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Abstract
Direct visualization of higher-order data provides manifold advantages over the traditional approach, which is
based on resampling and subsequent visualization by interpolation-based techniques. Most important, it avoids
excessive computation and consumption of memory, and prevents artifacts by pixel-accurate visualization at
interactive rates. This work addresses particle-partition of unity simulation data, where fields are modeled both
using cell-based analytic representations together with enrichment functions centered at individual points. This
combination of bases allows for superior simulation convergence rates and is able to capture high field variations
with comparably small sets of basis functions. In this paper we propose direct visualization of such data from 2D
simulations, providing accurate insight. We additionally visualize solver performance, allowing for more directed
simulation design, and exemplify our technique using a GPU-based prototype on crack simulation examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

A large part of scientific visualization deals with discretized
field data. To account for their continuous nature, visual-
ization techniques typically involve interpolation, rendering
the data at least piecewise continuous. There is a multitude
of available interpolation schemes—and often the choice
would depend on the domain where the data originate from
and on the concepts involved in the respective visualization
technique. However, it is nowadays still common practice to
neglect these details and to follow a simple but generic ap-
proach, often resulting in visualization techniques based on
tensor-product linear interpolation.

There is, however, an alternative visualization approach
for such data: direct visualization of piecewise analytic data.
Instead of being present as a set of samples with some con-
nectivity and leaving the interpolation question open, they
provide a concise description of the field data. They can
be based on scattered point sampling, such as in the case
of smoothed particle hydrodynamics (SPH) or radial basis
function (RBF) data where analytic kernel functions reside
at discrete points, or may be based on grids such as higher-
order finite element (FEM) or discontinuous Galerkin (DG)
data where the field is analytically described for every cell

of the grid. From a data-centric view, particle-partition of
unity (PPUM) [Sch03, GS00] data, the topic of this paper,
represent a combination of these two cases: they use a cell-
based (local coordinate-based) analytic representation sim-
ilar to higher-order FEM but at the same time use enrich-
ment functions placed in a scattered manner in global coordi-
nates. In this sense, our application relates to and uses ideas
from direct visualization techniques presented for SPH data
[SFBP09] as well as DG data [RCMG07, UFE10, SUP∗11].

We show the utility of our interactive direct visualization
technique by comparing it with the traditionally used resam-
pling approach with subsequent visualization based on stan-
dard interpolation techniques. Further, we present dedicated
visualization methods for investigating PPUM data, avoid-
ing misleading visualizations, providing new insights in this
type of data, and supporting efficient and effective PPUM
simulation design. We exemplify our approach using crack
simulation examples.

The paper is organized as follows: Section 2 refers to re-
lated work whereas Section 3 describes the PPUM simula-
tion approach from the visualization point of view. Section 4
presents our interactive pixel accurate visualization method
for 2D PPUM data, including details on its Open GL shader
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implementation. Results are presented in Section 5 and the
advantages of the method in comparison to traditional visu-
alization techniques are discussed. Section 6 concludes the
paper with a summary of the results and future work.

2. Related Work

Direct visualization of higher-order data has gained impor-
tance in recent years. Most work addressed either point-
based data arising, e.g., from smoothed particle hydrody-
namics, or grid-based data from, e.g., finite-element or dis-
continuous Galerkin simulations. Due to their basic differ-
ence in representation, these visualization techniques also
employ different strategies. In the SPH context there is the
work of Schindler et al. [SFBP09] regarding line-type fea-
ture extraction. One of the first FEM-related techniques are
due to Gallagher [GN89] and Zumbusch [Zum94]. Haas-
donk et al. [HOR∗03] visualize polynomial higher-order
field functions given on adaptively refined 2D grids. An-
other related approach is due to Nelson and Kirby, and
Meyer et al. [NK06, MNKW07], who employ a raycasting
and a particle-based technique to visualize isosurfaces in
3D flow simulations. More recently, in the field of discon-
tinuous Galerkin flow simulations, Üffinger et al. presented
a technique for volume rendering [UFE10], and Pagot et
al. a method for isosurface extraction [PVS∗10] and line-
type feature extraction [POS∗11]. Most techniques visual-
ize polynomial field solutions only. In contrast, our tech-
nique targets the solution from generalized FEM simula-
tions, which additionally feature arbitrary non-polynomial
basis functions, e.g., discontinuous or singular functions.

3. Particle-Partition of Unity Method

The generalization of the classical finite element method is
an active research field aimed to overcome the cumbersome
issue of mesh-generation and to improve on the approxi-
mation properties especially for problems with micro struc-
ture, discontinuities, and singularities (see [FB10, Sch11a,
DO96, BM96] and references therein). Since FEM basis
functions are piecewise polynomial functions they are well-
suited for the approximation of piecewise smooth functions
only. Thus, adaptive mesh-refinement techniques must be
employed in the FEM to attain acceptable convergence rates.
In various generalizations of the FEM [BB99, BCO94] the
restriction to piecewise polynomial shape functions is abol-
ished, thereby allowing for an algebraic refinement of the ap-
proximation space by problem-dependent enrichment func-
tions to account for specific behavior of the solution that is
known a priori, e.g., by asymptotic analysis.

In fracture mechanics for instance we must cope with dis-
continuous displacement fields and stress distributions that
are singular at the moving crack fronts. Here, the charac-
teristic singularity is known analytically from an asymptotic
expansion of the solution and the generalized finite element

methods can utilize this information to substantially improve
the efficient simulation of fracture processes. Note that this
algebraic refinement approach however is not limited to an-
alytic information but can also employ pre-computed hand-
book functions, or even experimental data.

The fundamental prerequisite for this so-called enrich-
ment approach is the availability of a partition of unity (PU).
In the extended finite element method (XFEM) [MDB99]
or the generalized finite element method (GFEM) [SBC00]
the employed PU comes from classical FEM shape functions
whereas in the particle-partition of unity method the em-
ployed PU is constructed by a meshfree scattered data tech-
nique from independent points, as described in Section 3.1.
The algebraic refinement of an approximation space obvi-
ously improves the approximation properties, however, it
may also adversely affect the stability of the basis functions
and thereby the efficient iterative solution of the arising lin-
ear system. In the PPUM these stability issues, which are
observed in practice in the GFEM and XFEM, can be easily
overcome via the use of a so-called flat top PU and a lo-
cal preconditioning technique [Sch11b]. Moreover, there is
a multilevel solver available for the PPUM [GS02] that can
cope with arbitrary enrichment functions. Thus, the PPUM
is currently the most stable and efficient approach to the gen-
eralization of the FEM. However, its implementation cannot
be based on an available FEM code.

3.1. Data Model

In contrast to traditional FEM approaches, in PPUM, fields
are primarily represented in a mesh-less manner, i.e., they
are defined on a set of points P = {xi | i = 1 . . . N̂} inside a
domain Ω. The required continua are established by means
of d-binary trees (we assume d = 2, i.e., quadtrees), con-
structed from a bounding-box CΩ⊃Ω of P that is subdivided
until each cell Ci with center (cx

i ,c
y
i ) and size (2hx

i ,2hy
i )

Ci = (cx
i −hx

i ,c
x
i +hx

i )× (cy
i −hy

i ,c
y
i +hy

i )

associated with a leaf of the tree contains at most a single
point xi ∈ P, see Figure 1 (left). From this set of pairwise
disjoint cells Ci, a cover CΩ; i.e., a collection of overlapping
patches ωi, is attained by simple scaling by α > 1

ωi := (cx
i −αhx

i ,c
x
i +αhx

i )× (cy
i −αhy

i ,c
y
i +αhy

i ), (1)

see Figure 1 (right). Note that a cover patch ωi is defined for
leaf-cells Ci (i = 1 . . .N) that contain a point xi ∈ P as well
as for empty cells that do not contain any point from P.

On each cover patch ωi a local approximation vi of the
field solution is computed and then blended smoothly by a
partition of unity ∑

N
i=1 ϕi ≡ 1 to form the global approxima-

tion; i.e., a global approximation vPU defined on Ω in the
PPUM is defined as the weighted sum

vPU(x,y) =
N

∑
i=1

ϕi(x,y)vi(x,y) (2)
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Figure 1: Quadtree subdivision with cells Ci constructed by
the simulation from a given set of points (left). The PPUM
cover is then obtained by scaling the cells, resulting in the
patches ωi (right).

of overlapping local approximations vi defined on ωi.

Each local approximation vi in general consists of a
smooth polynomial part pi (similar to FEM) and an
application-dependent enrichment part ei, i.e.,

vi(x,y) = pi(x,y)+ ei(x,y),

which are described by the coefficients ps
i and et

i and the
associated basis functions ψ

s
i for the polynomials and η

t
i for

the enrichments respectively. Thus, a local approximation is
given by

vi(x,y) = ∑
s

ps
i ψ

s
i (x,y)+∑

t
et

iη
t
i(x,y) (3)

and with (3) put into (2) the respective global approximation
is obtained:

vPU(x,y) =
N

∑
i=1

ϕi(x,y)
(

∑
s

ps
i ψ

s
i (x,y)+∑

t
et

iη
t
i(x,y)

)
(4)

Note that the local polynomials pi(x,y) are spanned by
a local basis ψ

s
i defined on ωi. The enrichment basis func-

tions η
t
i employed in the method are application dependent

and are usually given as global functions η
t on the whole

computational domain Ω since they are designed to capture
special behavior of the solution at a particular location in Ω.

3.2. Fracture Enrichments

In fracture mechanics the most common choices in 2D are
the following. Let C ⊂ Ω denote a crack that induces a dis-
continuous displacement field u across the crack line with
particular singularities at the crack tips cl and cu. Thus on
patches ωi with

ωi∩C 6= ∅ and {cl ,cu}∩ωi = ∅

(red patches in Figure 2) the local polynomials pi(x,y) =
∑s ps

i ψ
s
i (x,y) are enriched by the additional basis functions

HC
±(x,y)ψs

i (x,y) (5)

where HC
± denotes the Haar function that is discontinuous at

the crack C. Therefore, the respective local approximation vi

is given by

vi(x,y) = ∑
s

ps
i ψ

s
i (x,y)+∑

s
qs

i H
C
±(x,y)ψs

i (x,y),

with two sets of polynomial coefficients ps
i and qs

i . This type
of enrichment is denoted as multiplicative. If a patch ωi con-
tains a crack tip ξtip, i.e., cl ∈ ωi or cu ∈ ωi (blue patches in
Figure 2), the patch is enriched by the Westergaard functions

Wtip := {
√

r cos
θ

2
,
√

r sin
θ

2
,
√

r sinθsin
θ

2
,
√

r sinθcos
θ

2
}

(6)
given in local polar coordinates with respect to the tip ξtip.
These functions are derived from an asymptotic expansion
of the solution and capture its dominant singularity. Here,
the local approximation vi is given by

vi(x,y) = ∑
s

ps
i ψ

s
i (x,y)+∑

t
wt

iη
t
i(x,y),

with the polynomial coefficients ps
i and the four additional

coefficients wt
i associated with the four enrichment basis

functions η
t
i of (6). This type of enrichment is referred to

as additive. Figure 4 illustrates the four functions that are
used to model the crack tip. The schematic view in Figure 2
shows how the different types of enrichments are employed
in a simple crack simulation scenario.

The PU functions ϕi on a cover CΩ are constructed by
Shepard’s approach in the PPUM. To this end a weight func-
tion Wi : Ω→R with supp(Wi) = ωi is defined on each cover
patch ωi by

Wi(x,y) =
{
W◦Ti(x,y) (x,y) ∈ ωi
0 else

(7)

with an affine transform Ti : ωi→ [0,1]d andW : [0,1]d→R
denoting the reference d-linear B-spline. The Shepard func-
tions

ϕi(x,y) :=
Wi(x,y)
Si(x,y)

, with Si(x,y) :=
N

∑
l=1

Wl(x,y) (8)

are then defined by simple averaging of these weight func-
tions. The functions {ϕi} with i = 1 . . .N form a partition of
unity; i.e., they hold 0≤ ϕi(x)≤ 1 and ∑

N
i=1 ϕi ≡ 1.

In summary, the evaluation of a global PPUM approxi-
mation (4) at a point xw = (x,y) ∈ Ω in global world co-
ordinates involves the evaluation of the weight functions Wi
and the basis polynomials ψ

s
i which are both defined in lo-

cal coordinates on ωi, and the evaluation of enrichment ba-
sis functions, i.e., the Haar function HC

±(x,y) of (5) and the
Westergaard functions of (6), given in global coordinates.

4. Pixel-Accurate Visualization of PPUM Data

This section presents our pixel-accurate visualization frame-
work that exemplifies the challenges involved in interactive
visualization of 2D field solutions computed by particle-
partition of unity simulation methods. The system harnesses
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Figure 2: Schematic view of a crack simulation with the
PPUM. The centers of the patches ωi are marked by squares
whose color indicates the type of crack enrichment (blue:
additive enrichment (6); red: multiplicative enrichment (5);
gray: no enrichment, polynomial approximation). Additive
enrichment is employed at the crack tip. Multiplicative en-
richment based on Haar functions is used in regions that are
completely cut by the crack.

the Open GL rendering pipeline, and the flexibility of its
shading language GLSL, to achieve accurate evaluation and
visualization of the analytical field solution vPU(x,y) with
xw = (x,y) ∈ Ω given in world space coordinates within the
simulation domain Ω. The enrichment functions of the sim-
ulation are often specified in an analytical manner. One ex-
ample are the additive crack tip functions shown in Figure 4,
which feature singularities that cannot be captured with re-
sampled representations appropriately. Thus, a pixel-exact
visualization technique also has to evaluate the true analyt-
ical representation of the enrichment functions. Therefore,
our rendering pipeline provides a GLSL function interface
which allows to easily replace the analytical function imple-
mentations that are specific to a particular PPUM solution. In
future applications with dynamic enrichment function selec-
tion during simulation and a respective file format, this will
allow for automatic GLSL implementation replacement.

Figure 3 illustrates the rendering pipeline. The higher-
order field solution computed by the simulation is given on a
number of overlapping rectangular PPUM patches covering
the domain Ω. Our system is able to efficiently evaluate the
field solution on a per-pixel level. Section 4.1 describes the
evaluation core that handles the evaluation of the polynomial
part of the solution local to a specific patch ωi, computes
the contribution of the patch enrichment functions by call-
ing the exchangeable enrichment function implementations,
and weights everything according to the cell’s partition of
unity function. Thereby, the spatially overlapping influence
regions of the local solution functions have to be correctly
accounted for. Finally, after the contributions of all patches
have been summed up on a per-pixel level, the field values
stored in the screen-sized field textures are mapped to color
(Section 4.2).

In the following the field evaluation system is described at
the example of a single scalar field solution. The extension
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Figure 3: Rendering pipeline for direct visualization of
PPUM data. Its input are the overlapping PPUM patches
according to Figure 1, and the field solution coefficients of
the patches, which are stored in textures. The PPUM prob-
lem specific implementation of the function interface is in-
dicated by the small colored boxes: PU weight function and
its gradient (red), enrichment functions (blue), derived field
functions (green).

to multiple scalar fields, vector fields, and their first order
analytic derivatives is discussed in Section 4.3.

4.1. Field Evaluation

The global field solution vPU(x,y), given in (2) and (4) , con-
sists of multiple terms, the local solution functions vi(x,y)
of the overlapping patches, and the PU part ϕi, which deter-
mines the contribution of the vi(x,y) in regions where mul-
tiple patches ωi overlap. Consequently, multiple patches can
contribute to the final field value of a pixel. The contribution
of each patch at a pixel can be separated from each other if
the sum of all weight functions S = ∑Wi (8) is computed in
screen space first.

To compute the weight function sum S on the domain
Ω, the individual overlapping patches ωi are rendered sepa-
rately, and for each fragment the weight function Wi is eval-
uated at interpolated local patch coordinates xl ∈ [0,1]2. Ad-
ditive Open GL blending is employed to sum up the contri-
butions of multiple patches in overlap regions in a floating
point texture attached to the render target. Note, that in re-
gions being covered by a single patch the weight sum S is
equal to Wi(xl).

Now, the contribution ϕivi of each patch ωi to a pixel can
be computed separately by a fragment shader that fetches the
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weight function sum S at the corresponding fragment from
the texture computed in the previous stage. The contribu-
tions of multiple ωi to a pixel can again be summed up with
additive Open GL blending. To be able to evaluate the cor-
rect solution function vi the individual patches ωi are ren-
dered with additional attribute values attached to each ver-
tex. This includes a unique patch identification number that
allows to access the patch’s data stored in textures, like poly-
nomial and enrichment function coefficients, from within the
shader. Additionally, element-local coordinates xl ∈ [0,1]2

are attached. For each pixel covered by the patch geometry
the rasterization engine automatically generates a fragment
and calculates its interpolated local coordinates xl and corre-
sponding world coordinates xw ∈ Ω. The field contribution
vi (3) is then evaluated at the interpolated position.

Our system provides a main evaluation routine that in-
cludes the evaluation of the polynomial part of the solution
in patch-local barycentric coordinates xb = 2 ·(xl−0.5). The
polynomials are given in a monomial representation, which
comes with the advantage that only the polynomial coeffi-
cients need to be stored. The structure and the order o of the
corresponding basis functions ψi = xk

byl
b with k+ l <= o can

be easily reconstructed during runtime, e.g., if one agrees to
use a Morton order. Besides compact storage the monomial
representation additionally allows for simple iterative evalu-
ation of the polynomials on the GPU [UFE10]. If a patch is
enriched by multiplicative or additive functions, those have
to be evaluated and multiplied with their coefficients, too, to
compute ϕivi.

The additive and multiplicative enrichment functions are
problem specific. Therefore, we designed a simple GLSL
function interface which is used by the evaluation core rou-
tine. For example if the core needs to evaluate the additive
enrichment functions at xw it calls the function void EvalAd-
dEnrichment(vec2 wCoord, int patchId, in sampler2D addEn-
richData, out float values[numAdditiveFunctions]). The sys-
tem provides data required by the actual implementation,
e.g., the orientation of the crack tip functions of our example
problem, through a data texture. Note the enrichment func-
tions are defined with respect to the global world space sys-
tem. The function interface allows the problem specific parts
of the PPUM function evaluation system to be replaced eas-
ily. With the GLSL compilation approach this can be done
during runtime without the need to restart the application.

4.2. Color Mapping

The mapping of the field values to color is performed in
a separate render pass. First, the system calls a predefined
function that, e.g., selects a field component, or, maps the
computed field values to a single scalar value, like, e.g., gra-
dient field magnitude. Alternatively, a replaceable mapping
function that can be implemented for a specific problem, is
called. This was done for the von Mises field (Section 5.1).
Finally, the scalar value is transferred to the color domain by
using a 1D transfer function.

Figure 4: Four additive crack tip enrichment functions rep-
resented with the analytical functions given in (6). For an ad-
equate resolution of the singularities at the tip by piecewise
polynomial basis functions or grid resampling techniques,
strong adaptive refinement towards the tip would need to be
employed. Moreover, the line of discontinuity, i.e., the crack
would need to be resolved by the mesh.

4.3. Vector Fields and Spatial Derivatives

Evaluating vector fields is a straightforward extension. Each
component of the vector field comes with a full set of co-
efficient vectors, and thus, the components can be handled
independently like a scalar field. The only difference is that
the evaluation core needs to evaluate two scalar functions
and the textures storing the result of the field evaluation in
image space have to provide twice the storage space.

Often, the visualization of derived fields which build upon
spatial field derivatives is of major interest. Therefore, the
core system provides functionality to compute analytic first
derivatives of the field solution. This includes the gradient
field in the case of scalar, and the Jacobian field in the case
of vector fields. Note, the according gradient function im-
plementations need to be derived for the problem specific
enrichment functions. In case of the polynomial solution the
derivative can easily be computed, e.g., for a specific mono-
mial term xk

byl
b the derivative in xb direction simply is given

as kxk−1
b yl

b. This enables the core to accurately compute the
scalar gradient field with virtually no overhead. Note it is
important to apply the chain rule, as the gradient field has to
be evaluated with respect to world space, but the polynomial
solution is defined in the patch’s local barycentric space.

Computing the gradient in regions with overlapping
patches is more complicated. Assume, the scalar field contri-
bution of a single patch ωi is given as ϕivi with ϕi =

Wi
∑l Wl

be-
ing the PU contribution of the patch, and vi being the patch’s
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local field value. Its gradient

∇(ϕvi) =∇ϕivi +ϕi∇vi (9)

then not only involves∇vi, but also

∇ϕi =∇
Wi

∑Wk
=
∇Wi ∑Wk−Wi ∑∇Wk

(∑Wk)2 (10)

the gradient of the PU weighting. To be able to evaluate this,
the weight function sum shader needs to compute the sum
of the weight function gradients for each pixel and store it in
the weights sum texture. The contributions of the individual
patches can then be simply added up and stored in the field
textures, similarly to the scalar field.

By using multiple RGBA floating point textures as ren-
der targets of the field evaluation shader, multiple scalar and
vector fields and their gradients can be computed simultane-
ously and used as building blocks to construct more complex
derived fields in the color mapping stage.

5. Results and Evaluation

We evaluate our method by visualizing the simulation re-
sults obtained with the PPUM for several fracture mechanics
problems in two dimensions. In particular, we consider the
static loading of a pre-cracked steel panel and the propaga-
tion of a crack. Thus, we approximate the equations of elas-
ticity on a two-dimensional domain with internal traction-
free boundaries. From a numerical point of view, the main
issue in these simulations is the accurate approximation of
the displacement field near the crack tip. The main question
from an application point of view is if the material fails (near
the crack tip) due to the current loading conditions. A widely
used criterion for the failure of material is the so-called von
Mises stress which encodes the tensorial stress data at a point
into a scalar quantity. The von Mises stress is computed from
the Jacobian of the displacement field.

In all examples considered here, the PPUM simulations
employed linear splines as weight functions, given in (7).
Yet the PPUM allows for the use of arbitrary non-negative
weight functions, e.g., higher-order B-Splines. The weight
function interface of our visualization framework provides
this flexibility and quadratic B-Splines are implemented al-
ready in the framework. In all examples our visualization
approach is highly interactive (Table 1).

5.1. Center Crack

First we consider a panel with a horizontal crack at the cen-
ter of the panel that is fixed at the lower horizontal boundary
and loaded in vertical direction on the upper boundary. Thus
the crack will open in vertical direction and the character-
istic singularities at the two crack tips will be clearly visi-
ble in the von Mises stress. This behavior can be observed
from the visualizations shown in Figure 5. The PPUM sim-
ulation in this example employed additive enrichments only
in the vicinity of the two crack tips to capture the singular

(a) resampled (b) direct visualization

(c) resampled (d) direct visualization

(e) resampled (f) direct visualization

Figure 5: Center crack with typical stress distribution at
both crack tips. Comparison of our method (right column)
to traditional resampling (left). (a) Resampled at the PPUM
patch resolution of 642, misses features and shows incor-
rect features as in the middle of the crack. (c) Resampled
on a regular 20482 grid and closeup (e). Direct visualiza-
tion (b), (d), (f) in a pixel accurate manner provides clear
advantages—and prevents misinterpretations, e.g., at the
singularity at the crack tip (third row). Resampling would
require at least 10 times higher resolution at this zoom level.

behavior of the solution. Here, we used a coarse uniform
subdivision on quadtree level 6 to define the PPUM cover
and compare our visualization results with the traditional re-
sampling approach which is likely to yield misleading re-
sults because the sampling points cannot capture the leading
singularity (Figure 5 (a)). Moreover, even an extremely fine
resampling cannot resolve the singular solution behavior at
the crack tip (Figure 5 (c) and (e)). With our pixel-exact vi-
sualization approach we clearly capture the singular point.
Comparable results by resampling would roughly require a
tenfold sampling resolution which would lead to a dataset
of more than 2 GB for this simple example. Moreover, our
approach also allows us to detect very fine details of the sim-
ulation result which can be used to analyze the PPUM and
its properties. For instance the visual artifacts observable on
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Figure 6: Visualization of the von Mises stress in a steel
plate that is precracked at multiple locations.

Table 1: Render time per frame. Center crack with 2nd or-
der polynomials and with one quarter enriched patches. In-
tel Xeon X5570, NVIDIA GeForce GTX 470 @ 1024×768.

patches 16 64 256 1024 4096 16384
t in ms 2.33 2.38 2.48 2.89 4.76 11.76

the crack line in Figure 5 (b) are due to the fact that the ad-
ditive enrichment functions employed here around the two
tips meet in the center of the domain and cannot match. This
leads to an (insubstantial) oscillation in the derivatives and
stress field. Figure 6 shows an extension of the center-crack
example involving multiple arbitrarily oriented cracks.

5.2. Crack Propagation

Next, we consider the propagation of a crack in a steel plate.
Here we employ a quasi-static approach and predict the di-
rection in which the crack will grow via the maximum hoop
stress criterion. To this end, we extract the stress intensity
factors from the computed solution via the contour integral
method. From the visualizations depicted in Figure 7 we can
clearly observe the expected behavior due to the employed
loading conditions. The singularity at the crack tip moves
through the simulation domain and the stress levels grow
rapidly as the tip comes close to the domain boundary.

5.3. Adaptive Simulation

Finally, we visualize the results obtained with two adap-
tive PPUM simulations. Both are cell-size adaptive, one with
fixed polynomial order p = 1 and the other with p = 2 on all
patches. The overall quality of the results is comparable with
respect to accuracy, see Figure 8. A direct comparison of the
refinement patterns however clearly indicates the overall per-
formance advantages of a higher-order method, especially in
connection with the chosen enrichment scheme.

6. Conclusion

We have presented an efficient and accurate approach to the
visualization of particle-partition of unity data. Combining

(a) (b)

(c) (d)

(e) (f)

Figure 7: Crack propagation visualized by displacement
magnitude (left column) and von Mises field (right column),
with an overlay (black) highlighting crack geometry.

techniques from both scattered and cell-based higher-order
data visualization we presented a method providing insight
in this upcoming type of data. Accurate and efficient visual-
ization of these data is of particular importance because, in
contrast to low-order uniform techniques such as traditional
FEM, the involved highly flexible simulation basis requires
careful and thorough analysis both to support efficient sim-
ulation case design but also to support the research of this
promising field of simulation techniques. Providing flexible
evaluation schemes on GLSL runtime shaders has proven to
be an elegant and viable approach to handle the manifold
representation in terms of problem-specific enrichment func-
tions together with scattered simulation bases. Alongside
with planned extensions of the PPUM to the flow simula-
tion domain with prospective enrichment functions account-
ing for, e.g., log-layer flow, we plan to account for these ad-
vances with respective visualization techniques. It is likely
that the extension of the PPUM to 3D domains will not be
amenable by GLSL shaders, leading to more involved GPU-
based parallelization techniques for their visualization, but
on the other hand, allowing for superior numerical accuracy
using, e.g., double precision in CUDA.

c© The Eurographics Association 2011.
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(a) (b)

(c) (d)

Figure 8: Visual PPUM debugging. Results of two simula-
tion runs with adaptive refinement (closeup in bottom row).
Polynomials of order one (left) and two (right). Due to lower
polynomial order the domain needs to be refined more exten-
sively in the order one case. The colored boxes indicate the
type of enrichment, multiplicative (red), and additive (blue).
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