this is also the case for the derived bi-
furcation line criterion Eq. 2, as demonstrated in Fig. 6. The
reason for this is that it identifies the points of zero stream-
line curvature (see also blue curve in Fig. 7(c)). It is apparent
in Fig. 6 that Eq. 3 performs substantially better, however, at
the drawback that it may fail at providing a solution.

We modify the approach of Roth and Peikert [RP98] ac-
cordingly for bifurcation lines, i.e., as in the case of the crite-
rion by Sujudi and Haimes [SH95], we require that all eigen-
values are real. Besides the difference in the parallel vectors
definition, i.e., Eq. 3 instead of Eq. 2, the procedure is iden-
tical. We denote this modified technique as v‖b or simply
Eq. 3. An example result is provided in Fig. 6(a) (yellow).

3.3. Refinement of Parallel Vectors Solutions

As demonstrated in Fig. 6, v‖b is often more accurate than
v‖a: it provides very accurate results for high velocities (rel-
ative to hyperbolicity) along the bifurcation line. However,
there are many cases where it fails to provide a result (e.g.,
Figs. 1, 6(b), 8, 9, and 10). Some of these cases are amenable
to extraction by v‖a, however with the drawback that v‖a
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Figure 7: (a) Convergence plots of refinement. (b) Impact of regularization (data set II): without regularization (black) and with

(green). (c) Refinement illustrated at the example of the radial manifold from Fig. 5(a): bifurcation line (saddle orbit) (green),

solution of zero streamline curvature v‖a (blue), planes normal to tangent of blue curve (orange), and correction vector (red).

Small steps along the correction vectors are applied iteratively, making the blue curve converge toward the bifurcation line.

(d) Same as (c) illustrating impact of regularization in cases of uneven distribution of vertices of blue polyline. (e) Seed curve

generation for 2D manifolds of bifurcation lines. Two seed curves are generated by offsetting from the bifurcation line (green)

along the major eigenvector (red) at each point of the line, and two curves by offsetting in the opposite direction of the minor

eigenvector (blue). The red curves are connected at the outflow end of the bifurcation line (at the green arrow head), while the

blue curves are connected at the inflow end, resulting in two seeding curves.

does not provide sufficient accuracy for practical applica-
tions such as manifold extraction (Fig. 8). To this end we
present refinement of parallel vectors solutions. In particu-
lar, we refine solutions of v‖a in cases where v‖b fails.

Figure 7(c) illustrates a typical solution of v‖a (in blue)
when applied for the extraction of curved bifurcation lines
(green). Although it solved v‖a, it did not provide a solution
that is close to a streamline, i.e., α(ϑϑϑ,v) is comparably large.
Quite large τα are necessary to obtain a solution at all in such
cases. The necessity of using large τα indicates that the result
is of low quality, i.e., substantially displaced from the aimed
bifurcation line. In contrast, Figs. 6(b) and 6(c) illustrate for
the example of refined v‖a and v‖b that the bifurcation line
is well captured if α(ϑϑϑ,v) is negligible.

Hence, our motivation is to refine solutions of (v‖a) in
order to reduce α(ϑϑϑ,v), i.e., we want to apply the least nec-
essary deformation to make them fit a streamline as close as
possible. The recent approach by Martinez et al. [MSRT13]
to obtain streamsurfaces by deforming arbitrary surfaces to
be as tangential as possible to a vector field would be a possi-
ble way to go. In this paper, however, we follow a much sim-
pler approach, also because application of [MSRT13] would
exceed the scope of this paper. Nevertheless, we think that it
would be worthwhile to investigate it as future work.

We employ a gradient descent approach. At each iteration,
we estimate the tangent ϑϑϑi of the feature polyline at each of
its vertices ci by ϑϑϑi := ci+1 − ci−1 (clamping at the bound-
aries of open feature lines) and construct a plane normal to
that tangent (orange in Figs. 7(c) and (d)). Inside this plane
we employ a step in the direction that reduces α(ϑϑϑi,vi), i.e.,
along −∇α(ϑϑϑi,vi) (red in Figs. 7(c) and (d)), with vi repre-
senting the velocity at ci. We estimate ∇α(ϑϑϑi,vi) by central
differencing of α(ϑϑϑi,vi) using a four-neighbor stencil in the
plane. Because Newton iterations would choose a different
step size for each vertex in generic setups and would perturb
the tangents, we use the same step size ∆t for all vertices
and reduce ∆t after each iteration: ∆tnew = δ∆told , in our

experiments we used δ = 0.999 and set ∆t initially to 0.01
times the cell size. Centering the orange refinement planes
at the respective vertex, as Fig. 7(c) might suggest, would,
however, lead to uneven distribution of the vertices along
the polyline in asymmetric configurations, i.e., the polyline
segments would tend to vary in size. This would affect the es-
timation of the tangent and hence make the refinement unsta-
ble (Fig. 7(b) (black)). To avoid this, we employ regulariza-
tion, i.e., we translate the planes along ϑϑϑi such that they in-
tersect ϑϑϑi at (ci+1 + ci−1)/2, as illustrated in Fig. 7(d). This
leads to a more uniform distribution of the polyline vertices
during refinement and hence better convergence (Fig. 7(b)).

The effect of our refinement is also illustrated in Fig. 6.
For evaluation/monitoring of the refinement, we compute the
absolute flux of v across the segments of the polyline. We
discretize each segment si := ci+1 − ci into n parts of equal
length, interpolate v at the center of each part resulting in v j ,
and compute the absolute flux φi across segment i as:

φi :=
‖si‖

n

n

∑
j=1

∥

∥

∥

∥

v j −
v j · si

‖si‖2
· si

∥

∥

∥

∥

. (4)

We monitor its minimum φmin, maximum φmax, and average
φ over all polyline segments, and plot them (Fig. 7(a)). There,
the fluxes dropped fast until a local minimum at iteration 744
(white curve in Fig. 7(b)) and then slowly to the green curve
in 4000 iterations, which took 2.409 seconds (Table 1).

4. Extraction of Bifurcation Manifolds

As introduced in Sec. 1, each bifurcation line gives rise to
a 2D manifold that converges to it in forward time and to a
2D manifold that converges in reverse time (Fig. 2). Since a
bifurcation line typically represents a streamline, starting a
streamsurface from this line would degenerate to a stream-
line itself. Similar to the extraction of 2D manifolds of sad-
dles, one needs to seed the streamsurface at some offset from
the bifurcation line. In the case of saddle points, it is com-
mon practice to use a closed curve for seeding and to offset
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(a) (b) (c)

Figure 8: Evaluation of bifurcation lines by smallest pos-

sible seeding offset during manifold generation. More ac-

curate (more streamline-like) bifurcation lines allow for

smaller seeding offset. The underlying data set (V) exhibits

additional oscillation of the periodic orbit, causing v‖b to

fail. (a) Manifold (red) computed from solution of v‖a (pur-

ple) with manually found minimum offset of 1.5 that still as-

sures that manifolds extend to correct side of bifurcation line

(in contrast to (b) where offset was set to 1.0). (c) Same as

(a) but manifold computed from refined v‖a (green) allows

for much smaller offset (smaller than 0.05).

this curve from the critical point along the eigenvectors of
∇v. In analogy, we generate a seeding curve for each of the
two 2D manifolds at a small offset from the bifurcation line
(Fig. 7(e)). The seeding curves for the manifolds that con-
verge to the bifurcation line in forward time are offset in
opposite direction to the minor eigenvector and integrated in
reverse time, while those converging to it in reverse time are
offset along the major eigenvector and integrated forward.

Interestingly, this straightforward approach is not optimal:
it would result in unnecessary gaps, as shown in Fig. 3(c).
These gaps are avoided if the forward seeding curves are
connected at the outflow end of the bifurcation line and the
reverse ones are connected at its inflow end (Fig. 7(e)), re-
sulting in manifolds that are more consistent with the 2D
manifolds of saddle-type critical points (Fig. 3(b)). As a con-
sequence, this seeding approach is able to extract periodic
orbits by intersecting the two manifolds even in cases where
the bifurcation line captures only part of the orbit (Fig. 5(c)).

As in the case of the extraction of 2D manifolds of saddle
points, where the allowable offset depends on the accuracy
of the critical point extraction, the size of the offset is limited
by the accuracy of the bifurcation line extraction, too. If the
offset is chosen too small, at least parts of the manifolds are
advected to the wrong side of the bifurcation line. Hence, the
required offset is an expressive measure for the accuracy of
an extracted bifurcation line. It can be determined only for
the reason of quality assurance, or it is obtained as a byprod-
uct during manifold extraction. Fig. 8 illustrates this in the
context of the evaluation of v‖a and refined v‖a.

5. Results

We evaluate our approach using different vector field data.
As (incompressible) liquid flow fields at moderate Reynolds
numbers exhibit negligible divergence and magnetic fields
are divergence-free, critical points as well as periodic orbits

Table 1: Performance measurements. Total includes extrac-

tion (Sec. 3.2), refinement (Sec. 3.3), and filtering (Sec. 3.2).

Data
Time[s]

Refine Filter Total

Buoyant Flow (Fig. 1(b)) 3.393 0.196 9.145
Saddle Orbit I (Figs. 5(a) and 6(a) (green)) 0.662 0.371 1.597
Saddle Orbit II (Figs. 6(b) and 7(b) (green)) 2.409 0.373 3.343
Saddle Orbit III (Fig. 6(c) (green)) 1.076 0.365 2.367
Saddle Orbit IV (Fig. 5(b)) 0.006 0.367 1.320
Saddle Orbit V (Figs. 8 (green)) 0.436 0.366 1.361
Saddle Orbit VI (Fig. 5(c)) 0.631 0.367 1.514
Saddle Orbit VII (Fig. 9 (green)) 0.458 0.368 2.989
Solar MHD (Fig. 10(b)) 43.848 14.964 81.303

of type (spiral) source and sink do not need to be consid-
ered in these data. Hence, the remaining stable traditional
topological constructs in such 3D vector fields are saddle-
type critical points (and the resulting saddle connectors), and
(twisted) saddle periodic orbits. As detailed in Sec. 1, both
of these constructs contain bifurcation lines. We investigate
our technique in the field of computational fluid dynamics
(CFD) in Sec. 5.2, as it is a common source of vector fields,
and magnetohydrodynamics (MHD) data of the solar corona
in Sec. 5.3. But since we did not succeed in finding a CFD or
MHD data set that contains a saddle-type periodic orbit, we
developed respective analytic models, covered in Sec. 5.1.
Note that we highlight some of the streamlines of the 2D
manifolds to depict flow direction.

Table 1 provides the timings of our approach for the data
sets used in our results. Our experiments were performed on
a Linux-based system consisting of an Intel(R) Core(TM) i7-
2600 CPU at 3.4GHz with 8GB of RAM and equipped with
a NVidia GeForce GTX 560 Ti with 2GB of memory. Note
that our prototype was not optimized for performance and
we believe that there is potential for further acceleration.

5.1. Synthetic Periodic Orbits

For investigating our technique in the context of periodic
orbits, we developed two similar mathematical models of
saddle-type periodic orbits and sampled both on a Cartesian
grid of 603 nodes and extent of 593.

The first model represents an open vector field (with flux
across its domain boundaries) and exhibits a saddle-type pe-
riodic orbit while the hyperbolic influence is not spatially
bounded, i.e., it extends throughout the domain. Besides the
definition of the radius of the orbit, it provides parameters
for the radial and axial linear growth of the respective vector
components with respect to the distance from the orbit, i.e.,
the hyperbolicity, a parameter for the speed of the superim-
posed rotation along the orbit, amplitude and frequency to
add a radial sine oscillation of the orbit, and amplitude and
frequency to add an axial sine oscillation of the orbit.

The second model represents a spatially bounded 2D hy-
perbolic region, oriented perpendicular to the orbit, bounded
with a cosine profile and moving along the orbit. It provides
parameters, additional to the first model, to set the speed of
twist (i.e., rotation around the orbit) of the hyperbolic region
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as it moves along the orbit, parameters to define the size of
the hyperbolic region, and to vary the hyperbolic strength of
the region while it moves along the orbit.

The first model gave rise to the following data sets. The
data set I, visualized in Figs. 5(a) and 6(a), exhibits low ro-
tation (0.4) along the orbit. The data set II from Figs. 6(b)
and 7(b) differs from that only in terms of rotation along
the orbit, which is 1.3 in this case. In the data set III from
Fig. 6(c), the rotation is 3, and the data set IV of Fig. 5(b)
differs once more only in terms of the rotation along the or-
bit, which is 10.0 there. One exception is the data set V from
Fig. 8 where the hyperbolic component in axial direction is
smaller, rotation “along” the orbit is only 0.3, and the orbit
oscillates radially with frequency 3 and amplitude 3 and axi-
ally with frequency 4 and amplitude 0.8 per revolution.

The second model was used to generate the remaining
two data sets. The data set VI, visualized in Fig. 5(c), ex-
hibits rotation of 0.05 along the orbit and the hyperbolicity
varies from maximum on one side of the orbit to zero hyper-
bolicity on the other side. Data set VII (Fig. 9) is the most
complex one, it differs from VI in terms of slower rotation
along the orbit (0.02), a 180 degree rotation around the orbit
per revolution (causing a twisted-saddle periodic orbit), no
variation of hyperbolicity along the orbit, but instead radial
oscillation of the orbit with amplitude 2 and frequency 6, ax-
ial oscillation with amplitude 3 and frequency 5, and noise of
maximum magnitude 0.005 added to the vector field. Adding
higher levels of noise, however, disrupted the results of v‖a.
A more sophisticated noise model could be used for this. We
regard this data representative for real-world data.

Our approach obtained the periodic orbit in all cases in
terms of a bifurcation line, some with refined v‖a, some with
v‖b. As expected, however, it extracted only the sufficiently
hyperbolic part of the orbit in data set VI. The 2D mani-
folds of the bifurcation line, however, obtained the complete
periodic orbit due to our seed curve connection approach
(Fig. 7(e)). Note that because v‖a provided a very inaccu-
rate result in this case, the ends of our line did not converge
well to the bifurcation line during refinement.

5.2. Buoyant Flow CFD Data

Next, we applied our approach to a time-dependent simu-
lation of buoyant air flow in a closed container, heated at
the bottom and cooled at the top. This data set was simu-
lated on a uniform grid with resolution 61 × 31× 61. Fig-
ure 1(a) shows the result obtained with traditional vector
field topology while Fig. 1(b) shows the result of our ap-
proach. One can see that the 2D manifolds extracted from
both approaches are consistent, although some are missing
in one approach while some are missing in the other. For
example, the unstable 2D manifold of the uppermost saddle
point was also obtained from the bifurcation line. Neverthe-
less, at the same region, the stable 2D manifold could only
be extracted from the bifurcation line. On the other hand,

(a) (b)

Figure 9: Twisted Saddle Orbit data set (VII). Similar

to 5(a) but with orbit additionally curved in both radial

and axial direction, and with noise added to the vector field.

(a) Parallel vectors solutions of v‖a (purple), refined v‖a

(green), and v‖b (yellow), with some of the streamlines of

the manifolds for context. The v‖b criterion failed here, as

in most curved periodic orbits with low tangential velocity

in our experiments. (b) The manifolds of refined v‖a.

there are cases where a critical point provides manifolds that
are not related to bifurcation lines, e.g., those of spiral sad-
dles at the bottom. This demonstrates that a merge of both
approaches provides a more complete visualization of the
topological structure of vector fields.

5.3. Solar MHD Data

Finally, we carried out experiments with MHD simulation
data of the solar corona, available at [MHD]. These data
are given on a spherical structured grid at resolution 181×
100× 150, but since the coronal magnetic field exhibits sig-
nificantly more complex structures near the solar surface, we
resampled the data in regions of interest (ROI) there.

Our first investigation is in a small ROI that contains two
saddle points close to each other. Figure 3(a) shows the re-
sult by means of traditional vector field topology: both criti-
cal points have been extracted and the respective 1D and 2D
manifolds computed. It can be seen that both 2D manifolds
converge to and are limited by the 1D manifold of the other
critical point. The intersection of the two 2D manifolds rep-
resents a saddle connector. The streamlines on the 2D man-
ifolds nicely convey that the complete saddle connector is
hyperbolic, i.e., it repels streamlines in one direction along
one 2D manifold while it attracts streamlines along the other
2D manifold. Figure 3(b) provides the result obtained with
our approach. Because the entire saddle connector is hyper-
bolic, it is completely captured by the resulting bifurcation
line. Note that there are also small bifurcation lines on the
other side of the critical points, resulting in gaps in the 2D
manifolds where the critical points reside. These gaps could
be closed by connecting the bifurcation lines across the criti-
cal points prior to seed curve generation, but we omitted this
in our implementation as it could introduce inaccuracies.

Another ROI captures a bifurcation line that extends from
a saddle point to the domain boundary (Fig. 4). In this case,
traditional vector field topology only provides one 2D mani-
fold, see Fig. 4(a). Figure 4(b) shows the result obtained with
our approach, which provided both 2D manifolds and hence
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(a) (b)

Figure 10: Solar MHD data set. (a) Traditional visualiza-

tion by means of 1D/2D manifolds (red, blue) of (spiral) sad-

dle critical points (green). (b) Visualization based on bifurca-

tion lines (green curves) and their 2D manifolds (red, blue).

It is apparent that (a) fails to provide the field structure in

regions where no critical points are present (e.g., the front of

the Sun), while our visualization provides these details.

the full topological picture. Note that the 2D manifolds are
not integrated to full extent to avoid occlusion issues.

Figure 10 compares the result from traditional vector field
topology with our approach. This ROI was resampled at a
resolution of 2013. As for the CFD data set, one can observe
that in some regions (e.g., the highlighted one) the traditional
vector field topology does not provide the full topological
picture, i.e., some separating manifolds are missing, while
our approach provides those and hence complements it.

6. Conclusion

We have presented local extraction of bifurcation lines by al-
tering two existing techniques for vortex core line extraction,
formulated by means of the parallel vectors operator. We
have investigated the advantages and drawbacks of the two
methods and, because one of them provided better results in
general but failed more often, we introduced refinement of
solutions of the parallel vectors operator. To obtain their 2D
manifolds, similar to those of saddle points, we developed
a respective seeding strategy that avoids unnecessary gaps.
We related the concept of bifurcation lines to saddle connec-
tors and saddle-type periodic orbits and found that each of
these constructs has to contain at least a part of a bifurca-
tion line. As a consequence, our technique provides a local
approach to the extraction of saddle-type periodic orbits and
(parts of) saddle connectors. In the case of periodic orbits,
our approach works also in configurations where the velocity
along the orbit is low compared to the hyperbolicity of the or-
bit, cases where traditional approaches based on streamline
integration tend to fail. We have shown that bifurcation lines
and their 2D manifolds can complete traditional vector field
topology. More sophisticated refinement could be subject to
future work, as well as the application of our refinement for
more accurate extraction of vortex core lines and ridge lines.
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