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Abstract
In this paper we provide a first step toward simulation-consistent visualization techniques. We focus on wall
functions modeling near-wall flow in computational fluid dynamics (CFD) using the law of the wall. By integrat-
ing these functions, which are effective only in cells adjacent to solid boundaries, with traditional interpolation
schemes used in the interior of the domain, we obtain results that account for the simulation model. We demon-
strate the advantages of our scheme using flow visualization techniques on two three-dimensional CFD examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications Physical
Sciences and Engineering—

1. Introduction

Many phenomena subject to scientific visualization are
present in the form of continuous fields. But while major
efforts are taken on the simulation side to accomplish ap-
propriate models and to obtain accurate solutions thereof, it
is still common practice to transfer the resulting data to the
visualization side in terms of discrete values only. The fact
that there the field continuum has to be reestablished from
these values by means of interpolation is often ignored—
the visualization side typically assumes tensor-product lin-
ear (bilinear in 2D and trilinear in 3D) interpolation for the
analysis. This is no surprise since large parts of visualization
techniques still rely on (and exploit the simplicity of) these
interpolation schemes. Consequently, we propose that simu-
lation results be accompanied by interpolation schemes that
are consistent with the models that produced them.

In the context of computational fluid dynamics (CFD) the
Navier-Stokes equations have to be solved [FP02]. Direct
numerical simulation discretizes these equations directly. In
the case of turbulent flow, however, this implies that all tem-
poral and spatial scales have to be resolved, typically neces-
sitating extremely fine grids and small time steps. In practice
this is often not feasible, in particular for flows with high
Reynolds numbers, which are found in many engineering
applications. Such flows are strongly affected by the flow be-
havior near no-slip boundaries. The zero velocity condition
on these surfaces causes strong shear forces, leading to the
formation of a so-called boundary layer, a region where the

velocity magnitude is smaller than 99% of the free-flow ve-
locity further away from the boundary. The phenomena tak-
ing place within this layer are a major source of vorticity and
the generation of turbulence [SG00]. In the cases where the
small length scales of turbulence cannot be resolved with the
grid, so-called subgrid-scale models are typically employed
to account for the influence of the unresolved scales. For
engineering applications Reynolds-averaged Navier-Stokes
(RANS) solutions are commonly employed in combination
with turbulence models, allowing for relatively coarse simu-
lation grids. However, as the boundary layer is typically very
thin and would require a comparably high resolution, often,
high Reynolds number models are used in addition, harness-
ing analytic wall functions, like the law of the wall, to model
the characteristic near-wall velocity distribution.

As near-wall flow is of great importance to the global
characteristics of the flow field and development of turbu-
lence, both accurate simulation and visualization of these re-
gions is of particular importance. To this end, we try to help
to close the gap between simulation techniques that employ
subgrid-scale models and visualization techniques, which
typically ignore these models. Specifically, we provide an
improved interpolation scheme that applies to cells adjacent
to no-slip boundaries where the simulation uses a wall func-
tion. Note that on the simulation side the wall functions are
employed similar to boundary conditions, while on the visu-
alization side we derive a respective interpolation scheme.
The increased consistency with the simulation model not
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only improves the quality of the analysis, but should also
help debugging of CFD solvers. While our approach works
well for convex no-slip boundaries in unstructured grids, it
is restricted to rectangular cells in concave no-slip boundary
regions. Nevertheless, we see our approach as a first impor-
tant step that shall trigger future work.

2. Related Work

There are only comparably few visualization techniques that
specifically target analysis of near-wall flow, e.g., flow sepa-
ration [KHL99], topology [LGD∗05], and generation of vor-
tices [WTS∗07, SPS06]. Petz et al. [PPG∗08] presented a
method that flattens boundary geometry in order to allevi-
ate the analysis near curved walls. Nevertheless, to the best
of our knowledge, there are so far no visualization tech-
niques that account for subgrid-scale models such as wall
functions. However, with higher-order simulation methods
becoming more widespread, the interest in accurate visual-
ization of cell-wise polynomial fields has increased in recent
years [SUP∗11]. Methods have been presented that are able
to evaluate the nonlinear polynomial fields directly and ac-
curately, e.g., for ray casting isosurfaces [NK06,PVS∗11] or
interactive direct volume rendering [UFE10]. While tensor-
product linear interpolation schemes are successfully em-
ployed in tetrahedral and hexahedral grids, mean value in-
terpolation [JSW05] has become popular for interpolation
in more general polyhedral grids [MHDG11], in particular
if complex field variations are observed on the faces of the
grid. In our approach we make use of mean value interpo-
lation for combining the wall function based scheme with
the traditional interpolation used away from the boundaries.
Thereby, mean value interpolation guarantees C0 continuity.

3. Wall Function Consistent Interpolation

For a self-contained description and to motivate our inter-
polation scheme, we first describe how the data that we ad-
dress are simulated (Section 3.1), and based on this we then
describe our approach (Section 3.2).

3.1. Simulation Model

The law of the wall models the Reynolds-averaged wall-
tangential velocity component ūt of a fluid flow near no-
slip boundaries at high Reynolds numbers [SG00]. The
relationship between ūt and the wall distance y is typ-
ically given by the respective dimensionless variables

u+ =
ut

uτ

(1) and y+ =
ρuτy

µ
(2)

with friction velocity uτ =
√
|τw|/ρ, wall shear stress τw,

density ρ, and dynamic viscosity µ. A linear relationship
u+ = y+ can be observed in the direct proximity of the
wall within y+ ≤ 5, where viscous effects dominate. This
region is called the viscous sublayer. A transitional buffer
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Figure 1: Boundary cell layer with wall (gray) and bilin-
ear face layer (faces opposite to wall). Trilinear interpola-
tion (a) within the boundary layer is a poor approximation
of (b), the velocity profile according to the law of the wall.
(c) Evaluation of the wall function at a point x.
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Figure 2: Convex (a) and concave (b) boundaries with mean
value regions (red) and the bilinear face layer (pink).

layer (5≤ y+ ≤ 30) connects the linear relationship with the
logarithmic relationship

u+ =
1
κ

ln(y+)+C (3)

observed in the turbulent log-law layer (30≤ y+ ≤ 300). The
logarithmic relationship includes the von Kármán constant
κ = 0.41, and a constant C that reflects the dimensionless
thickness of the viscous sublayer, e.g., C = 5.5 for a smooth
planar wall. Popular turbulence models, like the k−ε model,
are based on the turbulent kinetic energy k, which describes
the kinetic energy of velocity fluctuations. Many solvers that
use such models harness the relationship [LS74]

uτ =C1/4
µ
√

k (4)

with constant Cµ = 0.09 together with (3) to compute the
friction velocity and then derive the wall shear stress from
the field values k, ūt , etc. at the first grid nodes off the no-slip
boundary. Consistently, the simulation uses the wall function
only within the layer of cells that is in contact with the no-
slip boundary. In simulations using unstructured grids, near-
wall regions are preferably discretized with several layers of
hexahedra, as illustrated in Figure 1. If a wall function is
employed, the first off-wall nodes are required to lie within
the log layer, i.e., where 30≤ y+ ≤ 300.

3.2. Interpolation Scheme for Visualization

Figure 1 shows a common near-wall discretization with a
layer of hexahedra. Consistent with the simulation, we eval-
uate the wall function only within the layer of boundary cells
adjacent to no-slip boundaries, which we call the boundary
cell layer. The figure illustrates that the velocity profile ob-
tained with trilinear interpolation (a) is a poor approximation
of the logarithmic profile observed near the wall in experi-
ments (b). We define the bilinear face layer to consist of
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all off-wall faces of the boundary cell layer. It connects the
boundary cell layer with the interior of the domain, where
the traditional interpolation scheme is employed (see Fig-
ure 2). In the following, we describe how the law of the wall
(in particular Equation (3)) is evaluated at a point x within
the boundary cell layer, i.e., how it is incorporated in the
original interpolation scheme (cf. Figure 1(c)). First, the di-
mensionless distance from the wall y+(x) is obtained. The
point xw on the wall nearest to x is determined, and a ray
r(t) = xw + t(x− xw) is intersected with the bilinear face
layer, resulting in the point xb. The traditional 2D interpola-
tion scheme is then used within the “bilinear” cell face that
contains xb to interpolate the required field values at xb, in-
cluding u, y+, and k. Common solvers, like CFX [ANS10a],
provide all necessary quantities, such as k, µ, ρ, y+ etc., at
the first off-wall nodes. Note that in our application the tra-
ditional 3D interpolation is trilinear and hence the respec-
tive 2D interpolation on a face is bilinear. However, other
interpolation schemes would likewise fit into our approach.
Evaluating (4) with the interpolated turbulent kinetic energy
k(xb) yields the friction velocity uτ. With this, and the nor-
mal distance y(x), the dimensionless distance y+(x) is com-
puted according to (2). Then, the log law (3) can be evalu-
ated to obtain u+(x). Special treatment is required if x lies
within the viscous sublayer, where y+(x)< y+v . We chose a
constant threshold of y+v = 11.06, consistent with the used
solver [ANS10b], and employ linear interpolation there:

u+v (x) =
y+(x)

y+v
u+(y+v ) (5)

in order to bridge the buffer layer gap and ensure C0 conti-
nuity at the boundary distance y+v . Transforming u+ with (1)
results in the tangential velocity ūt(x). While the simulation
enforces zero velocity at the no-slip walls, the first off-wall
nodes can exhibit a velocity component ū⊥(x) orthogonal to
the wall. Since the law of the wall assumes planar walls and
wall-tangential flow, the (simulation) model does not apply
in such cases. Employing our approach only for ūt(x) and in-
terpolating ū⊥(x) with the traditional 1D scheme, in our case
linear, however, provided poor results: streamlines did not
detach correctly at the step in Figure 3. Interpolating ū⊥(x)
according to ūt(x) provided much better results. Hence, our
interpolation approach is ū(x) = ūt(x) · ū(xb)/ūt(xb). A de-
tailed examination is left as future work.

The interpolation scheme as described so far can be only
applied if the simulation mesh provides a well-defined wall
normal at xw, i.e., it cannot handle the case if xw lies on an
edge or on a vertex of the wall faces and if these faces are
not coplanar there, e.g., if the wall exhibits a convex config-
uration at the edge or vertex, see Figure 2(a). Another so far
unsupported case are multiple points (candidates for xw) on
the wall where the normal points to the sample point under
consideration, see Figure 2(b). Both cases result in unsup-
ported ambiguous regions (red in Figure 2), within which
we use mean value interpolation to ensure C0 continuity of
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Figure 3: Step with curved boundary and streamlines from
hi-res field (green), log interpolation (blue), trilinear (light
blue). The closeup box shows two mean value regions in-
duced by convex edges (red) and one by a vertex (blue).

our overall interpolation approach. Mean value interpolation
obtains an interpolation within a volume from values on a
triangular mesh that encloses the volume [JSW05]. These
“red” regions are denoted as mean value regions, henceforth.
Each “nonplanar” vertex or edge on the no-slip wall induces
one mean value region, as illustrated with the curved chan-
nel example in Figure 3. The surface representation of each
mean value region (the closed triangle mesh) is constructed
in a preprocessing step, using the CGAL library [CGA] by
cutting the involved cells with the planes indicated by the
red lines in Figure 2 and subsequent merging of the “red”
parts. The faces of the resulting polyhedron that were ob-
tained by cutting with the aforementioned planes have to fit
our wall function consistent interpolation scheme and thus
have to be, due to its nonlinearity, subdivided and the values
at the resulting vertices set by our new interpolation scheme.
Triangles of the polyhedron lying within the bilinear layer
are also subdivided, using the traditional scheme to com-
pute the field values. Our overall interpolation approach is
evaluated at runtime within a specific mean value region by
accessing its precomputed surface mesh together with the
values at its vertices and applying mean value interpolation.

A main reason for publishing our approach as a short pa-
per are the difficulties in obtaining the mean value regions if
concave boundary edges or vertices are involved. While it is
straightforward to obtain the mean value regions for convex
edge or vertex wall regions, it turned out to be intricate to
obtain them for concave or concave/convex cases, as those
mean value regions can intersect, be oblique, consist of sev-
eral parts, or even intersect at remote regions in distorted
grids. While our approach so far supports any unstructured
grid consisting of hexahedra as long as the boundary is con-
vex, we support concave wall regions in our current imple-
mentation only if the involved cells are rectangular with the
following workaround. This workaround is better than tra-
ditional trilinear interpolation in these regions but does not
employ the wall function to the full extent. To find such a
formulation for generic configurations is, from our experi-
ence, nontrivial and we would like to trigger future research
in this direction with the present paper. In our workaround
we avoid the determination of the mean value regions in-
volving concave wall edges or vertices and instead treat the
whole cell that exhibits a concave edge or vertex as a mean
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Figure 4: Channel flow with a step. The bilinear layer (pink) separates the log region near the wall from the interior trilinear
region. Closeups (i)–(iii) compare streamlines using trilinear (light blue) and log interpolation (green) with streamlines from
4× hi-res field (blue). On the right a comparison of velocity profiles shows both, mean value region (red) and log region (top).

value region (note that due to our restriction on rectangular
grids in concave wall regions there is exactly one cell that is
adjacent to a concave edge or vertex).

4. Results and Evaluation

We evaluate our approach at the example of two flows that
were computed with a RANS solver in CFX. Both cases
study the stationary solution of an incompressible fluid at
high Reynolds numbers near no-slip walls. The k− ε tur-
bulence model was employed with a wall function. Details
are given in [ANS10b]. Using local field evaluations and
streamlines, our interpolation scheme (log) is compared to
traditional trilinear interpolation on the same grid and to a
reference simulation of four times higher resolution (hi-res).

The first example (Figure 4) is a channel flow with a step,
discretized with a regular grid. The flow enters on the left
and leaves the domain on the right. The bilinear face layer is
represented by the transparent pink surface, demarking the
interior from the region where the wall function is applied.
Figure 4 (right) compares velocity profiles near the step. Tri-
linear interpolation shows an unnatural cutoff within the wall
cells, compared to the profile obtained from the trilinearly
interpolated simulation of four times higher resolution. Our
approach (log), in contrast, reproduces the logarithmic flow
behavior near the wall, even with the chosen coarse grid res-
olution. We also computed streamlines traversing the bound-
ary region, all with equal integration time. The closeups in
Figure 4 show that trilinear interpolation strongly underesti-
mates the velocity near the wall. The wall-nearest line, e.g.,
already ends at (i). The underestimation of trilinear interpo-
lation is also visible at the corresponding line in the hi-res
field. It also ends early, before our lines (iii). Note that the
vertical deviation to the “hi-res lines” is also caused by de-
viations between the hi-res and low-res simulations. Region
(ii) demonstrates that our mean value interpolation approach
does not introduce additional error. The second example
(Figure 3) is also a channel but with a non-rectangular step
and additional curvature along its edge. Again, the stream-

lines from our approach are more consistent to the lines from
the hi-res field than those from trilinear interpolation.

Our single-threaded CPU implementation of the interpo-
lation schemes take 4 ms (trilinear), 23 ms (log law), and
1594 ms (mean value), for 1000 evaluation points, on an In-
tel Xeon X5550. While the overhead of log interpolation is
acceptable, the mean value interpolation takes much longer.
It directly depends on the chosen resolution of the mean
value mesh. Here, we chose a mean value region of the first
data set consisting of 1162 vertices and 2052 triangles. To
improve the timings, one could resample the mean value re-
gions in a preprocessing step, using a fine rectilinear grid,
and then use trilinear interpolation at runtime. The same
could be done with the log regions, using refinement when
approaching the wall. However, while resampling offers a
more generic approach for improved visualization of loga-
rithmic wall behavior with standard visualization software,
it can only provide an approximation of the wall function.

5. Conclusion

The presented interpolation technique accounts for wall
functions modeling the law of the wall, which is harnessed
by many CFD solvers. We demonstrated that our approach
leads to results that are more consistent with the solver
model than traditional trilinear interpolation near walls and
that this allows for more consistent analysis. While the k−ε

turbulence model was used in our examples, the technique is
in principle applicable to all simulations based on wall func-
tions. This is, e.g., often the case for k−ω or Reynolds stress
models. Our work demonstrates the potential of making vi-
sualization techniques more consistent with the respective
simulation models. It is clear that this work is only a first step
toward wall function consistent interpolation and we hope to
trigger future work and awareness on the topic.

This work was supported in part by the Cluster of Excel-
lence in Simulation Technology (EXC 310/1) and the Col-
laborative Research Centre SFB-TRR 75 at the University
of Stuttgart.
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